

ADDENDUM

SOLICITATION NO.: P203309090CH

ADDENDUM NO.: 1

DATE: 1/27/2026

SOLICITATION NAME: ENGINEERING AND DELIVERY
OF A DYNAMOMETER FOR TESTING MARINE ENERGY
SYSTEMS

DUE DATE AND TIME: 2/06/2026 4:00 PM PST

PROCUREMENT ANALYST: CASSANDRA HURD

The following questions were received with regard to the solicitation named above. OSU has provided answers below to each question, but the RFP or contract documents have not been modified as a result.

1. Page 17 of your proposal calls out the DUT inertia to be $3,200 \text{ kg m}^2$. Page 14 of your proposal calls out a max required acceleration rate of 100 rad/s^2 . Looking at worst case, to achieve 100 rad/s^2 on an inertia of $3,200 \text{ kgm}^2$ we would require 320,000 Nm of torque. We are assuming that the 100 rad/s^2 required does not apply to the largest of inertias. Is there a relationship in your testing between required acceleration for different inertias?

The DUT inertia is simply an example DUT. Other DUTs might be much lighter/smaller. We would like the system to be able to meet the acceleration spec up to the maximum torque spec. If a particular DUT is on the testbed that does not allow the system to meet the desired acceleration spec when at maximum torque, that is fine. The maximum torque spec supersedes the maximum acceleration spec.

Entities are not required to return addendums with their offers but are responsible to make themselves aware of, obtain and incorporate into their final offer any information contained in addendums. Failure to do so may make the offer non-responsive and cause it to be rejected.