

February 13, 2024

Ms. Serena Lim **Rowell Brokaw Architects** 1203 Willamette St., #210 Eugene, OR 97401

Re: Oregon State University Azalea House 2nd Floor Remodel

Dear Serena,

Attached please find calculation sheets 1 through 96, dated February 13, 2024, which verify the structural adequacy of the OSU Azalea House Remodel Project as shown on drawings S-001 through S-602, dated February 13, 2024. Design is based on the requirements of the 2022 Oregon Structural Specialty Code, which is based on the 2021 International Building Code.

If you have any questions or need further information, please call me.

Sincerely,

. of Aelland

Michael Arellano, PE

Project No. 10022300346

	-	Project OSU Azalea House	^{By} MAA	Sheet No.	
Imt	f	Location Corvallis, OR	Date 02/09/24	-	
- PI		Client Rowell Brokaw	Revised	Job No.	
Portland, Oregor	n		Date	223346	
CEILING FR	AMING				
1) Typical 2x	12 Celling Joist				
-Span 20'-0"	WDL = 10 psf				
	WLL = 25 psf				
2x12 DF No.:	2 @ 16" o.c. (S	ee attached)			
2) Typical 2x	8 Ceiling Joist				
-Snan 13'-6"	WDL – 10 psf				
	WLL = 25 psf				
2x8 DF No.2	@ 16" o.c. (Se	e attached)			
3) Ceiling Be	am grid 8				
-Snan 17' + 4	1.5' Cantilever	WDI – 16' x 10 psf – 160 plf			
		$WLL = 16' \times 25 \text{ psf} = 400 \text{ plf}$			
GL5-1/2x13-	1/2 24FV8 (se	e attached)			
4) Ceiling Be	am grid D				
-Span 19.5'	WDL = 7' x 1	0 psf = 70 plf			
	WLL = 7' x 25	psf = 175 plf			
GL3-1/2x12	24FV4 (see at	tached)			
5) Ceiling Be	am grid H				
Span 14 El					
-Span 14.5	$WDL = 9 \times 1$ WLL = 9' x 25	5 psf = 225 plf			
$C = 1/2 \sqrt{0}$	24E\/4 (app. off)				
GLJ-1/2X9	24F V4 (See alla				

		Project OSU Azalea House	^{By} MAA	Sheet No.	
Iznf	F	Location Corvallis, OR	Date 02/09/24		
K PI		Client Rowell Brokaw	Revised	Job No.	
Portland, Orego	n		Date	223346	
CEILING FR	AMING				
6) Typical He	aders				
0					
-Span 4	$WDL = 10^{\circ} x$ $WLL = 10^{\circ} x$	25 psf = 250 plf			
(2) 2x6 DF N	o.2 (See attacl	ned)			
-Span 6'	WDL = 10' x WLL = 10' x	10 psf = 100 plf 25 psf = 250 plf			
4x6 DF No.2	(See attached	(1)			
-Span 8'	WDL = 10' x WLL = 10' x	100 psf = 100 plf 250 psf = 250 plf			
4x8 DF No.2	(See attached	J)			
	(

-	-	Project OSU Azalea House	^{By} MAA	Sheet No.
lzof	-	Location Corvallis, OR	Date 02/09/24	1
K pii		Client Rowell Brokaw	Revised	Job No.
Portland, Oregon			Date	223346
2nd FL FRAM	1ING			
7) Typical De	ck Joist			
-Span 12'-0"	WDL = 30 psf	applied from 0' to 8'		
	WLL = 100 ps	applied from 0' to 8'		
3x12 DF No.2	2 @ 16" o.c. (Se	e attached)		
8) Critical Dec	CK Beam Grid C			
-Span 12'-75"	+1.5' cantileve	er WDL = (8' x 30 psf) x 8'/12' = 16	60 plf	
		WLL = (8' x 100 psf) x 8'/12' =	533 plf	
GL5-1/2x12	24FV8 (see at	ached)		
0) Critical Car				
9) Chilcai Cai	юру веатт			
-Span 11'-0"	+1.5' cantilever	WDL = 12' x 15pf = 180 plf		
		WLL = 12' x 25 psf = 300 plf		
W6x15 (see a	attached)			
10) 3" T&C D	ocking			
10/3 1860	ecking			
-Span 12'-0"	WTotal = 40 PS	SF Allowable WLL = 95 psf OK//		
(see attached)			
	,			
11) Critical G	rid 8 Column			
PDL = 2408 ll	DS			
PLL = 5438 lk)S			
6x6 DF No. 1	(see attached)			
12) Critical Gi	rid D and G Pos			
PDL = 780 lbs	3			
PLL = 1714 lb	S			
4x4 DF No. 2	(see attached)			
	· · · · · · · · · · · · · · · · · · ·			

	Project OSU Azalea House	^{By} MAA	Sheet No.
lzaff	Location Corvallis, OR	Date 02/09/24	
Khu	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346
2nd FL FRAMING			
13) Critical Grid H Post			
PDL = 18'/2 x 20'/2 x 10 p	sf = 900 lbs		
PLL = 18'/2 x 20'/2 x 25 ps	sf = 2250 lbs		
6x6 DF No. 1 (see attach	ed)		
14) Typical Entry Canopy	Beam		
WDL = 12'/2 x 15 psf = 90) plf		
WLL = 12'/2 x 25 psf = 15	0 plf		
HSS6x4x1/4 (see attache	ed)		

			Proje	^{ct} OSL	J Azale	a House)	E	^{3y} MAA	Sheet No.
			Locat	tion Corv	/allis, C	R		Ľ	Date 02/09/24	
	P11		Clien	^t Row	ell Bro	kaw		F	Revised	Job No.
Portla	land, Oregon							[Date	223346
PER D		<u>DVATION</u>	<u>I DRAWI</u>	NGS D	ATED :	<u>2/9/2015</u>	<u>5</u>			
SOILS	AND FOUN	IDATIONS							51	AUCTURAL
REFERE	NCE STAND	ARDS: Confor	m to OSSC C	hapter 18 "S	Soils and Fo	oundations."				NGINE 589 74858PE
GEOTEC	<u>HNICAL REF</u> December	PORT: Recom 9 th , 2014 were	mendations of used for desi	ontained in	a memora	andum by Fo	oundation Eng	lineering,	- Su	OREGON
CONTRA and shall pile instal	CTOR'S RES follow the red llation procedu	SPONSIBILITI commendation ures, ground w	<u>ES</u> : Contracto is specified th /ater manager	r shall be r erein includ nent and ste	esponsible ling, but no eep slope E	to review th t limited to, s 3est Manage	le Geotechnica subgrade prep ment Practices	al Report arations, a."	EXPR	ARCH 23 201 LITE EY CHALLER E8: 12-31-15
GEOTEC prepared Engineers dation Be	HNICAL SUB soil bearing s s shall provide aring Pressure	GRADE INSP urfaces, prior t a letter to the e(s)" shown be	<u>'ECTION</u> : The to placement of e owner statin elow.	 Geotechni of foundation g that soils 	ical Engine n reinforcin are adequa	er shall insp g steel and c ate to suppoi	ect all sub-gra concrete. Geot rt the "Allowab	ides and echnical le Foun-	Constant 400 SW 6TH PORTLAND, PHONE: (503) 24 WEBSITE: www. CIVIL 2 0 Compute 02/2015	AVENUE • SUITE 605 OREGON 97204 22448 • FAX: (503) 242-2449 dci-engineers.com STRUCTURAL Vinto Congrame to: Al Brite Parent
DESIGN Safet	SOIL VALUES	<u>3</u> : Soils Report			1.5				This document, and the in pert, without work of b?Anets Conversion Inc.	idea od derina talko inc. Nil rikgi15 videorvod idea od derigi moj not ba muset, in shole or armisein fram D'Anota Conversion Inc. dactima ory responsibility for its unavitarized use.
Allowa	able Foundation	on Bearing Pre	essure		2500	PSF – Native	,		Henn	ebery Eddy
FOUNDAT structural	TIONS and Fill as per the	OOTINGS: Fo	undations sha	all bear on	either on c	ompetent na	tive soil or cor	npacted		
below finis	sh grade, unle	ss otherwise s	specified by th	e geotechni	ical enginee	er and/or the	building officia	} inches ₁I.	921 SW W	ASHINGTON STREET SUITE 250 PORTLAND OREGON 97205 503 227 4860 TEL 503 227 4920 FAX
						+++++				www.henneberyeddy.com
										SET OSU STUDENT
									CO	MMUNITY CENTER
									DCI Project no. HEA Project no	14031-0087
									Date:	FEBRUARY 9, 2015
									Hevisions:	
						+++++				
									Drawn by:	IK
									Drawn by: Checked by: Sheet:	IK SC
									Drawn by: Checked by: Sheet: GEN	STRUCTURAL ERAL NOTES
									Drawn by: Checked by: Sheet: GEN	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE S1	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: & GEN ABE S1	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE S1	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE S1	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE S1	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE S1	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS
									Drawn by: Checked by: Sheet: GEN ABE S S S S S S S S S S S S S S S S S S S	STRUCTURAL ERAL NOTES LEGEND & BREVIATIONS

1 66	Project	OSU Azalea House	^{By} MAA	Sheet No.
kott	Location	¹ Corvallis, OR	Date 02/09/24	
- PII	Client	Rowell Brokaw	Revised	Job No.
Portland, Oregon			Date	223346
	<u>NGS</u>			
15) Entry Canopy Colum	n			
PDI = $\frac{12}{2} \times \frac{5}{2} \times \frac{15}{2} \text{ psf}$	= 450 lbs			
$PLL = \frac{12}{2} \times \frac{5}{2} \times \frac{10}{25} \text{ psf}$	= 750 lbs			
Eccentricity = 6"				
MDL = 450 x 0.5' = 225 lt	o-ft			
MLL = 750 x 0.5' = 375 lb	o-ft			
Seismic Loading V = 0.70	03 (R=1 ca	antilever column) x 450 lbs = 320) lbs	
ME = 320 lbs x 10' = 320	0 lbs-ft			
4" Diameter HSS x0.25"	(see attacl	nea)		
16) Critical Grid C Colum	n			
- Deck Loads				
PDL = 12' x 160 plf = 192	20 lbs			
PLL = 12' x 533 plf = 639	6 lbs			
- Canopy Loads				
	oof 000 l			
$PDL = 11/2 \times 24/2 \times 15 \mu$ PLL = 11/2 x 24/2 x 25 p	sf = 9901	lbs		
	D)			
6x6 DF No. 1 (see attach	ned)			
17) Critical Back Canopy	Column			
PDI = 11'/2 x 24'/2 x 15 r	osf = 990 I	bs		
$PLL = 11'/2 \times 24'/2 \times 25 \text{ p}$	sf = 1650	lbs		
4" Diameter HSS v0 25"	(see attac	hed)		

Project OSU Azalea House By		^{By} MAA	Sheet No.
lanff	Location Corvallis, OR	Date 02/09/24	
NPII	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346
COLUMINS AND FOUTIN	<u>65</u>		
18) Critical Back Canopy F	Footing		
PDL = 11'/2 x 24'/2 x 15 p	sf = 990 lbs		
PLL = 11'/2 x 24'/2 x 25 ps	sf = 1650 lbs		
Type A Footing 2'x2'x1' w/	(3) #5 bars each way (see attached)		
19) Grid H Footing			
PDI = 900 lbs			
PLL = 2250 lbs			
Type B Footing 3'x3'x1' w/	(4) #5 bars each way (see attached)		
20) Grid C Footing			
PDL = 1920 lbs			
T EE = 0330 103			
Type B Footing 3'x3'x1' w/	(4) #5 bars each way (see attached)		
21) Entry Conony Easting			
21) Entry Canopy Footing			
PDL = 450 lbs			
PLL = 750 lbs			
Eccentricity = $6"$			
MDL = 225 lb-ft			
MLL = 375 ID-IT			
Seismic Loading ME = 320	00 lbs-ft		
Type B Footing 3'x3'x1' w/	(4) #5 bars each way (see attached)		

	^{roject} OSU Azalea H	ouse	^{By} MAA	Sheet No.
konff [^{ocation} Corvallis, OR		Date 02/09/24	
	^{lient} Rowell Brokaw	1	Revised	Job No.
Portland, Oregon			Date	22334
DLUMNS AND FOOTINGS				
) Check Existing Column ar	d Footing Grid 8			
Biling Loads				
0L = 28'/2 x 32'/2 x 10 psf =	2240 lbs			
$L = 28'/2 \times 32'/2 \times 25 \text{ psf} = 1000$	5600 lbs			
d Floor Loads				
$L = 28'/2 \times 32'/2 \times 15 \text{ psf} =$ L = 28'/2 × 32'/2 × 65 psf =	3360 lbs			
L = 2072 × 3272 × 00 p31 =	14300 103			
isting Column GL8-3/4x9 L2	OK// (see atta	ched)		
isting Footing 4'x4'x1' w/(5)	#5 bars each way	OK// (see att	tached)	
) Check Evicting Column or	d Facting Crid F			
) Check Existing Column ar	a Fooling Gha E			
eiling Loads				
1 - 28'/2 x 36'/2 x 10 pcf -	2520 lbc			
$L = 28'/2 \times 36'/2 \times 25 \text{ psf} =$	6300 lbs			
d Floor Loads				
0L = 28'/2 x 36'/2 x 15 psf =	3780 lbs			
L = 28'/2 x 36'/2 x 65 psf =	16380 lbs			
ck Loads				
L = 18' x 80 plf = 1440 lbs				
L = 10 x 207 pil = 4000 lbs				
Isting Column GL8-3/4x9 L2	OK// (see atta	cned)		
isting Footing 4'x4'x1' w/(5)	#5 bars each way	OK// (see att	tached)	

kpff
Portland, Oregon

Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
		Date	223346

GL BEAM REINFORCING GRID E

24) Check PI reinforcing for loads imposed by new deck loading

Use Full Deck DL and LL (conservatively) rather than difference from original low roof framing and snow load.

-Deck Loads

PDL = 30psf x 8' x (4'/12') = 80 plfPLL = 100 psf x 8' x (4'/12') = 267 plf

Existing GL Beam span = 18'

Mmax = 347 plf x 18'^2 / 8 = 14,054 lb-ft or 168.6 k-in

Plate Reinforcing 1/4" thick x 15" each side.

Splates = 2x b x d² / 6 = 2 x .25 x 15² / 6 = 18.75 in³

- Check plate stress Fb = 168.6 / 18.75 = 8.99 ksi

Fallowable = 0.6x 36 = 24 ksi OK//

1 - Typical Ceiling Joist.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:	
--------	--

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitud	е	Unit
			tern	Start	End	Start	End	
DL	Dead	Full Area				10.00(16.	0")	psf
LL	Snow	Full Area				25.00(16.	0")	psf
Self-weight	Dead	Full UDL				4.0		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

	ł	20.045'	\rightarrow
	0'		20'
Unfactored: Dead Snow	174 334		174 334
Total	508		508
Bearing: Capacity Joist Support	508 635		508 635
Joist Support Load comb Length	1.00 0.80 #2 0.54		1.00 0.80 #2 0.54
Min req'd Cb Cb min Cb support Fcp sup	$0.54 \\ 1.00 \\ 1.00 \\ 1.25 \\ 625$		0.54 1.00 1.00 1.25 625

1 - Typical Ceiling Joist Lumber-soft, D.Fir-L, No.2, 2x12 (1-1/2"x11-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 16.0" c/c; Total length: 20.05'; Clear span: 19.955'; Volume = 2.3 cu.ft. Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help);

This section PASSES the design code check.

WARNING: Member length exceeds typical stock length of 18.0 [ft]

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 41	Fv' = 207	psi	fv/Fv' = 0.20
Bending(+)	fb = 961	Fb' = 1190	psi	fb/Fb' = 0.81
Live Defl'n	0.42 = L/569	0.67 = L/360	in	0.63
Total Defl'n	0.64 = L/374	1.00 = L/240	in	0.64

1 - Typical Ceiling Joist.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Additiona	al Data:										
FACTORS:	F/E(psi) CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#
Fv'	180 1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb ' +	900 1.15	1.00	1.00	1.000	1.000	-	1.15	1.00	1.00	-	2
Fcp'	625 -	1.00	1.00	-	_	-	-	1.00	1.00	-	-
Е'	1.6 million	1.00	1.00	-	-	-	-	1.00	1.00	-	2
Emin'	0.58 million	1.00	1.00	-	-	-	-	1.00	1.00	-	2
CRITICAL L	OAD COMBINATIO	ONS:									
Shear	: LC $#2 = I$)+S									
Bending((+): LC #2 = I)+S									
Deflecti	on: LC $#2 = I$)+S (l	ive)								
	LC #2 = I)+S (t	otal)								
Bearing	: Support 1	- LC #	2 = D +	S							
	Support 2	- LC #	2 = D +	S							
D=dead L	=live S=snow W	I=wind	I=impa	ct Lr=r	coof liv	re Lc=0	concent	rated	E=eart	hquake	
All LC's	are listed in	n the A	nalysi	s outpu	ıt						
Load com	binations: ASI) Basic	from	ASCE 7-	-16 2.4	/ IBC	2018 1	605.3.	2		
CALCULAT	IONS:										
V max =	507, V design	= 458	lbs; M	(+) = 2	2534 lbs	-ft					
EI = 284	.76e06 lb-in^2	2									
"Live" d	leflection is d	lue to	all no	n-dead	loads (live,	wind,	snow)			
Total de	eflection = 1.0) dead	+ "liv	e "							

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3 - Ceiling Beam Grid 8.wwb

Design Check Calculation Sheet WoodWorks Sizer 2019 (Update 1)

Loads:										
Load	Туре	I	Distrib	ution	Pat- tern	Locatio Start	n [ft] End	Magn: Start	itude 5 End	Unit
DL	Dead	1	Full UD	L	No			160.0		plf
LL	Snow	1	Full UD	L	No			400.0		plf
Self-weight	Dead]	Full UD	L	No			17.1		plf
Maximum Rea	actions (Ib	os), Bearin	g Capa	cities	(lbs)	and Bear	ing Lei	ngths (i	n) :	
					2	21.554' —				
	X								X	
	0'								17'	21.5'
Unfactored:										
Dead	1408								2408	
Factored:	3103								5456	
Total	4592								7846	
Bearing:										
Capacity	4500									
Beam	4592								8980	
Des ratio	4/10								/040	
Beam	1.00								0.87	
Support	0.97								1.00	
Load comb	#2								#2	
Length	1.28								2.14	
Min req'd	1.28							2	.14**	
Cb	1.00								1.18	
Cb min	1.00								1.18	
Cb support	1.07								1.07	
Fcp sup	625								625	
**Minimum bear	ing length go	overned by th	e require	d width	of the	supporting r	nember.			
Total leng	GI th: 21.55'; C	ulam-Balar Sup lear span: 16	3 - Ce iced, W ports: All 5.857', 4.4	eiling est Sp - Timbe 111'; Vo	GL Be ecies, er-soft E	eam Grid 24F-V8 DI Beam, D.Fir- 11.1 cu.ft.;	8 F, 5-1/2' L No.2 9 Iamina	''x13-1/2' tions, 5-1/	. /2" maximu	m width,
		Lateral s This s	upport: to section F	p = cor PASSES	ntinuous S the d	s, bottom = esign code	at suppo check.	rts;		

WoodWorks® Sizer

SOFTWARE FOR WOOD DESIGN

3 - Ceiling Beam Grid 8.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Analysis vs. Allo	wable Stress and	Deflection using	g NDS 2018:			
Criterion	Analysis Value	Design Valu	le Unit		Analysis/Desic	ηn
Shear	fv = 92	Fv' = 305	psi		fv/Fv' = 0	0.30
Bending(+)	fb = 1295	Fb' = 2760	psi		fb/Fb' = 0).47
Bending(-)	fb = 420	Fb' = 2674	psi		fb/Fb' = 0	0.16
Deflection:						
Interior Live	0.31 = L/662	0.57 = L/36	50 in		C).54
Total	0.44 = L/459	0.85 = L/24	0 in		C).52
Cantil. Live	-0.21 = L/259	0.30 = L/18	30 in		C).69
Total	-0.30 = L/179	0.45 = L/12	20 in).67
Additional Data:						
FACTORS: F/E(ps	i) CD CM Ct	CL CV	Cfu	Cr	Cfrt Notes Cn'	*Cvr LC#
Fv' 265	1.15 1.00 1.0	0	_	_	1.00 1.00 1.	.00 2
Fb'+ 2400	1.15 1.00 1.0	0 1.000 1.00	00 –	_	1.00 1.00 -	- 2
Fb'- 2400	1.15 1.00 1.0	0 0.969 1.00	- 00	_	1.00 1.00 -	- 2
Fcp' 650	- 1.00 1.0	0 – –	_	_	1.00	
E' 1.8 m	illion 1.00 1.0	0 – –	_	_	1.00	- 2
Eminy' 0.85 m	illion 1.00 1.0	0 – –	_	_	1.00	- 2
CRITICAL LOAD COM	MBINATIONS:					
Shear : LC	#2 = D+S					
Bending(+): LC	#2 = D+S					
Bending(-): LC	#2 = D+S					
Deflection: LC	#2 = D+S (live)					
LC	#2 = D+S (total)				
Bearing : Sup	port 1 - LC $#2 =$	D+S				
Sup	port $2 - LC #2 =$	D+S				
D=dead L=live S	=snow W=wind I=im	pact Lr=roof l	ive Lc=con	cent	rated E=earthqu	lake
All LC's are li	sted in the Analy	sis output				
Load combinatio	ns: ASD Basic fro	m ASCE 7-16 2.	4 / IBC 20	18 1	.605.3.2	
CALCULATIONS:						
V max = 5249, V	design = 4550 lb	s; M(+) = 1802	28 lbs-ft;	M(-)	= 5843 lbs-ft	
EI = 2029.78e06	lb-in^2			-		
"Live" deflecti	on is due to all	non-dead loads	s (live, wi	nd,	snow)	
Total deflectio	n = 1.0 dead + "1	ive"				
Lateral stabili	ty(-): Lu = 17.0	0' Le = 27.88	B' RB = 12	.2;	Lu based on ful	ll span

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.

5. GLULAM: bxd = actual breadth x actual depth.

6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

4 - Ceiling Beam Grid D.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

_oads:								
Load	Туре	Distribution	Pat-	Location	[ft]	Magnitud	e	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				70.0		plf
LL	Snow	Full UDL				175.0		plf
Self-weight	Dead	Full UDL				9.7		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

	1	— 19.591' —	
	 ≬ O'		19.5'
	-		1
Unfactored:			
Dead	780		780
Snow	1714		1714
Factored:			
Total	2494		2494
Bearing:			
Capacity			
Beam	2494		2494
Support	2655		2655
Des ratio			
Beam	1.00		1.00
a i			

Dealli	1.00	T.001
Support	0.94	0.94
Load comb	#2	#2
Length	1.10	1.10
Min req'd	1.10	1.10
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.11	1.11
Fcp sup	625	625

4 - Ceiling GL Beam Grid D

Glulam-Unbalan., West Species, 24F-V4 DF, 3-1/2"x12"

Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 19.59'; Clear span: 19.409'; Volume = 5.7 cu.ft.; 8 laminations, 3-1/2" maximum width,

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 79	Fv' = 305	psi	fv/Fv' = 0.26
Bending(+)	fb = 1729	Fb' = 2760	psi	fb/Fb' = 0.63
Live Defl'n	0.63 = L/372	0.65 = L/360	in	0.97
Total Defl'n	0.91 = L/256	0.98 = L/240	in	0.94

4 - Ceiling Beam Grid D.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Additiona	al Data:										
FACTORS:	F/E(psi) CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv'	265 1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb ' +	2400 1.15	1.00	1.00	1.000	1.000	-	-	1.00	1.00	-	2
Fcp '	650 -	1.00	1.00	-	-	-	-	1.00	-	-	_
Е'	1.8 million	1.00	1.00	-	-	-	-	1.00	-	-	2
Eminy'	0.85 million	1.00	1.00	-	-	-	-	1.00	-	-	2
CRITICAL I	OAD COMBINAT	IONS:									
Shear	: LC #2 =	D+S									
Bending	(+): LC #2 =	D+S									
Deflect	ion: LC #2 =	D+S (1	ive)								
	LC #2 =	D+S (t	otal)								
Bearing	: Support 1	– LC #	2 = D +	S							
	Support 2	- LC #	2 = D +	S							
D=dead 1	L=live S=snow	W=wind	I=impa	.ct Lr=r	coof liv	re Lc=c	concent	rated	E=eart	thquake	
All LC's	s are listed i	n the A	nalysi	s outpu	ıt						
Load cor	mbinations: AS	D Basic	from	ASCE 7-	-16 2.4	/ IBC	2018 1	L605.3	.2		
CALCULAT	IONS:										
V max =	2483, V desig	n = 221	7 lbs;	M(+) =	= 12105	lbs-ft	-				
$EI = 90^{-1}$	7.19e06 lb-in^	2									
"Live" d	deflection is	due to	all no	n-dead	loads (live,	wind,	snow)		
Total de	eflection = 1 .	0 dead	+ "liv	e"							

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. GLULAM: bxd = actual breadth x actual depth.

5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

5 - Ceiling Beam Grid H.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

_oads:								
Load	Туре	Distribution	Pat-	Location	[ft]	Magnituc	le	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				90.0		plf
LL	Snow	Full UDL				225.0		plf
Self-weight	Dead	Full UDL				11.4		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

		14.555'	\rightarrow
(¥ 0'		14.5'
<u> </u>			

738		738
1637		1637
2375		2375
2375		2375
2439		2439
1.00		1.00
0.97		0.97
#2		#2
0.66		0.66
0.66		0.66
1.00		1.00
1.00		1.00
1.07		1.07
625		625
	738 1637 2375 2439 1.00 0.97 #2 0.66 0.66 1.00 1.00 1.07 625	738 1637 2375 2375 2439 1.00 0.97 #2 0.66 0.66 1.00 1.00 1.00 0.565 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.07 625

5 - Ceiling GL Beam Grid H

Glulam-Unbalan., West Species, 24F-V4 DF, 5-1/2"x9"

Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 14.56'; Clear span: 14.445'; Volume = 5.0 cu.ft.; 6 laminations, 5-1/2" maximum width,

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 64	Fv' = 305	psi	fv/Fv' = 0.21
Bending(+)	fb = 1386	Fb' = 2760	psi	fb/Fb' = 0.50
Live Defl'n	0.37 = L/467	0.48 = L/360	in	0.77
Total Defl'n	0.54 = L/322	0.73 = L/240	in	0.74

5 - Ceiling Beam Grid H.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Additiona	al Data:										
FACTORS:	F/E(psi) CD	СМ	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC#
Fv'	265 1.15	5 1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb ' +	2400 1.15	5 1.00	1.00	1.000	1.000	-	-	1.00	1.00	-	2
Fcp'	650 -	1.00	1.00	-	-	-	-	1.00	-	-	-
Е'	1.8 millior	n 1.00	1.00	-	-	-	-	1.00	-	-	2
Eminy'	0.85 millior	n 1.00	1.00	-	-	-	-	1.00	-	-	2
CRITICAL L	OAD COMBINAT	IONS:									
Shear	: LC #2 =	D+S									
Bending	(+): LC #2 =	D+S									
Deflecti	Lon: LC $#2 =$	D+S (1	ive)								
	LC #2 =	D+S (t	otal)								
Bearing	: Support 2	– LC #	2 = D+	S							
	Support 2	2 - LC #	2 = D+	S							
D=dead I	L=live S=snow	W=wind	I=impa	.ct Lr=r	coof liv	ve Lc=c	concent	rated	E=eart	chquake	
All LC's	s are listed :	In the A	analysi	s outpu	ıt						
Load com	nbinations: AS	SD Basic	c from	ASCE 7-	-16 2.4	/ IBC	2018 2	L605.3	. 2		
CALCULAT	IONS:										
V max =	2366, V desig	yn = 211	.3 lbs;	M(+) =	- 8578 1	bs-ft					
EI = 601	.42e06 lb-in	2									
"Live" c	deflection is	due to	all no	n-dead	loads (live,	wind,	snow))		
Total de	eflection = 1	0 dead	+ "liv	e"							

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. GLULAM: bxd = actual breadth x actual depth.

5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

6 - Typical Header 4ft Span.wwb

Design Check Calculation Sheet WoodWorks Sizer 2019 (Update 1)

Loads:										
Load	Туре		Distri	bution	Pat-	Location	[ft]	Magnitude	Unit	
T	Dood		די וויים	пт	tern	Start	Ena	Start End	l nlf	
	Spow			םם דח				125 0	pri pif	
Solf-woight	Dood		EUII 0	םם דם				123.0		
[Sell-weight	Dead		ruii U	υц				2.0	Ibii	
Maximum Rea	actions (I	bs), Beariı	ng Cap	acities	(lbs)	and Bearir 4.042' ——	ng Ler	ngths (in) :		
	×.									Ř
	0'									4'
Unfactored:	105									1.05
Dead	105									105
Snow	253									253
Total	358									358
Bearing.	550									550
Capacity										
Joist	469									469
Support	586									586
Des ratio										
Joist	0.76									0.76
Support	0.61									0.61
Load comb	#2									#2
Length	0.50*									0.50*
Min reg'd	0.50*									0.50*
Cb	1.00									1.00
Ch min	1.00									1.00
Ch support	1.25									1.25
FCD SUD	62.5									62.5
*Minimum beari	na lenath se	etting used: 1	/2" for en	d suppo	rts					
	ng longti oc	stang usou. I		a cappo	10					
	Floor joist s	Lumb Sup spaced at 12.	6 - T er-soft, ports: Al 0" c/c; Tc	ypical D.Fir-L I - Timbe otal lengt	Heade , No.2 , er-soft E h: 4.04	er 4ft Span 2x6 (1-1/2'' Beam, D.Fir-L '; Clear span:	'x5-1/2 No.2 3.958';	. ") Volume = 0.2 cu.ft		
		Lateral : This	support: 1	top = cor	tinuous S the de	s, bottom = at esign code c	suppor heck	rts;		

WoodWorks® Sizer

SOFTWARE FOR WOOD DESIGN

6 - Typical Header 4ft Span.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

-

Analysis vs. Allo	wable Stress	and De	eflection	1 using N	IDS 201	8:				
Criterion	Analysis Va	lue	Design	Value	Uni	.t	Analy	sis/De	sign	
Shear	fv = 49)	Fv'=	207	psi	-	fv	/Fv' =	0.24	
Bending(+)	fb = 562		Fb' =	1345	psi	-	fb	/Fb' =	0.42	
Live Defl'n	0.02 = < L/	999	0.13 =	L/360	in				0.16	
Total Defl'n	0.03 = < L/	999	0.20 =	L/240	in				0.15	
Additional Data:										
FACTORS: F/E(DS	i) CD CM	C+	CT.	CF	Cfu	Cr	Cfrt	Ci	C'n	T.C#
Fv' 180	1.15 1.00	1.00	-	_	-	_	1.00	1.00	1.00	2
Fb'+ 900	1.15 1.00	1.00	1.000	1.300	_	1.00	1.00	1.00	_	2
Fcp' 625	- 1.00	1.00	_	_	_	_	1.00	1.00	_	-
E' 1.6 m	illion 1.00	1.00	-	_	_	-	1.00	1.00	-	2
Emin' 0.58 m	illion 1.00	1.00	-	-	-	-	1.00	1.00	-	2
CRITICAL LOAD CON	MBINATIONS:									
Shear : LC	#2 = D+S									
Bending(+): LC	#2 = D+S									
Deflection: LC	#2 = D+S (1)	ive)								
LC	#2 = D+S (t	otal)								
Bearing : Sup	port 1 - LC #	2 = D+	-S							
Sup	port 2 - LC #	2 = D+	-S				_			
D=dead L=live S	=snow W=wind	I=impa	act Lr=r	coof liv	re Lc=c	concent	rated	E=eart	hquake	
All LC's are li	sted in the A	nalysı	ls outpu	it 1604	(=== ~		60F 0	<u>^</u>		
Load combinatio	ns: ASD Basic	from	ASCE /-	-16 2.4	/ IBC	2018 1	605.3.	2		
CALCULATIONS:					<i>c</i> .					
$V \max = 354, V$	design = 269	lbs; N	1(+) = 3	354 lbs-	·it					
$\mathbf{E}_{\perp} = 33.2/\text{eU}_{0} \perp$	p-in~2		n dood	looda (1.4.000	d	ano \			
Tatal deflecti	on is due to $r = 1$ 0 dood		n-dead	roaus (ilve,	wina,	snow)			
Iotal defiectio	m = 1.0 dead	+ "11	ve."							
Design Notes										

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

6 - Typical Header 6ft Span.wwb

0.44

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:									
Load	T	уре	Distribution	Pat-	Location	[ft]	Magnitude	Unit	
	De	ad	Full UDI.	tern	Start	End	Start End	<u>l</u> Dlf	
LL	Sn	ow	Full UDL				250.0	plf	
Self-weight	De	ad	Full UDL				4.6	plf	
	•			1					
Maximum Re	action	s (Ibs), Beari	ng Capacities	(lbs)	and Bearin	g Ler	ngths (in) :		
	/				6.042' ——				
	×								<u> </u>
	Ū'								6'
Dead	31	6							316
Snow	75	5							755
Factored:		-							
Total	107	1							1071
Bearing:									
Joist	109	4							1094
Support	121	1							1211
Des ratio									
Joist	0.9	8							0.98
Support	0.8	8							0.88
Load comb		2							#2
Min reald		*							
Cb	1.0	0							1.00
Cb min	1.0	0							1.00
Cb support	1.1	1							1.11
Fcp sup	62	5							625
*Minimum beari	ing leng	th setting used: 1	/2" for end suppo	orts					
			6 - Typical	Heade	er 6ft Span				
		Lumb	er-soft D Fir-l	No 2	4x6 (3-1/2"	x5-1/2	")		
		Su	onorts: All - Timb	or_soft F	Ream D Fir_l	No 2	,		
	Floor ic	pist spaced at 12	0" c/c: Total leng	th: 6 04	[.] Clear span	5 958''	Volume = 0.8 cu ft	ł	
	i iooi je	Lateral	support: top = co	ntinuous	s, bottom = at	suppoi	ts:		
		This	section PASSE	S the d	esign code cl	heck.	,		
				-	v				-
Analysis vs. /	Allowa	able Stress ar	nd Deflection	using N	IDS 2018 :				
Criterion		Analysis Valı	le Design	Value	Unit.	Ar	alvsis/Design		
Shear		fv = 70	Fv' =	207	psi		fv/Fv' = 0.3	34	
Bending(+)		fb = 1085	Fb' = 1	345	psi		fb/Fb' = 0.8	81	
Live Defl	'n	0.09 = 1/760	5 0.20 =	T./360	lin		0	47	

0.30 = L/240

Total Defl'n

0.13 = L/540

in

6 - Typical Header 6ft Span.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Additiona	I Data:											
FACTORS:	F/E(psi)	CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#
Fv'	180	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb ' +	900	1.15	1.00	1.00	1.000	1.300	-	1.00	1.00	1.00	-	2
Fcp'	625	-	1.00	1.00	-	-	-	-	1.00	1.00	-	-
Е'	1.6 mil	lion	1.00	1.00	-	-	-	-	1.00	1.00	-	2
CRITICAL L	OAD COME	BINATIC	NS:									
Shear	: LC #2	P = D	+S									
Bending(+): LC #2	P = D	+S									
Deflecti	on: LC #2	2 = D	+S (l	ive)								
	LC #2	P = D	+S (t	otal)								
Bearing	: Suppo	ort 1	- LC #	2 = D+	S							
	Suppo	ort 2	- LC #	2 = D+	S							
D=dead L	=live S=s	snow W	=wind	I=impa	ct Lr=r	oof liv	re Lc=c	concent	rated	E=eart	hquake	
All LC's	are list	ed in	the A	nalysi	s outpu	lt						
Load com	binations	s: ASD	Basic	from	ASCE 7-	16 2.4	/ IBC	2018 1	605.3.	2		
CALCULATI	ONS:											
V max =	V max = 1064, V design = 894 lbs; M(+) = 1596 lbs-ft											
EI = 77.	64e06 lb-	-in^2										
"Live" d	"Live" deflection is due to all non-dead loads (live, wind, snow)											
Total de	flection	= 1.0	dead	+ "liv	e"							

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

6 - Typical Header 8ft Span.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:								
Load	Туре	Distribution	Pat-	Location	[ft]	Magnitude	Ð	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				100.0		plf
LL	Snow	Full UDL				250.0		plf
Self-weight	Dead	Full UDL				6.0		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

	+	8.055'	\rightarrow
	<u>م</u> 0'		 8'
Unfactored: Dead Snow Factored:	427 1007		427 1007
Total	1434		1434
Bearing: Capacity Joist Support Des ratio	1434 1587		1434 1587
Joist Support Load comb	1.00 0.90 #2		1.00 0.90 #2
Length Min reg'd	0.66		0.66
Cb Cb min	1.00		1.00
Cb support Fcp sup	1.11 625		1.11 625

6 - Typical Header 8ft Span Lumber-soft, D.Fir-L, No.2, 4x8 (3-1/2"x7-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 12.0" c/c; Total length: 8.05'; Clear span: 7.945'; Volume = 1.4 cu.ft.

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 71	Fv' = 207	psi	fv/Fv' = 0.34
Bending(+)	fb = 1115	Fb' = 1345	psi	fb/Fb' = 0.83
Live Defl'n	0.13 = L/740	0.27 = L/360	in	0.49
Total Defl'n	0.18 = L/520	0.40 = L/240	in	0.46

6 - Typical Header 8ft Span.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Additiona	al Data:											
FACTORS:	F/E(psi) CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#	
Fv'	180 1.1	5 1.00	1.00	-	-	-	-	1.00	1.00	1.00	2	
Fb ' +	'+ 900 1.15 1.00 1.00 1.000 1.300 - 1.00 1.00 1.00 - 2											
Fcp'	cp' 625 - 1.00 1.00 1.00 1.00											
Е'	1.6 million 1.00 1.00 1.00 1.00 - 2											
Emin'	Emin' 0.58 million 1.00 1.00 1.00 1.00 - 2											
CRITICAL L	OAD COMBINA	IONS:										
Shear	: LC #2 =	D+S										
Bending(+): LC #2 =	D+S										
Deflecti	Deflection: LC #2 = D+S (live)											
	LC #2 = D+S (total)											
Bearing	Bearing : Support 1 - LC #2 = D+S											
	Support	2 - LC #	2 = D +	S								
D=dead I	=live S=snow	W=wind	I=impa	ct Lr=r	oof liv	e Lc=c	concent	rated	E=eart	hquake		
All LC's	are listed	in the A	nalysi	s outpu	ıt							
Load com	binations: A	SD Basic	from	ASCE 7-	16 2.4	/ IBC	2018 1	605.3.	2			
CALCULAT	CALCULATIONS:											
V max =	V max = 1424, V design = 1199 lbs; M(+) = 2848 lbs-ft											
EI = 177	EI = 177.83e06 lb-in^2											
"Live" d	"Live" deflection is due to all non-dead loads (live, wind, snow)											
Total de	flection = 1	.0 dead	+ "liv	e"								

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

7 - 2nd Fl Deck Joist.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:	
--------	--

Load	Туре	Distribution	Pat-	Locatio	n [ft]	Magnitud	le	Unit
			tern	Start	End	Start	End	
DL	Dead	Partial Area		0.03	8.03	30.00(16.	0")	psf
LL	Live	Partial Area		0.03	8.03	100.00(16.	0")	psf
Self-weight	Dead	Full UDL				6.7		plf

Maximum Reactions (Ibs), Bearing Capacities (Ibs) and Bearing Lengths (in) :

	+			12	047' ———		\longrightarrow
	۵'						12'
Unfactored: Dead Live	253 711						147 356
Factored: Total Bearing:	965						502
Capacity Joist Support Des ratio	965 1109						781 898
Joist Support Load comb	1.00 0.87 #2						0.64 0.56 #2
Length Min req'd Cb	0.62 0.62 1.00						0.50* 0.50* 1.00
Cb min Cb support Fcp sup	1.00 1.15 625						1.00 1.15 625
*Minimum beari	ng length set	ting used: 1/2" i	for end supp	oorts			
F	-loor ioist spa	Lumber-so Suppor	7 - 2nd oft, D.Fir-L rts: All - Tim	FI Deck -, No.2, 3x ber-soft Be	Joist (12 (2-1/2"x am, D.Fir-L N Clear span: 1	: 11-1/4'') No.2 1 953': Volume = 2.4 cu ft	
Lateral support	: top = contin	uous, bottom = This sec	at supports	; Repetitive ES the des	factor: applie	ed where permitted (refer to onl eck.	ine help);
Analysis vs.	Allowable	Stress and I	Deflection	1 using ND	S 2018 :		
Criterion	Anal	ysis Value	Design	Value	Unit	Analysis/Design	

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 43	Fv' = 180	psi	fv/Fv' = 0.24
Bending(+)	fb = 588	Fb' = 1035	psi	fb/Fb' = 0.57
Live Defl'n	0.10 = < L/999	0.40 = L/360	in	0.25
Total Defl'n	0.13 = < L/999	0.60 = L/240	in	0.22

7 - 2nd FI Deck Joist.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Additiona	I Data:											
FACTORS:	F/E(psi)	CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#
Fv'	180	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb ' +	900	1.00	1.00	1.00	1.000	1.000	-	1.15	1.00	1.00	-	2
Fcp'	625	-	1.00	1.00	-	-	-	-	1.00	1.00	-	_
E'	1.6 mil	llion	1.00	1.00	-	-	-	-	1.00	1.00	-	2
Emin'	0.58 mil	llion	1.00	1.00	-	-	-	-	1.00	1.00	-	2
CRITICAL L	OAD COME	BINATIC	NS:									
Shear	: LC #2	2 = D	+L									
Bending(+): LC #2	2 = D	+L									
Deflecti	Deflection: LC #2 = D+L (live)											
	LC #2	2 = D	+L (t	otal)								
Bearing	: Suppo	ort 1 ·	- LC #	2 = D + 2	L							
	Suppo	ort 2 ·	- LC #	2 = D + 2	L							
D=dead L	=live_S=s	snow W	=wind	I=impa	ct Lr=r	oof liv	e Lc=c	concent	rated	E=eart	hquake	
All LC's	are list	ed in	the A	nalysi	s outpu	t						
Load com	binations	s: ASD	Basic	from 2	ASCE 7-	16 2.4	/ IBC	2018 1	605.3.	2		
CALCULAT	IONS:											
V max = 965, V design = 798 lbs; M(+) = 2584 lbs-ft												
EI = 474.60e06 lb-in^2												
"Live" d	eflectior	n is d	ue to	all no	n-dead	loads (live,	wind,	snow)			
Total de	flection	= 1.0	dead	+ "live	€"							

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

8 - 2nd Fl Beam Grid C.wwb

Design Check Calculation Sheet WoodWorks Sizer 2019 (Update 1)

Loads:							
Load	Туре	Distributio	n Pat- tern	Location [ft] Start End	Magnitude Start En	Unit	
DL	Dead	Full UDL	No		160.0	plf	
LL	Live	Full UDL	No		533.0	plf	
Self-weight	Dead	Full UDL	No		15.2	plf	
Maximum Rea	actions (lbs), Bearing Capacitie	s (lbs)	and Bearing Ler	ngths (in) :		
			·	14.302' ———			
	М					M	
	[₽] 0'					[⊠] 12.75'	14.25'
Unfactored: Dead Live	1110 3379					1395 4244	
Total Bearing:	4489					5640	
Capacity Beam Support	4489 4610					6831 5640	
Beam	1.00					0.83	
Support	0.97					1.00	
Load comb	#2					#2	
Length	1.26					1.54	
Min req'd	1.26					1.54**	
CD Ch min	1.00					1 24	
Ch support	1 07					1 07	
Fcp sup	625					625	
**Minimum bear	ing length gove	erned by the required widt	th of the s	supporting member.	1	I	
Total len	GI gth: 14.3'; Clea	8 - 2nd Fl ulam-Balanced, West Supports: All - Timl ar span: 12.634', 1.436'; V	GL Bea Species ber-soft E /olume =	am Grid C 5, 24F-V8 DF, 5-1 / Beam, D.Fir-L No.2 6.6 cu.ft.; 8 laminati	2"x12" ons, 5-1/2" maxim	um width,	
		Lateral support: top = co This section PASSI	ontinuous E S the d e	s, bottom = at suppo esign code check.	rts;		

WoodWorks® Sizer

SOFTWARE FOR WOOD DESIGN

8 - 2nd FI Beam Grid C.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Analysis vs. Allo	wable Stress and I	Deflection using N	NDS 2018 :		
Criterion	Analysis Value	Design Value	Unit	Analysis/Design	
Shear	fv = 87	Fv' = 265	psi	fv/Fv' = 0.33	
Bending(+)	fb = 1272	Fb' = 2400	psi	fb/Fb' = 0.53	
Bending(-)	fb = 72	Fb' = 2364	psi	fb/Fb' = 0.03	
Deflection:					
Interior Live	0.21 = L/711	0.43 = L/360	in	0.51	
Total	0.29 = L/535	0.64 = L/240	in	0.45	
Cantil. Live	-0.08 = L/228	0.10 = L/180	in	0.79	
Total	-0.10 = L/172	0.15 = L/120	in	0.70	
Additional Data:					
FACTORS: $F/E(ps$	i) CD CM Ct	CL CV	Cfu Cr	Cfrt Notes Cn*Cvr LC#	
Fv' 265	1.00 1.00 1.0	0		1.00 1.00 1.00 2	
Fb ' + 2400	1.00 1.00 1.0	0 1.000 1.000		1.00 1.00 - 2	
Fb'- 2400	1.00 1.00 1.0	0 0.985 1.000		1.00 1.00 - 2	
Fcp' 650	- 1.00 1.0	0 – –		1.00	
E' 1.8 m	illion 1.00 1.0	0 – –		1.00 2	
Eminy' 0.85 m	illion 1.00 1.0	0 – –		1.00 2	
CRITICAL LOAD CO	MBINATIONS:				
Shear : LC	#2 = D+L				
Bending(+): LC	#2 = D+L				
Bending(-): LC	#2 = D+L				
Deflection: LC	#2 = D+L (live)				
LC	#2 = D+L (total)			
Bearing : Sup	port 1 - LC $#2 = 1$	D+L			
Sup	port 2 - LC $#2 = 2$	D+L			
D=dead L=live S	=snow W=wind I=im	pact Lr=roof liv	ve Lc=concent	crated E=earthquake	
All LC's are li	sted in the Analy	sis output			
Load combinatio	ons: ASD Basic from	m ASCE 7-16 2.4	/ IBC 2018 1	1605.3.2	
CALCULATIONS:					
$V \max = 4577, V$	design = 3824 lb	s; M(+) = 13995	lbs-ft; M(-)) = 797 lbs-ft	
EI = 1425.58e06	lb-in^2				
"Live" deflecti	on is due to all	non-dead loads	(live, wind,	snow)	
Total deflectio	n = 1.0 dead + "1	ive"			
Lateral stabili	ty(-): Lu = 12.7	5' Le = 21.38'	RB = 10.1;	Lu based on full span	

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012

4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.

5. GLULAM: bxd = actual breadth x actual depth.

6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.

7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No. 2
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

lzraff	Project OSU Azalea House	By MAA	Sheet No.	
KPH	Location Corvallis, OR	Date 2/12/2024	3	
-	Client Rowell Brokaw	Revised	Job No.	
Portland, Oregon		Date	223346	

Section details	
Section type	W 6x15 (AISC 15th Edn (v15.0))
ASTM steel designation	A992
Steel yield stress	F _y = 50 ksi
Steel tensile stress	F _u = 65 ksi
Modulus of elasticity	E = 29000 ksi
	 ► 0.23" ₩ 6x15 (AISC 15th Edn (v15.0)) Section depth, d, 5.99 in Section breadth, b, 5.99 in Weight of section, Weight, 15 lbf/ft Flange thickness, t₀.0.26 in Web thickness, t₀.0.23 in Area of section, A, 4.4 iff Radius of gyration about x-axis, <u>f</u>, 2.56 in Radius of gyration about x-axis, <u>f</u>, 9.72 in³ Elastic section modulus about x-axis, <u>ξ</u>, 9.72 in³ Plastic section modulus about x-axis, <u>ξ</u>, 9.72 in³ Plastic section modulus about x-axis, <u>ξ</u>, 9.72 in³ Second moment of area about x-axis, <u>ξ</u>, 2.51 in⁴ Second moment of area about x-axis, <u>j</u>, 9.32 in⁴
Lateral restraint Top flange has full lateral restraint Bottom flange has lateral restraint a	upports only
Classification of sections for loca	uckling - Section B4
Classification of flanges in flexur	Table B4.1b (case 10)
Width to thickness ratio	$b_f / (2 \times t_f) = 11.52$
Limiting ratio for compact section	$\lambda_{\text{pff}} = 0.38 \times \sqrt{[\text{E} / \text{F}_y]} = 9.15$
Limiting ratio for non-compact section	$\lambda_{rff} = 1.0 \times \sqrt{[E / F_y]} = 24.08$ Noncompact
Classification of web in flexure -	ble B4.1b (case 15)
Width to thickness ratio	$(d - 2 \times k) / t_w = 21.61$
Limiting ratio for compact section	λ_{pwf} = 3.76 × $\sqrt{[E / F_y]}$ = 90.55
Limiting ratio for non-compact section	$\lambda_{rwf} = 5.70 \times \sqrt{[E / F_y]} = 137.27$ Compact
	Section is noncompact in flex
Check design at start of span	
Design of members for shear - Ch	oter G
Required shear strength	V _{r,x} = 3.9 kips

laaff	Project OSU Azalea House	By MAA	Sheet No.
KPII	Location Corvallis, OR	Date 2/12/2024	4
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Web plate buckling coefficient	k _v = 5.34
	$(d - 2 \times k) / t_w \le 2.24 \times \sqrt{(E / F_y)}$
Web shear coefficient - eq G2-2	C _{v1} = 1.000
Nominal shear strength - eq G2-1	$V_{n,x} = 0.6 \times F_y \times A_w \times C_{v1} = 41.3$ kips
Resistance factor	$\phi_v = 1.00$
Design shear strength	$V_{c,x} = \phi_v \times V_{n,x} = 41.3 \text{ kips}$
	V _{r,x} / V _{c,x} = 0.093
	PASS - Design shear strength exceeds required shear strength

Check design	5ft 4.773in	along	span
--------------	-------------	-------	------

Design of members for flexure - Chapter F Required flexural strength

M_{r,x} = **10.4** kips_ft

Compression flange local buckling - Section F3.2

 $\lambda = b_f / (2 \times t_f) = 11.519$

Nominal flexural strength for compression flange local buckling - eq F3-1

$$\begin{split} M_{n,flb,x} = M_{p,x} - (M_{p,x} - 0.7 \times F_y \times S_x) \times (\lambda - \lambda_{pff}) \ / \ (\lambda_{rff} - \lambda_{pff}) = \textbf{42.4} \\ kips_ft \end{split}$$

Design flexural strength - F1

	PASS - Design flexural strength exceeds required flexural strength
	M _{r,x} / M _{c,x} = 0.273
Design flexural strength	$M_{c,x} = \phi_b \times M_{n,x} = 38.1 \text{ kips_ft}$
Nominal flexural strength	$M_{n,x} = M_{n,flb,x} = 42.4 \text{ kips}_ft$

Check design at end of span

Design of members for shear - Chapter G	
Required shear strength	V _{r,x} = 4 kips
Web area	$A_w = d \times t_w = 1.378 \text{ in}^2$
Web plate buckling coefficient	k _v = 5.34
	(d - 2 × k) / t _w <= 2.24 × $\sqrt{(E / F_y)}$
Web shear coefficient - eq G2-2	C _{v1} = 1.000
Nominal shear strength - eq G2-1	$V_{n,x} = 0.6 \times F_y \times A_w \times C_{v1} = $ 41.3 kips
Resistance factor	$\phi_{v} = 1.00$
Design shear strength	$V_{c,x} = \phi_v \times V_{n,x} =$ 41.3 kips
	V _{r,x} / V _{c,x} = 0.097
	PASS - Design shear strength exceeds required shear strength

Design of members for flexure - Chapter F

Required flexural strength	M _{r,x} = 0.8 kips_ft		
Plastic moment - eq F2-1	$M_{p,x} = F_y \times Z_x = 45 \text{ kips_ft}$		
laaff	Project OSU Azalea House	By MAA	Sheet No.
------------------	--------------------------	----------------	-----------
KPII	Location Corvallis, OR	Date 2/12/2024	5
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Lateral-torsional buckling - Section F3.1	
Unbraced length	L _b = 11 ft
Limiting unbraced length for yielding - eq F2-5	$L_p = 1.76 \times r_y \times \sqrt{(E / F_y)} = 5.122 \text{ ft}$
Distance between flange centroids	h _o = 5.73 in
	c = 1
	r _{ts} = 1.66 in
Limiting unbraced length for inelastic LTB - eq	$\label{eq:F2-6} \begin{array}{c} \text{F2-6} L_r = 1.95 \times r_{ts} \times \text{E} \; / \; (0.7 \times \text{F}_y) \times \sqrt{((J \times c \; / \; (S_x \times h_o)) + \sqrt{((J \times c \; / \; (S_y \times h_o)) + \sqrt{((S_y \times h_o)) + \sqrt{(S_y \times h_o)} + \sqrt{(S_y \times h_o)) + \sqrt{(S_y \times h_o)} + \sqrt{(S_y \times h_o)) + \sqrt{(S_y \times h_o)} + \sqrt{(S_y \times h_o)} + \sqrt{(S_y \times h_o)) + \sqrt{(S_y \times h_o)} + (S_y \times h_o)$
	$(S_x \times h_o))^2$ + 6.76 × (0.7 × F _y / E) ²)) = 16.482 ft
Moment at quarter point of segment	M _A = 7.9 kips_ft
Moment at center-line of segment	M _B = 10.4 kips_ft
Moment at three quarter point of segment	M _C = 7.5 kips_ft
Maximum moment in segment	M _{max} = 10.4 kips_ft
LTB modification factor - eq F1-1	$C_{b} = 12.5 \times M_{max} / (2.5 \times M_{max} + 3 \times M_{A} + 4 \times M_{B} + 3 \times M_{C}) = 1.143$
Nominal flexural strength for lateral-torsional b	uckling - eq F2-2
	$M_{n,ltb,x} = min(C_b \times (M_{p,x} - (M_{p,x} - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)),$
	M _{p,x}) = 41.6 kips_ft
Compression flange local buckling - Section	on F3.2
	$\lambda = b_f / (2 \times t_f) =$ 11.519
Nominal flexural strength for compression flan	ge local buckling - eq F3-1
	$M_{n, fib, x} = M_{p, x} - (M_{p, x} - 0.7 \times F_y \times S_x) \times (\lambda - \lambda_{pff}) / (\lambda_{rff} - \lambda_{pff}) = 42.4$
	kips_ft
Design flexural strength - F1	
Nominal flexural strength	$M_{n,x} = min(M_{n,ltb,x}, M_{n,flb,x}) = 41.6 kips_ft$
Design flexural strength	$M_{c,x} = \phi_b \times M_{n,x} = 37.4 \text{ kips_ft}$
	M _{r,x} / M _{c,x} = 0.021
PA	SS - Design flexural strength exceeds required flexural strength
Consider Combination 2 - 1.0D + 1.0L (Serv	rice)
Check design 5ft 5.586in along span	
Design of members for x-x axis deflection	
Maximum deflection	$\delta_x = 0.19$ in
Allowable deflection	$\delta_{x,Allowable} = L_{m1_{s1}} / 360 = 0.367$ in
	$\delta_x / \delta_{x,Allowable} = 0.519$
	PASS - Allowable deflection exceeds design deflection

	Select	Quality	Commerce	ial Quality	
Species	Bending Stress ^b psi	Modulus of Elasticity ^c psi	Bending Stress ^b psi	Modulus of Elasticity ^c psi	Agency ^d
Cedar, Northern White Cedars, Western Cedars, Western (North) Coast Species	1100 1450 1400 1450	800,000 1,100,000 1,100,000 1,500,000	950 1200 1200 1200 1200	700,000 1,000,000 1,000,000 1,400,000	1 3,4 2 2
Douglas Fir-Larch	2000	1,800,000	1650	1,700,000	3,4
Douglas Fir-Larch (North)	2000	1,800,000	1650	1,700,000	2
Douglas Fir (South)	1900	1,400,000	1600	1,300,000	3
Fir, Balsam	1650	1,500,000	1400	1,300,000	1
Hem-Fir	1600	1,500,000	1350	1,400,000	3,4
Hem-Fir (North)	1500	1,500,000	1300	1,400,000	2
Hemlock, Eastern-Tamarack	1700	1,300,000	1450	1,100,000	1
Hemlock, Eastern-Tamarack (North)	1700	1,300,000	1450	1,100,000	2
Hemlock, Western	1750	1,600,000	1450	1,400,000	4
Hemlock, Western (North)	1750	1,600,000	1450	1,400,000	2
Northern Species	1050	1,100,000	875	1,000,000	2
Pine, Eastern White	1300	1,200,000	1100	1,100,000	1
Pine, Eastern White (North)	1050	1,200,000	875	1,100,000	2
Pine, Northern	1550	1,400,000	1300	1,300,000	1
Pine, Ponderosa	1450	1,300,000	1250	1,100,000	2
Pine, Red	1350	1,300,000	1100	1,200,000	2
Pine, Southern	1650	1,600,000	1650	1,600,000	5
Pine, Western White	1300	1,400,000	1050	1,300,000	2
Redwood, California	1700	1,100,000	1350	1,000,000	6
SPF, South	1350	1,400,000	1100	1,200,000	1,3
Spruce, Coast Sitka	1450	1,700,000	1200	1,500,000	2
Spruce, Eastern	1300	1,500,000	1100	1,400,000	1
Spruce-Pine-Fir	1400	1,500,000	1150	1,300,000	2
Spruce, Sitka	1500	1,500,000	1250	1,300,000	4
Western Woods	1300	1,200,000	1100	1,100,000	3

TABLE 3 BENDING STRESS AND MODULUS OF ELASTICITY VALUES FOR HEAVY TIMBER DECKING SPECIES^a

^a The design values in bending (F_b), except for Redwood, are based on decking 4 in. thick. For other thicknesses, multiply by the size factor, C_F, as follows:

Thickness	<u>C</u> _F
2 in.	1.70
3 in.	1.04

Design values for visually graded decking are those recommended by the regional lumber rules writing agencies. These values are ased on decking that is used where the moisture content in-service will not exceed 19%. When the moisture content inservice exceeds 19% for an extended period of time, the tabular design values shall be multiplied by the wet service factor, C_M, as follows:

		C _M	_	
	Fb	FcL	E	Í
	0.85*	0.67	0.9	
When (F	_b) (C _F) < 1	150 psi, C	M = 1.0 for	bendir

^b Repetitive member use values.

^c The tabulated values for modulus of elasticity are the average for the species grouping. For information concerning coefficient of variation of modulus of elasticity, see the appropriate grading rules for the species.

- ^d Stresses listed are as assigned by the following grading rules agencies: NELMA (1), NLGA (Canadian) (2), WWPA (3), WCLIB (4), SPIB (5), and RIS (6).
- ^e If specified as "close grain", California Redwood select decking is assigned a bending stress value of 1850 psi and a modulus of elasticity value of 1,400,000 psi when used at 19% M.C.

TABLE 6

THREE AND FOUR INCH NOMINAL THICKNESS ALLOWABLE ROOF LOAD LIMITED BY BENDING SIMPLE SPAN AND CONTROLLED RANDOM LAYUPS (3 or more spans)

								Allo	vable	e Un	iform	nly Di	stribu	ited T	otal R	oof Lo	bad ^{a,}	c, e, f,	^g , psf							
Bending				3	inch N	lomir	nal Th	ickne	ss ^b									4 incl	1 Non	ninal T	hickn	ess ^d				
Stress						Sp	an, ft												S	Span, I	ft					
psi	8	9	10	1 1	12	13	14	15	16	17	18	19	20	8	9	10	11	12	13	14	15	16	17	18	19	20
875	114	90	73	60	51	43	37	32	28	25	22	20	18	223	176	143	118	99	84	73	64	56	49	44	40	36
950	124	98	79	65	55	47	40	35	31	27	24	22	20	242	192	155	128	108	92	79	69	61	54	48	43	39
1000	130	103	83	69	58	49	42	37	32	29	26	23	21	255	202	163	135	113	97	83	72	64	56	50	45	41
1050	137	108	88	72	61	52	45	39	34	30	27	24	22	268	212	172	142	119	101	88	76	67	59	53	48	43
1100	143	113	92	76	64	54	47	41	36	32	28	25	23	281	222	180	148	125	106	92	80	70	62	55	50	45
1150	150	118	96	79	66	57	4 9	42	37	33	30	26	24	293	232	188	155	130	111	96	83	73	65	58	52	47
1200	156	123	100	83	69	59	51	44	39	35	31	28	25	306	242	196	162	136	116	100	87	76	68	60	54	49
1250	163	129	104	86	72	62	53	46	41	36	32	29	26	319	252	204	169	142	121	104	91	80	71	63	56	51
1300	169	134	108	90	75	64	55	48	42	37	33	30	27	332	262	212	175	147	126	108	94	83	73	66	59	53
1350	176	139	112	93	78	66	57	50	44	39	35	31	28	344	272	220	182	153	130	112	98	86	76	68	61	55
1400	182	144	117	96	81	69	60	52	46	40	36	32	29	357	282	229	189	159	135	117	102	89	79	70	63	57
1450	189	149	121	100	84	71	62	54	47	42	37	33	30	370	292	237	196	164	140	121	105	92	82	73	66	59
1500	195	154	125	103	87	74	64	56	49	43	38	35	31	383	302	245	202	170	145	125	109	96	85	76	68	61
1550	202	159	129	107	90	76	66	57	50	45	40	36	32	396	312	253	209	176	150	129	112	99	88	78	70	63
1600	208	165	133	110	92	79	68	59	52	46	41	37	33	408	323	261	216	181	155	133	116	102	90	81	72	65
1650	215	170	138	114	95	81	70	61	54	48	42	38	34	421	333	270	223	187	159	138	120	105	93	83	75	67
1700	221	175	142	117	98	84	72	63	55	49	44	39	35	434	343	278	229	193	164	142	123	108	96	86	77	69
1750	228	180	146	120	101	86	74	65	57	50	45	40	36	447	353	286	236	198	169	146	127	112	99	88	79	71
1900	247	195	158	131	110	94	81	70	62	55	49	44	40	485	383	310	256	216	184	158	138	121	107	96	86	78
2000	260	206	167	138	116	99	85	74	65	58	51	46	42	510	403	327	270	227	193	167	145	128	113	101	90	82
L														L												

- ^a These load values may also be used for cantilevered pieces intermixed, combination simple span and two-span continuous, and two-span continuous layups.
- ^b 2-1/2 in. net thickness. To determine allowable loads for 2-5/8 in. net thickness, multiply tabulated loads by 1.10.
- ^c All spans to the right of the double line require special ordering of additional long lengths to assure that at least 20% of the decking is equal to the span length or longer.
- ^d 3-1/2 in. net thickness.
- ^e Duration of load, C_D = 1.0 used in this table. For other durations of load, adjust by the appropriate factor.
- ^f No increase for size effect has been applied (C_F = 1.00). F_b values have been previously adjusted.
- ^g Dry conditions of use.

11 - Critical Grid 8 Column.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

12 - Critical Grid D and G Post.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

13 - Critical Grid H Post.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

Gravity Beam Design

RAM SBeam v5.01 OSU Azalea House Entry Canopy Beam

STEEL CODE: AISC 360-05 ASD

SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (5.33,0.00) Beam Size (User Selected) = HSS6X4X1/4

Beam Size (User Selected)	=	HSS
Total Beam Length (ft)	=	5.33
Cantilever on left (ft)	=	2.00
Cantilever on right (ft)	=	3.00
Mp (kip-ft) = 32.70		
Top flange braced by decking.		

LINE LOADS (k/ft):

Load	Dist (ft)	DL	LL
1	0.000	0.015	0.000
	2.000	0.015	0.000
2	0.000	0.090	0.150
	2.000	0.090	0.150
3	2.000	0.015	0.000
	2.333	0.015	0.000
4	2.000	0.090	0.150
	2.333	0.090	0.150
5	2.333	0.015	0.000
	5.333	0.015	0.000
6	2.333	0.090	0.150
	5.333	0.090	0.150

SHEAR: Max Va (DL+LL) = 2.85 kips Vn/1.67 = 46.21 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	(a)	Lb	Cb	Ω	Mn / Ω
			kip-ft	ft	ft			kip-ft
Left	Max -	DL+LL	-0.5	2.0	2.0	1.00	1.67	19.58
Center	Max -	DL+LL	-1.1	2.3	0.3	1.29	1.67	19.58
Right	Max -	DL+LL	-1.1	2.3	3.0	1.00	1.67	19.58
Controlling		DL+LL	-1.1	2.3	3.0	1.00	1.67	19.58

REACTIONS (kips):

		Left	Right	
DL reaction		-0.56	1.12	
Max +LL reaction		1.23	2.50	
Max -LL reaction		-2.03	-0.90	
Max +total reaction		0.67	3.61	
Max -total reaction		-2.59	0.22	
DEFLECTIONS:				
Left cantilever:				
Dead load (in)	=	-0.001		
Pos Live load (in)	=	-0.001	L/D =	38136
Pos Total load (in)	=	-0.002	L/D =	22475

02/13/24 10:30:02

Fy = 46.0 ksi

Gravity Beam Design

RAM SBeam v5.01 OSU Azalea House Entry Canopy Beam

Center span:				
Dead load (in)	at	2.18	ft =	0.000
Live load (in)	at	2.18	ft =	0.000
Net Total load (in)	at	2.18	ft =	0.000
Right cantilever:				
Dead load (in)	=	-0.004	L/D	= 20196
Pos Live load (in)	=	-0.005	L/D	= 14082
Pos Total load (in)	=	-0.009	L/D	= 8297

lzaff	Project OSU Azalea House	By MAA	Sheet No.
Крп	Location Corvallis, OR	Date 2/12/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

15 - ENTRY CANOPY COLUMN

Steel column design in accordance with AISC360-16 and the LRFD method

Tedds calculation version 1.0.10

77##	Project OSU Azalea House	By MAA	Sheet No.
.pm	Location Corvallis, OR	Date 2/12/2024	Z
•	Client Rowell Brokaw	Revised	Job No.
and, Oregon		Date	223346
For buckling about v axis	K. = 1 00		
For torsional buckling	$K_{z} = 1.00$		
Effective unbroad lengths			
For buckling about x axis	$L_{xy} = L_{x} \times K_{y} = 120$ in		
For buckling about v axis	$L_{cv} = L_v \times K_v = 120 \text{ in}$		
For torsional buckling	$L_{cz} = L_z \times K_z = 120 \text{ in}$		
Section closefication			
Section classification for local			
width to thickness ratio	$\lambda = D_0 / t = 17.167$		
Compression			
Limit for nonslender section	$\lambda_{r_c} = 0.11 \times E / F_y = 75.952$		
	Th	he section is nonslende	er in compressi
Flexure			
Limit for compact section	$\lambda_{p_{f}} = 0.07 \times E / F_{y} = 48.333$		
Limit for noncompact section	$\lambda_{r_{-}f}$ = 0.31 × E / F _y = 214.048		
		The section is c	ompact in flexu
Slenderness			
Member slenderness			
Slenderness ratio about x axis	SR _x = L _{cx} / r _x = 90.2		
Slenderness ratio about y axis	$SR_y = L_{cy} / r_y = 90.2$		
Second order effects			
Second order effects for bendi	ng about y axis (cl. C2.1b)		
Second order effects are already	included or do not need to be considered	therefore:-	
P-δ amplifier	$B_{1x} = B_{1y} = 1.0$		
Required flexural strength (x axis	$M_{rx} = B_{1x} \times M_x = 0.9 \text{ kips_ft}$		
Required flexural strength (y axis	;) $M_{ry} = B_{1y} \times M_y = 3.2 \text{ kips_ft}$		
Design of members for shear p	parallel to x axis - Chapter G		
Required shear strength	V _{rx} = 0.320 kips		
	1 $V_{nx} = 0.6 \times F_y \times A / 2 = 34.77$	76 kips	
Nominal shear strength - eq G5-1			
Nominal shear strength - eq G5-1 Resistance factor for shear	$\phi_{v} = 0.90$		
Nominal shear strength - eq G5-1 Resistance factor for shear Design shear strength	$\phi_v = 0.90$ $V_{cx} = \phi_v \times V_{nx} = 31.298$ kips		
Nominal shear strength - eq G5-1 Resistance factor for shear Design shear strength <u>Compressive strength</u>	$\phi_v = 0.90$ $V_{cx} = \phi_v \times V_{nx} = 31.298$ kips		
Nominal shear strength - eq G5-1 Resistance factor for shear Design shear strength Compressive strength Flexural buckling about x axis	φ_v = 0.90 $V_{cx} = \varphi_v \times V_{nx}$ = 31.298 kips (cl. E3)		

	oject OSU Azalea House	By MAA	Sheet No.
	cation Corvallis, OR	Date 2/12/2024	3
	ent Rowell Brokaw	Revised	Job No.
land, Oregon		Date	223346
Flexural buckling stress	$F_{crx} = (0.658^{F_y/F_{ex}}) \times F_y = 25.$	5 ksi	
Nominal compressive strength for fle	xural buckling $P_{nx} = F_{crx} \times A = 70.3 \text{ kip}$	os	
Flexural buckling about y axis (cl.	E3)		
Elastic critical buckling stress	$F_{ey} = \pi^2 \times E / (SR_y)^2 = 35.2 \text{ km}^2$	si	
Flexural buckling stress	$F_{cry} = (0.658^{F_y/F_{ey}}) \times F_y = 25.$	5 ksi	
Nominal compressive strength for fle	xural buckling $P_{ny} = F_{cry} \times A = 70.3$ kip	os	
Design compressive strength (cl.	1)		
Resistance factor for compression	$\phi_{c} = 0.90$		
Design compressive strength	$P_c = \phi_c \times min(P_{nx}, P_{ny}) =$ 63.3	3 kips	
PASS	- The design compressive strength exce	eeds the required com	pressive stren
Flexural strength about the major	axis		
Yielding (cl. F8.1)			
Nominal flexural strength	$M_{nx_yd} = M_{ny_yd} = F_y \times Z = 11.$	6 kips_ft	
Design flexural strength (cl. F1)			
Resistance factor for flexure	$\phi_{\mathrm{b}} = 0.90$		
Design flexural strength	$M_{cx} = M_{cy} = \varphi_b \times M_{nx_yld} = 10.$	4 kips_ft	
PASS - The	design flexural strength about the x axi	s exceeds the required	flexural stren
PASS - The	design flexural strength about the y axis	s exceeds the required	flexural stren

Member	utilization	(cl.	H1.1)
Equation	H1-1b		

UR = $abs(P_r) / (2 \times P_c) + (M_{rx} / M_{cx} + M_{ry} / M_{cy}) = 0.407$

PASS - The member is adequate for the combined forces

16 - Critical Grid C Column.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.

lzaff	Project OSU Azalea House	By MAA	Sheet No.
Крп	Location Corvallis, OR	Date 2/12/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

17 - DECK CANOPY COLUMN

Steel column design in accordance with AISC360-16 and the LRFD method

Tedds calculation version 1.0.10

HSS 4x0.250

A500 Gr. B F_y = **42** ksi

F_u = **58** ksi

K_x = 1.00

E = 29000 ksi

G = 11200 ksi

Column and loading details

Column details

Column section

Design loading

Material details	
Maximum shear force parallel to x axis	V _{rx} = 0.0 kips
Maximum shear force parallel to y axis	V _{ry} = 0.0 kips
Maximum moment about y axis	M _y = 0.0 kips_ft
Maximum moment about x axis	M _x = 0.0 kips_ft
Required axial strength	Pr = 4 kips (Compression)

Steel grade Yield strength Ultimate strength Modulus of elasticity Shear modulus of elasticity **Unbraced lengths**

For buckling about x axis	L _x = 120 in
For buckling about y axis	L _y = 120 in
For torsional buckling	L _z = 120 in

Effective length factors

For buckling about x a	axis
------------------------	------

	Project OSU Azalea House	By MAA	Sheet No.
.pn	Location Corvallis, OR	Date 2/12/2024	2
•	Client Rowell Brokaw	Revised	Job No.
lland, Oregon		Date	223346
For buckling about y axis	K _y = 1.00		
For torsional buckling	K _z = 1.00		
Effective unbraced lengths			
For buckling about x axis	$L_{cx} = L_x \times K_x = 120$ in		
For buckling about y axis	$L_{cy} = L_y \times K_y = 120$ in		
For torsional buckling	$L_{cz} = L_z \times K_z = 120$ in		
Section classification			
Section classification for local b	uckling (cl. B4)		
Width to thickness ratio	$\lambda = D_o / t = 17.167$		
Compression			
Limit for nonslender section	λ_{r_c} = 0.11 × E / F _y = 75.98	52	
		The section is nonslende	er in compressi
Slenderness			
Member slenderness			
Slenderness ratio about x axis	SR _x = L _{cx} / r _x = 90.2		
Slenderness ratio about y axis	$SR_y = L_{cy} / r_y = 90.2$		
Compressive strength			
Flexural buckling about x axis (cl. E3)		
Elastic critical buckling stress	$F_{ex} = \pi^2 \times E / (SR_x)^2 = 35.2$	2 ksi	
Flexural buckling stress	$F_{crx} = (0.658^{F_y/F_{ex}}) \times F_y =$	25.5 ksi	
Nominal compressive strength for	flexural buckling $P_{nx} = F_{crx} \times A = 70.3$	kips	
Flexural buckling about y axis (cl. E3)		
Elastic critical buckling stress	$F_{ey} = \pi^2 \times E / (SR_y)^2 = 35.2$	2 ksi	
Flexural buckling stress	$F_{crv} = (0.658^{F_v/F_{ev}}) \times F_v =$	25.5 ksi	
Nominal compressive strength for	flexural buckling $P_{ny} = F_{cry} \times A = 70.3$	kips	
Design compressive strength (c	I.E1)		
Resistance factor for compression	$\phi_{\rm c}=0.90$		
Design compressive strength	$P_c = \phi_c \times min(P_{nx}, P_{ny}) = 0$	63.3 kips	
PA	SS - The design compressive strength e	exceeds the required com	pressive strend

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

<u>18 - TYPICAL HSS FOOTING</u>

Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.7			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.93	1.5	0.620	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.3	32.3	0.010	Pass
Moment, positive, y-direction	kip_ft	0.3	32.3	0.010	Pass
Shear, two-way, Col 1	psi	2.678	189.737	0.014	Pass
Min.area of reinf, bot., x-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	8.6		Pass
Min.area of reinf, bot., y-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	8.6		Pass

Pad footing details

Length of footing	L _x = 2 ft
Width of footing	L _y = 2 ft
Footing area	$A = L_x \times L_y = \textbf{4} \ ft^2$
Depth of footing	h = 12 in
Depth of soil over footing	h _{soil} = 12 in
Density of concrete	γ_{conc} = 150.0 lb/ft ³

ff	Project OSU Azalea House		By MAA	Sheet No.
	Location Corvallis, OR		Date 2/12/2024	2
-	Client Rowell Brokaw		Revised	Job No.
rtland, Oregon			Date	223346
0.93 ksf	×	0.93 ksf		
Column no.1 details Length of column	l _{x1} = 10.00 in			
Width of column	l _{y1} = 10.00 in			
position in x-axis	x ₁ = 12.00 in			
position in y-axis	y ₁ = 12.00 in			
Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle Coefficient of base friction	$q_{allow}_{Gross} = 1.5 \text{ ksf}$ $\gamma_{soil} = 120.0 \text{ lb/ft}^3$ $\phi_b = 30.0 \text{ deg}$ $\delta_{bb} = 30.0 \text{ deg}$ $tan(\delta_{bb}) = 0.577$			
Footing loads				
Self weight	$F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$			
Soil weight	$F_{\text{soil}} = h_{\text{soil}} \times v_{\text{soil}} = 120 \text{ psf}$			
Column no 1 loodo				
Dead load in z	$F_{D-1} = 1.0$ kine			
l ive load in z	$F_{1-7} = 1.7 \text{ king}$			
Footing analysis for soil and stal	סווונא			
Load combinations per ASCE 7-7 1.0D (0.345)	16			

1	Project OSU Azalea House	By MAA	Sheet No.
крп	Location Corvallis, OR	Date 2/12/2024	3
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346
Portiand, Uregon		Date	

1.0D + 1.0L (0.620)	
Combination 2 results: 1.0D + 1.0L	
Forces on footing	
Force in z-axis	$F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 3.7 \text{ kips}$
Moments on footing	
Moment in x-axis, about x is 0	$ \begin{split} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x \ / \ 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ x_1) &= \textbf{3.7 kip}_ft \end{split} $
Moment in y-axis, about y is 0	$\begin{split} M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ y_1) &= 3.7 \text{ kip}_ft \end{split}$
Uplift verification	
Vertical force	F _{dz} = 3.72 kips
	PASS - Footing is not subject to uplift
Bearing resistance	
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in
Pad base pressures	
	$q_{1} = F_{dz} \times (1 - 6 \times e_{dx} / L_{x} - 6 \times e_{dy} / L_{y}) / (L_{x} \times L_{y}) = 0.93 \text{ ksf}$
	q_2 = F _{dz} × (1 - 6 × e_{dx} / L _x + 6 × e_{dy} / L _y) / (L _x × L _y) = 0.93 ksf
	$q_3 = F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 0.93 \text{ ksf}$
	$q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 0.93 \text{ ksf}$
Minimum base pressure	$q_{min} = min(q_1, q_2, q_3, q_4) = 0.93 \text{ ksf}$
Maximum base pressure	$q_{max} = max(q_1, q_2, q_3, q_4) = 0.93 \text{ ksf}$
Allowable bearing capacity	
Allowable bearing capacity	$q_{allow} = q_{allow}$ _Gross = 1.5 ksf
	q _{max} / q _{allow} = 0.620

18 - TYPICAL HSS FOOTING

Footing design in accordance with ACI318-19

Material details

Compressive strength of concrete	f' _c = 4000 psi
Yield strength of reinforcement	f _y = 60000 psi
Compression-controlled strain limit (21.2.2)	ϵ_{ty} = 0.00200
Cover to top of footing	$c_{nom_t} = 3$ in
Cover to side of footing	$c_{nom_s} = 3$ in

Tedds calculation version 3.3.02

kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No. 4
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Cover to bottom of footing	c _{nom_b} = 3 in
Concrete type	Normal weight
Concrete modification factor	$\lambda = 1.00$
Column type	Concrete
Analysis and design of concrete footing	
Load combinations per ASCE 7-16	
1.4D (0.004)	
1.2D + 1.6L + 0.5Lr (0.014)	
Combination 2 results: 1.2D + 1.6L + 0.5Lr	
Forces on footing	
Ultimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{5.1 kips}$
Moments on footing	
Ultimate moment in x-axis, about x is 0	$M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x \ / \ 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x$
	x ₁) = 5.1 kip_ft
Ultimate moment in y-axis, about y is 0	$M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y$
	y ₁) = 5.1 kip_ft
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0$ in
Pad base pressures	
	q_{u1} = F _{uz} × (1 - 6 × e_{ux} / L_x - 6 × e_{uy} / L_y) / (L_x × L_y) = 1.281 ksf
	q_{u2} = $F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y)$ = 1.281 ksf
	q_{u3} = $F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y)$ = 1.281 ksf
	$q_{u4} = F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 1.281 \text{ ksf}$
Minimum ultimate base pressure	$q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.281 \text{ ksf}$
Maximum ultimate base pressure	$q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.281 \text{ ksf}$
She	ear diagram, x axis (kips)
	1.9

Pr	oject OSU Azalea House	By MAA	Sheet No.
	cation Corvallis, OR	Date 2/12/2024	6
	ent Rowell Brokaw	Revised	Job No.
lland, Oregon		Date	22334
	Managat dia managata di dia di	21)	
	Moment diagram, y axis (kip_f	t)	
0		0	
	1		
	l l		
Moment design, v direction, positi	ve moment		
Ultimate bending moment	Muymax = 0.326 kip ft		
Tension reinforcement provided	3 No.5 bottom bars (8.6 i	n c/c)	
Area of tension reinforcement provid	$A_{sy,bot,prov} = 0.93 in^2$		
Minimum area of reinforcement (8.6.	1.1) $A_{s,min} = 0.0018 \times L_x \times h =$	0.518 in ²	
X = -	PASS - Area of rein	forcement provided exe	ceeds minin
Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) =$	18 in	
PAS	S - Maximum permissible reinforc	ement spacing exceeds	actual spa
Depth to tension reinforcement	$d = h - c_{nom b} - \phi_{x,bot} - \phi_{y,bot}$	t / 2 = 8.062 in	•
Depth of compression block	$a = A_{sy,bot, prov} \times f_v / (0.85 \times$: f' _c × L _x) = 0.684 in	
Neutral axis factor	$\beta_1 = 0.85$,	
Depth to neutral axis	c = a / β ₁ = 0.804 in		
Strain in tensile reinforcement	$\epsilon_{t} = 0.003 \times d / c - 0.003$	= 0.02707	
Minimum tensile strain(8.3.3.1)	$\varepsilon_{min} = \varepsilon_{tv} + 0.003 = 0.0050$	0	
	PASS - Te	- nsile strain exceeds mii	nimum reau
Nominal moment capacity	$M_n = A_{sy hot prov} \times f_v \times (d - a)$	a / 2) = 35.901 kip ft	
Flexural strength reduction factor	$\phi_f = \min(\max(0.65 + 0.25))$	\times ($\epsilon_{\rm t}$ - $\epsilon_{\rm tv}$) / (0.003), 0.65)	0.9) = 0.900
Design moment capacity	$\phi M_{\rm p} = \phi_{\rm f} \times M_{\rm p} = 32.311 \rm kir$) ft	· · · / · · · ·
g	$M_{\rm WW} max / \phi M_{\rm p} = 0.010$		
	PASS - Design moment of	apacity exceeds ultima	te moment l
One-way shear design y direction			
One-way shear design, y unection	gn does not apply. Shear failure p	lane fall outside extents	s of foundat
Two-way shear design at column			
Depth to reinforcement	d _{v2} = 8.375 in		
Shear perimeter length (22.6.4)	l _{xp} = 18.375 in		
Shear perimeter width (22.6.4)	I _{yp} = 18.375 in		
Shear perimeter (22.6.4)	$b_0 = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{v1} + d_{v2})$	_{y1} + d _{v2}) = 73.500 in	
Shear area	$A_p = I_{x,perim} \times I_{v,perim} = 337.6$	541 in ²	
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{v1} = 237.64$	41 in ²	
Ultimate bearing pressure at center of	of shear area	Qup avg = 1.281 ksf	

lzaff	Project OSU Azalea House	By MAA	Sheet No.
Крп	Location Corvallis, OR	Date 2/12/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times$
	A _p = 1.484 kips
Ultimate shear stress from vertical load	$v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 2.411 \text{ psi}$
Column geometry factor (Table 22.6.5.2)	$\beta = I_{y1} / I_{x1} = 1.00$
Column location factor (22.6.5.3)	α _s = 40
Size effect factor (22.5.5.1.3)	$\lambda_{s} = 1$
Concrete shear strength (22.6.5.2)	v_{cpa} = (2 + 4 / β) $ imes$ λ_s $ imes$ λ $ imes$ $\sqrt{(f_c \times 1 \text{ psi})}$ = 379.473 psi
	v_{cpb} = ($\alpha_s \times d_{v2}$ / b_o + 2) $\times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})}$ = 414.753 psi
	v_{cpc} = 4 \times λ_s \times λ \times $\sqrt{(f_c \times 1 \text{ psi})}$ = 252.982 psi
	v _{cp} = min(v _{cpa} ,v _{cpb} ,v _{cpc}) = 252.982 psi
Shear strength reduction factor	$\phi_{\rm V} = 0.75$
Nominal shear stress capacity (Eq. 22.6.1.2)	v _n = v _{cp} = 252.982 psi
Design shear stress capacity (8.5.1.1(d))	$\phi v_n = \phi_v \times v_n =$ 189.737 psi
	v _{ug} / φv _n = 0.013
PASS - L	Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

19 - GRID H FOOTING

Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.7			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.93	1.5	0.620	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.3	34.9	0.009	Pass
Moment, positive, y-direction	kip_ft	0.3	32.3	0.010	Pass
Shear, two-way, Col 1	psi	2.411	189.737	0.013	Pass
Min.area of reinf, bot., x-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	8.6		Pass
Min.area of reinf, bot., y-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	8.6		Pass

Pad footing details

Length of footing	L _x = 2 ft
Width of footing	L _y = 2 ft
Footing area	$A = L_x \times L_y = \textbf{4} \ ft^2$
Depth of footing	h = 12 in
Depth of soil over footing	h _{soil} = 12 in
Density of concrete	γ_{conc} = 150.0 lb/ft ³

1	Project OSU Azalea House	By MAA	Sheet No.
KPII	Location Corvallis, OR	Date 2/13/2024	2
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346
0.93 ksf	0.93	ksf	
0.93 ksf Column no.1 details Length of column Width of column position in x-axis	0.93 I _{x1} = 10.00 in I _{y1} = 10.00 in x ₁ = 12.00 in	ksf	
position in y-axis Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle Coefficient of base friction	$y_1 = 12.00$ in $q_{allow_Gross} = 1.5$ ksf $\gamma_{soil} = 120.0$ lb/ft ³ $\phi_b = 30.0$ deg $\delta_{bb} = 30.0$ deg $tan(\delta_{bb}) = 0.577$		
Footing loads Self weight Soil weight	$F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$ $F_{soil} = h_{soil} \times \gamma_{soil} = 120 \text{ psf}$		
Column no.1 loads Dead load in z Live load in z	F _{Dz1} = 1.0 kips F _{Lz1} = 1.7 kips		
Footing analysis for soil and sta	bility		
Load combinations per ASCE 7- 1.0D (0.345)	16		

	Project OSU Azalea House	By MAA	Sheet No.
крп	Location Corvallis, OR	Date 2/13/2024	3
▲	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

$dz = \gamma_{D} \times A \times (F_{swt} + F_{soil}) + \gamma_{D} \times F_{Dz1} + \gamma_{L} \times F_{Lz1} = 3.7 \text{ kips}$ $d_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{1}) = 3.7 \text{ kip_ft}$ $d_{dy} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{y} / 2) + \gamma_{D} \times (F_{Dz1} \times y_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{1}) = 3.7 \text{ kip_ft}$ $d_{dz} = 3.72 \text{ kips}$ $PASS - Footing \text{ is not subject to uplift}$ $d_{dx} = M_{dx} / F_{dz} - L_{x} / 2 = 0 \text{ in}$
$dz = \gamma_{D} \times A \times (F_{swt} + F_{soil}) + \gamma_{D} \times F_{Dz1} + \gamma_{L} \times F_{Lz1} = 3.7 \text{ kips}$ $d_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{1}) = 3.7 \text{ kip_ft}$ $d_{dy} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{y} / 2) + \gamma_{D} \times (F_{Dz1} \times y_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{1}) = 3.7 \text{ kip_ft}$ $d_{dz} = 3.72 \text{ kips}$ $PASS - Footing \text{ is not subject to uplift}$ $d_{dx} = M_{dx} / F_{dz} - L_{x} / 2 = 0 \text{ in}$
$dz = \gamma_{D} \times A \times (F_{swt} + F_{soil}) + \gamma_{D} \times F_{Dz1} + \gamma_{L} \times F_{Lz1} = 3.7 \text{ kips}$ $d_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{1}) = 3.7 \text{ kip_ft}$ $d_{dy} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{y} / 2) + \gamma_{D} \times (F_{Dz1} \times y_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{1}) = 3.7 \text{ kip_ft}$ $d_{dz} = 3.72 \text{ kips}$ $PASS - Footing \text{ is not subject to uplift}$ $d_{dy} = M_{dy} / F_{dz} - L_{x} / 2 = 0 \text{ in}$
$\begin{aligned} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ A_{dy} &= 3.7 \text{ kip_ft} \\ M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ A_{dz} &= 3.7 \text{ kip_ft} \end{aligned}$ $\begin{aligned} PASS - Footing \text{ is not subject to uplift} \end{aligned}$ $\begin{aligned} PASS - Footing \text{ is not subject to uplift} \end{aligned}$
$\begin{aligned} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ &= 3.7 \text{ kip_ft} \\ M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ &= 3.7 \text{ kip_ft} \end{aligned}$ $\begin{aligned} dx &= M_{dx} / F_{dz} - L_x / 2 = 0 \text{ in} \end{aligned}$
$\begin{aligned} 1_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ 1_{dz} &= \mathbf{3.72 \ kips} \end{aligned}$ $\begin{aligned} \mathbf{PASS - Footing \ is \ not \ subject \ to \ uplift} \\ 1_{dy} &= \mathbf{M}_{dy} / \mathbf{F}_{dz} - 1_{dy} / 2 = 0 \ in \end{aligned}$
dz = 3.72 kips PASS - Footing is not subject to uplift dy = Mdy / Edz - Ly / 2 = 0 in
dz = 3.72 kips PASS - Footing is not subject to uplift dy = Mdy / Edz - Ly / 2 = 0 in
PASS - Footing is not subject to uplift dx = Mdy / Fdz - Ly / 2 = 0 in
$d_{x} = M_{d_{x}} / F_{d_{z}} - I_{x} / 2 = 0$ in
$d_{x} = M_{d_{x}} / F_{d_{z}} - I_{x} / 2 = 0$ in
$d_{x} = M_{dx} / F_{dz} - I_{x} / 2 = 0$ in
$_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in
$_{1}$ = F _{dz} × (1 - 6 × e_{dx} / L _x - 6 × e_{dy} / L _y) / (L _x × L _y) = 0.93 ksf
$_{2}$ = F _{dz} × (1 - 6 × e _{dx} / L _x + 6 × e _{dy} / L _y) / (L _x × L _y) = 0.93 ksf
$_{3}$ = F _{dz} × (1 + 6 × e _{dx} / L _x - 6 × e _{dy} / L _y) / (L _x × L _y) = 0.93 ksf
$_{4}$ = F _{dz} × (1 + 6 × e _{dx} / L _x + 6 × e _{dy} / L _y) / (L _x × L _y) = 0.93 ksf
_{min} = min(q ₁ ,q ₂ ,q ₃ ,q ₄) = 0.93 ksf
$max = max(q_1, q_2, q_3, q_4) = 0.93 \text{ ksf}$
allow = q _{allow_Gross} = 1.5 ksf
max / q _{allow} = 0.620

Footing design in accordance with ACI318-19

Material details

Compressive strength of concrete	f' _c = 4000 psi
Yield strength of reinforcement	f _y = 60000 psi
Compression-controlled strain limit (21.2.2)	ε _{ty} = 0.00200
Cover to top of footing	$\mathbf{c}_{nom_t} = 3$ in
Cover to side of footing	$c_{nom_s} = 3$ in

Tedds calculation version 3.3.02

kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/13/2024	Sheet No. 4
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Cover to bottom of footing	$c_{nom_b} = 3$ in
Concrete type	Normal weight
Concrete modification factor	$\lambda = 1.00$
Column type	Concrete
Analysis and design of concrete footing	
_oad combinations per ASCE 7-16	
1.4D (0.004)	
I.2D + 1.6L + 0.5Lr (0.013)	
Combination 2 results: 1.2D + 1.6L + 0.5L	r
Forces on footing	
Jltimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{5.1 kips}$
Moments on footing	
Jltimate moment in x-axis, about x is 0	$M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) $
	x ₁) = 5.1 kip_ft
Jltimate moment in y-axis, about y is 0	$M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) $
	y ₁) = 5.1 kip_ft
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0$ in
Pad base pressures	
	q_{u1} = F _{uz} × (1 - 6 × e_{ux} / L _x - 6 × e_{uy} / L _y) / (L _x × L _y) = 1.281 ksf
	q_{u2} = F _{uz} × (1 - 6 × e_{ux} / L _x + 6 × e_{uy} / L _y) / (L _x × L _y) = 1.281 ksf
	q_{u3} = $F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y)$ = 1.281 ksf
	$q_{u4} = F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 1.281 \text{ ksf}$
Minimum ultimate base pressure	$q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.281 \text{ ksf}$
Maximum ultimate base pressure	$q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.281 \text{ ksf}$
Sh	near diagram, x axis (kips)
	1.9

Project OSU A	zalea House	By MAA	Sheet No.
	allis, OR	Date 2/13/2024	
Client Rowell	Brokaw	Revised	Job No.
land, Oregon		Date	223340
		0	
MO	0.3	t)	
0		0	
	1		
Moment design, x direction, positive mor	nent		
Ultimate bending moment	M _{u.x.max} = 0.326 kip_ft		
Tension reinforcement provided	3 No.5 bottom bars (8.6 i	n c/c)	
Area of tension reinforcement provided	$A_{sx.bot.prov} = 0.93 in^2$		
Minimum area of reinforcement (8.6.1.1)	$A_{s.min} = 0.0018 \times L_y \times h =$	0.518 in ²	
	PASS - Area of rein	forcement provided exce	eeds minin
Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) =$	18 in	
PASS - Max	imum permissible reinforc	ement spacing exceeds	actual spa
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_{x.bot} / 2 = 8$	3.688 in	
Depth of compression block	a = $A_{sx.bot.prov} \times f_y / (0.85 \times$	$f'_{c} \times L_{y}$) = 0.684 in	
Neutral axis factor	$\beta_1 = 0.85$		
Depth to neutral axis	c = a / β_1 = 0.804 in		
Strain in tensile reinforcement	ϵ_t = 0.003 × d / c - 0.003 =	= 0.02940	
Minimum tensile strain(8.3.3.1)	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.0050$	0	
	PASS - Te	nsile strain exceeds min	imum requ
Nominal moment capacity	$M_n = A_{sx.bot.prov} \times f_y \times (d - a)$	n / 2) = 38.807 kip_ft	
Flexural strength reduction factor	φ _f = min(max(0.65 + 0.25	\times (ϵ_{t} - $\epsilon_{ty})$ / (0.003), 0.65),	0.9) = 0.900
Design moment capacity	$\phi M_n = \phi_f \times M_n =$ 34.926 kip	o_ft	
	$M_{u.x.max} / \phi M_n = 0.009$		
	PASS - Design moment of	apacity exceeds ultimate	e moment l

Pro	ect OSU Azalea House	By MAA	Sheet No.
	ation Corvallis, OR	Date 2/13/2024	
Clie	nt Rowell Brokaw	Revised	Job No.
and, Oregon		Date	22334
	Managat dia managata di dia 40		
	Noment diagram, y axis (kip_ft)		
0		0	
	1		
Moment design, y direction, positiv	ve moment		
Ultimate bending moment	M _{u.y.max} = 0.326 kip_ft		
Tension reinforcement provided	3 No.5 bottom bars (8.6 in	c/c)	
Area of tension reinforcement provide	d $A_{sy.bot.prov} = 0.93 \text{ in}^2$		
Minimum area of reinforcement (8.6.7	.1) $A_{s.min} = 0.0018 \times L_x \times h = 0$.518 in ²	
	PASS - Area of reinf	orcement provided exc	eeds minin
Maximum spacing of reinforcement (8	3.7.2.2) s _{max} = min(2 × h, 18 in) = 1	8 in	
PASS	- Maximum permissible reinforce	ment spacing exceeds	actual spa
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / $	2 = 8.062 in	
Depth of compression block	$a = A_{sy.bot.prov} \times f_y / (0.85 \times f_y)$	"c × L _x) = 0.684 in	
Neutral axis factor	β ₁ = 0.85		
Depth to neutral axis	c = a / β ₁ = 0.804 in		
Strain in tensile reinforcement	ϵ_{t} = 0.003 × d / c - 0.003 =	0.02707	
Minimum tensile strain(8.3.3.1)	$\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$		
	PASS - Ten	sile strain exceeds mir	nimum requ
Nominal moment capacity	$M_n = A_{sy.bot.prov} \times f_y \times (d - a)$	/ 2) = 35.901 kip_ft	
Flexural strength reduction factor	$\phi_{\rm f} = \min(\max(0.65 + 0.25))$	$(\epsilon_{\rm t} - \epsilon_{\rm ty}) / (0.003), 0.65),$	0.9) = 0.900
Design moment capacity	$\phi M_n = \phi_f \times M_n = 32.311 \text{ kip}$	_ft	
	M _{u.y.max} / φM _n = 0.010		
	PASS - Design moment ca	apacity exceeds ultimat	te moment i
One-way shear design, y direction			
One-way shear desig	n does not apply. Shear failure pl	ane fall outside extents	s of foundat
Two-way shear design at column 1			
Depth to reinforcement	d _{v2} = 8.375 in		
Shear perimeter length (22.6.4)	l _{xp} = 18.375 in		
Shear perimeter width (22.6.4)	l _{yp} = 18.375 in		
Shear perimeter (22.6.4)	$b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1})$	+ d _{v2}) = 73.500 in	
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = 337.64$	11 in ²	
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 237.64$	1 in ²	
Ultimate bearing pressure at center o	shear area	q _{up.avg} = 1.281 ksf	

lzraff	Project OSU Azalea House	By MAA	Sheet No.
KPH	Location Corvallis, OR	Date 2/13/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times$
	A _p = 1.484 kips
Ultimate shear stress from vertical load	$v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 2.411 \text{ psi}$
Column geometry factor (Table 22.6.5.2)	$\beta = I_{y1} / I_{x1} = 1.00$
Column location factor (22.6.5.3)	αs = 40
Size effect factor (22.5.5.1.3)	$\lambda_{s} = 1$
Concrete shear strength (22.6.5.2)	v_{cpa} = (2 + 4 / β) $ imes$ λ_s $ imes$ λ $ imes$ $\sqrt{(f_c \times$ 1 psi)} = 379.473 psi
	v_{cpb} = ($\alpha_s \times d_{v2}$ / b_o + 2) $\times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})}$ = 414.753 psi
	v_{cpc} = 4 \times λ_s \times λ \times $\sqrt{(f_c \times 1 \text{ psi})}$ = 252.982 psi
	$v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 \text{ psi}$
Shear strength reduction factor	$\phi_{\rm V} = 0.75$
Nominal shear stress capacity (Eq. 22.6.1.2)	v _n = v _{cp} = 252.982 psi
Design shear stress capacity (8.5.1.1(d))	$\phi \mathbf{v}_n = \phi_v \times \mathbf{v}_n = 189.737 \text{ psi}$
	$v_{ug} / \phi v_n = 0.013$
PASS - I	Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

20 - GRID C FOOTING

Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	10.8			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.194	1.5	0.796	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	2.5	46.8	0.052	Pass
Moment, positive, y-direction	kip_ft	2.5	43.3	0.057	Pass
Shear, one-way, x-direction	kips	1.7	18.8	0.092	Pass
Shear, one-way, y-direction	kips	1.7	17.9	0.096	Pass
Shear, two-way, Col 1	psi	14.907	189.737	0.079	Pass
Min.area of reinf, bot., x-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	9.7		Pass
Min.area of reinf, bot., y-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	9.7		Pass

Pad footing details

Length of footing	L _x = 3 ft
Width of footing	L _y = 3 ft
Footing area	$A = L_x \times L_y = \textbf{9} \ ft^2$
Depth of footing	h = 12 in
Depth of soil over footing	h _{soil} = 12 in
Density of concrete	γ_{conc} = 150.0 lb/ft ³

and f	Project OSU Azalea House		By MAA	Sheet No.
	ocation Corvallis, OR		Date 2/12/2024	2
-	Client Rowell Brokaw		Revised	Job No.
Portland, Oregon			Date	223346
1.194 ksf	+	1.194 kst	f	
Column no.1 details Length of column Width of column position in x-axis position in y-axis Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle	$l_{x1} = 10.00 \text{ in}$ $l_{y1} = 10.00 \text{ in}$ $x_1 = 18.00 \text{ in}$ $y_1 = 18.00 \text{ in}$ $q_{allow_Gross} = 1.5 \text{ ksf}$ $\gamma_{soil} = 120.0 \text{ lb/ft}^3$ $\phi_b = 30.0 \text{ deg}$ $\delta_{bb} = 30.0 \text{ deg}$			
Coefficient of base friction Footing loads	$tan(\delta_{bb}) = 0.577$			
Self weight	F_{swt} = h × γ_{conc} = 150 psf			
Soil weight	F_{soil} = $h_{soil} imes \gamma_{soil}$ = 120 psf			
Column no.1 loads				
Dead load in z	F _{Dz1} = 1.9 kips			
Live load in z	F _{Lz1} = 6.4 kips			
Footing analysis for soil and stab	ility			
Load combinations per ASCE 7-1 1.0D (0.322)	6			

1	Project OSU Azalea House	By MAA	Sheet No.
крп	Location Corvallis, OR	Date 2/12/2024	3
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

1.0D + 1.0L (0.796)	
Combination 2 results: 1.0D + 1.0L	
Forces on footing	
Force in z-axis	$F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 10.8 \text{ kips}$
Moments on footing	
Moment in x-axis, about x is 0	$\begin{split} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ x_1) &= 16.1 \text{ kip_ft} \end{split}$
Moment in y-axis, about y is 0	$\begin{split} M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ y_1) &= \textbf{16.1 kip_ft} \end{split}$
Uplift verification	
Vertical force	F _{dz} = 10.75 kips
	PASS - Footing is not subject to uplift
Bearing resistance	
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in
Pad base pressures	
	$q_1 = F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.194 \text{ ksf}$
	$q_2 = F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.194 \text{ ksf}$
	$q_3 = F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.194 \text{ ksf}$
	$q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.194 \text{ ksf}$
Minimum base pressure	$q_{min} = min(q_1, q_2, q_3, q_4) = 1.194 \text{ ksf}$
Maximum base pressure	$q_{max} = max(q_1,q_2,q_3,q_4) = 1.194 \text{ ksf}$
Allowable bearing capacity	
Allowable bearing capacity	q _{allow} = q _{allow_Gross} = 1.5 ksf
	$q_{max} / q_{allow} = 0.796$
	PASS - Allowable bearing capacity exceeds design base pressure
20 - GRID C FOOTING	
Footing design in accordance with AC	CI318-19
	Tedds calculation version 3.3.02

Material details

Compressive strength of concrete	f' _c = 4000 psi
Yield strength of reinforcement	f _y = 60000 psi
Compression-controlled strain limit (21.2.2)	ϵ_{ty} = 0.00200
Cover to top of footing	$c_{nom_t} = 3$ in
Cover to side of footing	$c_{nom_s} = 3$ in

kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No. 4
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Cover to bottom of footing	c _{nom_b} = 3 in
Concrete type	Normal weight
Concrete modification factor	$\lambda = 1.00$
Column type	Concrete
Analysis and design of concrete footing	
Load combinations per ASCE 7-16 1.4D (0.021)	
1.2D + 1.6L + 0.5Lr (0.096)	
Combination 2 results: 1.2D + 1.6L + 0.5Lr	
Forces on footing	
Ultimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{15.5 kips}$
Moments on footing	
Ultimate moment in x-axis, about x is 0	$\begin{split} M_{ux} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x \ / \ 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) = \textbf{23.2 kip_ft} \end{split}$
Ultimate moment in y-axis, about y is 0	$ \begin{aligned} M_{uy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ y_1) &= \textbf{23.2 kip_ft} \end{aligned} $
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0$ in
Pad base pressures	
	q_{u1} = F _{uz} × (1 - 6 × e_{ux} / L_x - 6 × e_{uy} / L_y) / (L_x × L_y) = 1.718 ksf
	q_{u2} = F _{uz} × (1 - 6 × e_{ux} / L_x + 6 × e_{uy} / L_y) / (L_x × L_y) = 1.718 ksf
	q_{u3} = F _{uz} × (1 + 6 × e_{ux} / L_x - 6 × e_{uy} / L_y) / (L_x × L_y) = 1.718 ksf
	$q_{u4} = F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 1.718 \text{ ksf}$
Minimum ultimate base pressure	$q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.718 \text{ ksf}$
Maximum ultimate base pressure	$q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 1.718 \text{ ksf}$
She	ear diagram, x axis (kips)
	6.3

Project	OSU Azalea House	By MAA	Sheet No.
	n Corvallis, OR	Date 2/12/2024	5
Client	Rowell Brokaw	Revised	Job No.
and, Oregon		Date	223346
		J	
	Moment diagram, x axis (kip_ft)		
	2.5		
0		0	
	4.7		
Moment design, x direction, positive	moment		
Ultimate bending moment	M _{u.x.max} = 2.454 kip_ft		
Tension reinforcement provided	4 No.5 bottom bars (9.7 in c/c	c)	
Area of tension reinforcement provided	$A_{sx.bot.prov} = 1.24 \text{ in}^2$		
Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_y \times h = 0.775$	8 in ²	
	PASS - Area of reinford	ement provided exc	eeds minin
Maximum spacing of reinforcement (8.7	(.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$	1	
PASS -	Maximum permissible reinforceme	ent spacing exceeds	actual spa
Depth to tension reinforcement	d = h - c _{nom_b} - φ _{x.bot} / 2 = 8.688	3 in	
Depth of compression block	$a = A_{sx.bot.prov} \times f_y / (0.85 \times f_c \times f_c)$: L _y) = 0.608 in	
Neutral axis factor	$\beta_1 = 0.85$		
Depth to neutral axis	$c = a / \beta_1 = 0.715$ in		
Strain in tensile reinforcement	$\epsilon_t = 0.003 \times d \ / \ c \ - \ 0.003 = \textbf{0.0}$	3345	
Minimum tensile strain(8.3.3.1)	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.00500$		
	PASS - Tensile	e strain exceeds min	imum requ
Nominal moment capacity	$M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2)$	= 51.978 kip_ft	
Flexural strength reduction factor	$\phi_{\rm f}$ = min(max(0.65 + 0.25 × (ϵ	t - ε _{ty}) / (0.003), 0.65),	0.9) = 0.900
Design moment capacity	$\phi M_n = \phi_f \times M_n = 46.78 \text{ kip}_ft$		
	$M_{u.x.max} / \phi M_n = 0.052$		
	PASS - Design moment capa	city exceeds ultimat	e moment l
One-way shear design, x direction			
Ultimate shear force	V _{u.x} = 1.72 kips		
Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.68$	8 in	
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$		
Ratio of longitudinal reinforcement	$\rho_w = A_{sx.bot.prov} / (L_y \times d_v) = 0.0039$	96	
Shear strength reduction factor	$\phi_v = 0.75$		
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times$	$\sqrt{(\mathbf{f'_c} \times 1 \text{ psi}) \times L_y \times d_v}$, 5 × λ × $\sqrt{\mathbf{f}}$
	1 psi) \times L _y \times d _v) = 25.045 kips		
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 18.784 kips		
	$V_{u.x} / \phi V_n = 0.092$		

Project OSU Azale	a House	By MAA	Sheet No.
Location Corvallis,	OR	Date 2/12/2024	0
Client Rowell Brok	aw	Revised	Job No.
Portland, Oregon		Date	223346

lzzaff	Project OSU Azalea House	By MAA	Sheet No.
KPH	Location Corvallis, OR	Date 2/12/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in		
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$		
Ratio of longitudinal reinforcement	$\rho_w = A_{sy.bot.prov} / (L_x \times d_v) = 0.00427$		
Shear strength reduction factor	$\phi_v = 0.75$		
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x $		
	1 psi) × L _x × d _v) = 23.829 kips		
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 17.872 kips		
	$V_{u,y} / \phi V_n = 0.096$		
	PASS - Design shear capacity exceeds ultimate shear load		
Two-way shear design at column 1			
Depth to reinforcement	d _{v2} = 8.375 in		
Shear perimeter length (22.6.4)	l _{xp} = 18.375 in		
Shear perimeter width (22.6.4)	l _{yp} = 18.375 in		
Shear perimeter (22.6.4)	$b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500$ in		
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$		
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$		
Ultimate bearing pressure at center of shear a	area a		
entimate bearing procedure at conter of enear t			
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times$		
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times A_p = 9.176 \text{ kips}$		
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times A_p = 9.176 \text{ kips}$ $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 14.907 \text{ psi}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2)	$\begin{aligned} q_{up,avg} &= 1.716 \text{ kist} \\ F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up,avg} \times \\ A_p &= \textbf{9.176 kips} \\ v_{ug} &= \max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{14.907 psi} \\ \beta &= I_{y1} / I_{x1} = \textbf{1.00} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3)	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times A_p = 9.176 \text{ kips}$ $v_{ug} = \max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 14.907 \text{ psi}$ $\beta = I_{y1} / I_{x1} = 1.00$ $\alpha_s = 40$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3)	$\begin{aligned} & q_{up,avg} = 1.716 \text{ kisi} \\ & F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up,avg} \times \\ & A_p = \textbf{9.176 kips} \\ & v_{ug} = \max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{14.907 psi} \\ & \beta = l_{y1} / l_{x1} = \textbf{1.00} \\ & \alpha_s = \textbf{40} \\ & \lambda_s = \textbf{1} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{aligned} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{9.176 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{14.907 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{aligned} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \mathbf{9.176 \ kips} \\ v_{ug} &= \max(F_{up} / (b_o \times d_{v2}), 0 \ psi) = \mathbf{14.907 \ psi} \\ \beta &= I_{y1} / I_{x1} = 1.00 \\ \alpha_s &= 40 \\ \lambda_s &= 1 \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \ psi)} = \mathbf{379.473 \ psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \ psi)} = \mathbf{414.753 \ psi} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{aligned} & Fup = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - qup.avg \times \\ & A_p = 9.176 \text{ kips} \\ & vug = \max(Fup / (b_o \times d_{v2}), 0 \text{ psi}) = 14.907 \text{ psi} \\ & \beta = l_{y1} / l_{x1} = 1.00 \\ & \alpha_s = 40 \\ & \lambda_s = 1 \\ & v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'c \times 1 \text{ psi})} = 379.473 \text{ psi} \\ & v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'c \times 1 \text{ psi})} = 414.753 \text{ psi} \\ & v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'c \times 1 \text{ psi})} = 252.982 \text{ psi} \end{aligned}$		
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{aligned} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{9.176 kips} \\ v_{ug} &= \max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{14.907 psi} \\ \beta &= I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} &= \min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor	$\begin{aligned} & Fup = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - qup.avg \times \\ & A_p = 9.176 \text{ kips} \\ & vug = \max(Fup / (b_o \times d_{v2}), 0 \text{ psi}) = 14.907 \text{ psi} \\ & \beta = l_{y1} / l_{x1} = 1.00 \\ & \alpha_s = 40 \\ & \lambda_s = 1 \\ & v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'c \times 1 \text{ psi})} = 379.473 \text{ psi} \\ & v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'c \times 1 \text{ psi})} = 414.753 \text{ psi} \\ & v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'c \times 1 \text{ psi})} = 252.982 \text{ psi} \\ & v_{cp} = \min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 \text{ psi} \\ & \varphi_v = 0.75 \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2)	$\begin{aligned} & Fup = y_D \times F_Dz1 + y_L \times F_Lz1 + y_D \times A_p \times F_swt + y_D \times A_sur \times F_soil - q_up,avg \times \\ & A_p = 9.176 \text{ kips} \\ & v_ug = max(F_up / (b_o \times d_v2), 0 \text{ psi}) = 14.907 \text{ psi} \\ & \beta = l_y_1 / l_x1 = 1.00 \\ & \alpha_s = 40 \\ & \lambda_s = 1 \\ & v_cpa = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 379.473 \text{ psi} \\ & v_cpb = (\alpha_s \times d_v2 / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 414.753 \text{ psi} \\ & v_cpc = 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 252.982 \text{ psi} \\ & v_cp = min(v_cpa, v_cpb, v_cpc) = 252.982 \text{ psi} \\ & \varphi_v = 0.75 \\ & v_n = v_cp = 252.982 \text{ psi} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d))	$\begin{aligned} & \text{Fup} = \gamma_D \times \text{F}_{Dz1} + \gamma_L \times \text{F}_{Lz1} + \gamma_D \times A_p \times \text{F}_{swt} + \gamma_D \times A_{sur} \times \text{F}_{soil} - q_{up.avg} \times \\ & A_p = \textbf{9.176 kips} \\ & \text{vug} = \max(\text{Fup} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{14.907 psi} \\ & \beta = l_{y1} / l_{x1} = \textbf{1.00} \\ & \alpha_s = \textbf{40} \\ & \lambda_s = \textbf{1} \\ & \text{v}_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ & \text{v}_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ & \text{v}_{cpc} = \textbf{4} \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ & \text{v}_{cp} = \min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ & \phi_v = \textbf{0.75} \\ & v_n = v_{cp} = \textbf{252.982 psi} \\ & \phi_{v_n} = \phi_v \times v_n = \textbf{189.737 psi} \end{aligned}$		
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d))	$\begin{aligned} & \text{qup.avg} = 1.716 \text{ Kist} \\ & \text{Fup} = \gamma_D \times \text{F}_{Dz1} + \gamma_L \times \text{F}_{Lz1} + \gamma_D \times A_p \times \text{F}_{swt} + \gamma_D \times A_{sur} \times \text{F}_{soil} - \text{qup.avg} \times \\ & A_p = \textbf{9.176 kips} \\ & \text{vug} = \max(\text{Fup} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{14.907 psi} \\ & \beta = _{y1} / _{x1} = \textbf{1.00} \\ & \alpha_s = \textbf{40} \\ & \lambda_s = \textbf{1} \\ & \text{vcpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ & \text{vcpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ & \text{vcpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ & \text{vcp} = \min(\text{vcpa}, \text{vcpb}, \text{vcpc}) = \textbf{252.982 psi} \\ & \phi_v = \textbf{0.75} \\ & \text{vn} = v_{cp} = \textbf{252.982 psi} \\ & \phi_{vn} = \phi_v \times v_n = \textbf{189.737 psi} \\ & \text{vug} / \phi_{vn} = \textbf{0.079} \end{aligned}$		
kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No. 8
------------------	--	--------------------------	----------------
	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

4 No.5 bottom bars (9.7 in c/c)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

<u>21 - ENTRY CANOPY FOOTING</u>

Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.2			Pass
Overturning stability, x	kip_ft	2.49	-4.76	1.91	Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.987	1.5	0.658	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.6	46.8	0.013	Pass
Moment, positive, y-direction	kip_ft	0.3	43.3	0.008	Pass
Shear, one-way, x-direction	kips	0.4	18.8	0.024	Pass
Shear, one-way, y-direction	kips	0.2	17.9	0.013	Pass
Shear, two-way, Col 1	psi	1.928	189.737	0.010	Pass
Min.area of reinf, bot., x-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	9.7		Pass
Min.area of reinf, bot., y-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	9.7		Pass

Pad footing details

Length of footing	L _x = 3 ft
Width of footing	L _y = 3 ft
Footing area	$A = L_x \times L_y = \textbf{9} \ ft^2$
Depth of footing	h = 12 in
Depth of soil over footing	h _{soil} = 12 in
Density of concrete	γ_{conc} = 150.0 lb/ft ³

Column no.1 details Length of column		Project OSU Azalea House	By MAA	Sheet No.
Prime Difference Revised Job No. 233 Date 233 Over the second Biology Difference Over the second Biology Over the second Biology Over the second Biology Over the second Biology Difference Over the second Biology Over the second Biology Over the second Biology Difference Over the second Biology		Location Corvallis, OR	Date 2/12/2024	2
vitand, Oregon Date 2233 Image: Date of the second se	•	Client Rowell Brokaw	Revised	Job No.
OBT 155 OBT	rtland, Oregon		Date	223346
Column no.1 detailsLength of column $k_{x1} = 10.00$ inWidth of column $l_{y1} = 10.00$ inposition in x-axis $x_1 = 18.00$ inposition in y-axis $y_1 = 18.00$ inSoil propertiesGross allowable bearing pressureGross allowable bearing pressure $q_{allow_Gross} = 1.5$ ksfDensity of soil $\gamma_{soil} = 120.0$ lb/ft ³ Angle of internal friction $\phi_b = 30.0$ degDesign base friction angle $\delta_{ob} = 30.0$ degCoefficient of base friction $tan(\delta_{obb}) = 0.577$ Self weight $F_{swt} = h \times \gamma_{conc} = 150$ psf		0.987 ksf		
Length of column $I_{x1} = 10.00$ inWidth of column $I_{y1} = 10.00$ inposition in x-axis $x_1 = 18.00$ inposition in y-axis $y_1 = 18.00$ inSoil properties $y_1 = 18.00$ inGross allowable bearing pressure $q_{allow_Gross} = 1.5$ ksfDensity of soil $\gamma_{soil} = 120.0$ lb/ft ³ Angle of internal friction $\phi_b = 30.0$ degDesign base friction angle $\delta_{bb} = 30.0$ degCoefficient of base friction $tan(\delta_{bb}) = 0.577$ Self weight $F_{swt} = h \times \gamma_{conc} = 150$ psf		x 0.987 ksf		
Width of column $l_{y1} = 10.00$ inposition in x-axis $x_1 = 18.00$ inposition in y-axis $y_1 = 18.00$ inSoil properties $q_{allow_Gross} = 1.5$ ksfGross allowable bearing pressure $q_{allow_Gross} = 1.5$ ksfDensity of soil $\gamma_{soil} = 120.0$ lb/ft ³ Angle of internal friction $\phi_b = 30.0$ degDesign base friction angle $\delta_{bb} = 30.0$ degCoefficient of base friction $tan(\delta_{bb}) = 0.577$ Self weight $F_{swt} = h \times \gamma_{conc} = 150$ psf	Column no.1 details			
position in x-axis $x_1 = 18.00$ inposition in y-axis $y_1 = 18.00$ inSoil properties $q_{allow_Gross} = 1.5$ ksfGross allowable bearing pressure $q_{allow_Gross} = 1.5$ ksfDensity of soil $\gamma_{soil} = 120.0$ lb/ft ³ Angle of internal friction $\phi_b = 30.0$ degDesign base friction angle $\delta_{bb} = 30.0$ degCoefficient of base friction $tan(\delta_{bb}) = 0.577$ Self weight $F_{swt} = h \times \gamma_{conc} = 150$ psf	Column no.1 details Length of column	l _{x1} = 10.00 in		
position in y-axis $y_1 = 18.00$ inSoil properties $q_{allow_Gross} = 1.5$ ksfGross allowable bearing pressure $q_{allow_Gross} = 1.5$ ksfDensity of soil $\gamma_{soil} = 120.0$ lb/ft ³ Angle of internal friction $\phi_b = 30.0$ degDesign base friction angle $\delta_{bb} = 30.0$ degCoefficient of base friction $tan(\delta_{bb}) = 0.577$ Self weight $F_{swt} = h \times \gamma_{conc} = 150$ psf	Column no.1 details Length of column Width of column	l _{x1} = 10.00 in l _{y1} = 10.00 in		
Soil propertiesGross allowable bearing pressure $q_{allow_Gross} = 1.5 \text{ ksf}$ Density of soil $\gamma_{soil} = 120.0 \text{ lb/ft}^3$ Angle of internal friction $\phi_b = 30.0 \text{ deg}$ Design base friction angle $\delta_{bb} = 30.0 \text{ deg}$ Coefficient of base friction $tan(\delta_{bb}) = 0.577$ Self weight $F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$	Column no.1 details Length of column Width of column position in x-axis	l_{x1} = 10.00 in l_{y1} = 10.00 in x_1 = 18.00 in		
	Column no.1 details Length of column Width of column position in x-axis position in y-axis	$l_{x1} =$ 10.00 in $l_{y1} =$ 10.00 in $x_1 =$ 18.00 in $y_1 =$ 18.00 in		
Soil weight $E_{n} = h_{n} \times x_{n} = 120$ pcf	Column no.1 details Length of column Width of column position in x-axis position in y-axis Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle Coefficient of base friction Self weight	$l_{x1} = 10.00 \text{ in}$ $l_{y1} = 10.00 \text{ in}$ $x_1 = 18.00 \text{ in}$ $y_1 = 18.00 \text{ in}$ $q_{allow_Gross} = 1.5 \text{ ksf}$ $\gamma_{soil} = 120.0 \text{ lb/ft}^3$ $\phi_b = 30.0 \text{ deg}$ $\delta_{bb} = 30.0 \text{ deg}$ $tan(\delta_{bb}) = 0.577$ Event = b × Yrea = 150 psf		

Dead load in z	F _{Dz1} = 0.5 kips
Live load in z	F _{Lz1} = 0.8 kips
Dead load moment in x	M _{Dx1} = 0.2 kip_ft
Live load moment in x	M _{Lx1} = 0.4 kip_ft
Seismic load moment in x	M _{Ex1} = 3.2 kip_ft

Footing analysis for soil and stability

7 7ff	Project OSU Azalea House	By MAA	Sheet No.
CPII	ocation Corvallis, OR	Date 2/12/2024	3
-	Client Rowell Brokaw	Revised	Job No.
ortland, Oregon		Date	223346
Load combinations per ASCE 7-7	6		
1.0D (0.247)			
1.0D + 1.0L (0.359)			
$(1.0 + 0.14 \times S_{DS})D + 0.7E (0.658)$			
Combination 10 results: (1.0 + 0.	4 × S _{DS})D + 0.7E		
Forces on footing			
Force in z-axis	$F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D$	× F _{Dz1} = 3.2 kips	
Moments on footing			
Moment in x-axis, about x is 0	$\begin{split} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_{dx} \\ (M_{Ex1}) &= \textbf{7.3} \ kip_ft \end{split}$	$_{x}$ / 2) + γ_{D} × (F _{Dz1} × x ₁ +M	_{Dx1}) + γ _E ×
Moment in y-axis, about y is 0	$M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_{soil})$	$_{y}$ / 2) + γ_{D} × (F _{Dz1} × y ₁) =	4.8 kip_ft
Uplift verification			
Vertical force	F _{dz} = 3.174 kips		
	PAS	S - Footing is not sub	ject to upl
Stability against overturning in x	direction, moment about x is L _x		
Overturning moment	$M_{OTxL} = \gamma_D \times (M_{Dx1}) + \gamma_E \times (M_{Ex1})$) = 2.49 kip_ft	
Resisting moment	M_{RxL} = -1 × (γ_D × (A × (F _{swt} + F _s	$_{ m soil}) imes {\sf L}_{x}$ / 2)) + $\gamma_{ m D} imes ({\sf F}_{ m Dz1})$	× (x1 - Lx))
	-4.76 kip_ft		
Factor of safety	abs(M _{RxL} / M _{OTxL}) = 1.910		
	PASS - Overturning moment safety fa	ctor exceeds the mini	mum of 1.
Bearing resistance			
Eccentricity of base reaction			
Eccentricity of base reaction in x-ax	s $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 9.426$ in	1	
Eccentricity of base reaction in y-ax	s $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in		
Length of bearing in x-axis	$L'_{xd} = min(L_x, 3 \times (L_x / 2 - abs(e_x)))$	_{dx}))) = 25.721 in	
Pad base pressures			
	q ₁ = 0 ksf		
	q ₂ = 0 ksf		
	$q_3 = 2 \times F_{dz} / (3 \times L_y \times (L_x / 2 - 0))$	e _{dx})) = 0.987 ksf	
	$q_4 = 2 \times F_{dz} / (3 \times L_y \times (L_x / 2 - 0))$	e _{dx})) = 0.987 ksf	
Minimum base pressure	$q_{min} = min(q_1, q_2, q_3, q_4) = 0 \text{ ksf}$		
Maximum base pressure	$q_{max} = max(q_1, q_2, q_3, q_4) = 0.987$	ksf	
Allowable bearing capacity			
Allowable bearing capacity	$q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$ $q_{max} / q_{allow} = 0.658$		
	PASS - Allowable bearing capac	ity exceeds design ba	ise pressi

Proje	ct OSU Azalea House	By MAA	Sheet No.
	tion Corvallis, OR	Date 2/12/2024	4
Clier	t Rowell Brokaw	Revised	Job No.
and, Oregon		Date	223346
21 - ENTRY CANOPY FOOTING	A C124.9 40		
Footing design in accordance with	ACI318-19	Tedds ca	culation version 3.3
Material details			
Compressive strength of concrete	f' _c = 4000 psi		
Yield strength of reinforcement	f _y = 60000 psi		
Compression-controlled strain limit (22	.2.2) ε _{ty} = 0.00200		
Cover to top of footing	$c_{nom_t} = 3$ in		
Cover to side of footing	c _{nom_s} = 3 in		
Cover to bottom of footing	c _{nom_b} = 3 in		
Concrete type	Normal weight		
Concrete modification factor	$\lambda = 1.00$		
Column type	Concrete		
Analysis and design of concrete for	oting		
Load combinations per ASCE 7-16 1.4D (0.005)			
1.2D + 1.6L + 0.5Lr (0.013)			
Combination 2 results: 1.2D + 1.6L	+ 0.5Lr		
Forces on footing			
Ultimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) +$	$\gamma_{\rm D} \times F_{\rm Dz1} + \gamma_{\rm L} \times F_{\rm Lz1} = 4.$	7 kips
Moments on footing			
Ultimate moment in x-axis, about x is	$M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}))$	$ imes$ L _x / 2) + γ_{D} $ imes$ (F _{Dz1} $ imes$ x ₁	+M _{Dx1}) + γ _L ×
	(F _{Lz1} × x ₁ +M _{Lx1}) = 7.9 kip_ft		
Ultimate moment in y-axis, about y is ($M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}))$ $y_1) = 7.0 \text{ kip_ft}$	\times L _y / 2) + γ_D \times (F _{Dz1} \times y ₁) + γ _L × (F _{Lz1} >
Eccentricity of base reaction			
Eccentricity of base reaction in x-axis	$e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 2.27$	' 8 in	
Eccentricity of base reaction in y-axis	e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0 in		
Pad base pressures			
	q _{u1} = 0.321 ksf		
	q _{u2} = 0.321 ksf		
	q_{u3} = $F_{uz} \times (1 + 6 \times e_{ux} / L_x -$	$6 \times e_{uy} / L_y) / (L_x \times L_y) =$	0.714 ksf
	q_{u4} = $F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e$	+ 6 × e_{uy} / L_y) / (L_x × L_y) =	0.714 ksf
Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 0.321$ ksf			
Minimum ultimate base pressure	$q_{umin} = min(q_{u1},q_{u2},q_{u3},q_{u4}) =$	0.321 KST	

	Project OSU Azalea House	By MAA	Sheet No.
	Location Corvallis, OR	Date 2/12/2024	5
•	Client Rowell Brokaw	Revised	Job No.
tland, Oregon		Date	223346

Shear diagram, x axis (kips)		
0.0	0.4	
0	0.4	
	-1.3	
Mom	ont diagram y avis (kin ft)	
WONN		
0	0	
	1.1	
Moment design, x direction, positive mome	ent	
Ultimate bending moment	M _{u.x.max} = 0.603 kip_ft	
Tension reinforcement provided	4 No.5 bottom bars (9.7 in c/c)	
Area of tension reinforcement provided	$A_{sx.bot,prov} = 1.24 \text{ in}^2$	
Minimum area of reinforcement (8.6.1.1)	$A_{s.min} = 0.0018 \times L_y \times h = 0.778 in^2$	
	PASS - Area of reinforcement provided exceeds minimum	
Maximum spacing of reinforcement (8.7.2.2)	$s_{max} = min(2 \times h, 18 in) = 18 in$	
PASS - Maxin	num permissible reinforcement spacing exceeds actual spacing	
Depth to tension reinforcement	d = h - c _{nom_b} - \$\phi_x.bot / 2 = 8.688 in	
Depth of compression block	$a = A_{sx,bot,prov} \times f_y / (0.85 \times f'_c \times L_y) = 0.608 \text{ in}$	
Neutral axis factor	$\beta_1 = 0.85$	
Depth to neutral axis	c = a / β ₁ = 0.715 in	
Strain in tensile reinforcement	ϵ_t = 0.003 × d / c - 0.003 = 0.03345	
Minimum tensile strain(8.3.3.1)	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.00500$	
	PASS - Tensile strain exceeds minimum required	
Nominal moment capacity	$M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 51.978 kip_ft$	
Flexural strength reduction factor	$\phi_{f} = min(max(0.65 + 0.25 \times (\epsilon_{t} - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$	
Design moment capacity	$\phi M_n = \phi_f \times M_n = 46.78 \text{ kip}_ft$	
	M _{u.x.max} / ϕ M _n = 0.013	
	PASS - Design moment capacity exceeds ultimate moment load	
One-way shear design, x direction		
Ultimate shear force	V _{u.x} = 0.448 kips	
Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x,bot} / 2 = 8.688$ in	
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$	
Ratio of longitudinal reinforcement	$\rho_{w} = A_{sx.bot,prov} / (L_{y} \times d_{v}) = 0.00396$	

PASS - Design shear capacity exceeds ultimate shear load

Shear diagram, y axis (kips) 0.9 0 0 -0.9

Moment diagram, y axis (kip_ft)

	0.3	
0		0
	0.7	

Moment design, y direction, positive moment

Ultimate bending moment	M _{u.y.max} = 0.34 kip_ft
Tension reinforcement provided	4 No.5 bottom bars (9.7 in c/c)
Area of tension reinforcement provided	$A_{sy.bot.prov} = 1.24 \text{ in}^2$
Minimum area of reinforcement (8.6.1.1)	$A_{s.min} = 0.0018 \times L_x \times h = 0.778 \text{ in}^2$
	PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2)	$s_{max} = min(2 \times h, 18 in) = 18 in$
PASS - Maxin	num permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in
Depth of compression block	a = $A_{sy,bot,prov} \times f_y / (0.85 \times f'_c \times L_x)$ = 0.608 in
Neutral axis factor	$\beta_1 = 0.85$
Depth to neutral axis	c = a / β ₁ = 0.715 in
Strain in tensile reinforcement	ϵ_t = 0.003 × d / c - 0.003 = 0.03082
Minimum tensile strain(8.3.3.1)	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.00500$
	PASS - Tensile strain exceeds minimum required
Nominal moment capacity	$M_n = A_{sy,bot,prov} \times f_y \times (d - a / 2) = 48.103 \text{ kip}_ft$
Flexural strength reduction factor	$\phi_f = min(max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

lzzaff	Project OSU Azalea House	By MAA	Sheet No.
Крп	Location Corvallis, OR	Date 2/12/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Design moment capacity	$\phi M_n = \phi_f \times M_n =$ 43.293 kip_ft
	$M_{u.y.max} / \phi M_n = 0.008$
	PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction	
Ultimate shear force	V _{u.y} = 0.239 kips
Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x,bot} - \phi_{y,bot} / 2 = 8.062$ in
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$
Ratio of longitudinal reinforcement	$\rho_w = A_{sy.bot.prov} / (L_x \times d_v) = 0.00427$
Shear strength reduction factor	$\phi_{\rm v}=0.75$
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v \times d_$
	1 psi) \times L _x \times d _v) = 23.829 kips
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 17.872 kips
	$V_{u.y} / \phi V_n = 0.013$
	PASS - Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1	
Depth to reinforcement	d _{v2} = 8.375 in
Shear perimeter length (22.6.4)	l _{xp} = 18.375 in
Shear perimeter width (22.6.4)	l _{yp} = 18.375 in
Shear perimeter (22.6.4)	$b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500$ in
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$
Ultimate bearing pressure at center of shear a	urea q _{up.avg} = 0.517 ksf
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times$
	A _p = 1.187 kips
Ultimate shear stress from vertical load	$v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 1.928 \text{ psi}$
Column geometry factor (Table 22.6.5.2)	$\beta = I_{y1} / I_{x1} = 1.00$
Column location factor (22.6.5.3)	α _s = 40
Size effect factor (22.5.5.1.3)	$\lambda_{s} = 1$
Concrete shear strength (22.6.5.2)	v_{cpa} = (2 + 4 / β) × λ_s × λ × $\sqrt{(f_c \times 1 \text{ psi})}$ = 379.473 psi
	v_{cpb} = ($\alpha_s \times d_{v2}$ / b_o + 2) $\times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})}$ = 414.753 psi
	v_{cpc} = 4 × λ_s × λ × $\sqrt{(f_c \times 1 \text{ psi})}$ = 252.982 psi
	v _{cp} = min(v _{cpa} ,v _{cpb} ,v _{cpc}) = 252.982 psi
Shear strength reduction factor	$\phi_{\rm v} = 0.75$
Nominal shear stress capacity (Eq. 22.6.1.2)	v _n = v _{cp} = 252.982 psi
Design shear stress capacity (8.5.1.1(d))	$\phi \mathbf{v}_n = \phi_v \times \mathbf{v}_n = 189.737 \text{ psi}$
	v _{ug} / φv _n = 0.010
PASS - L	Design shear stress capacity exceeds ultimate shear stress load

Izraff	Project OSU Azalea House	By MAA	Sheet No.
KPII	Location Corvallis, OR	Date 2/12/2024	o
•	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

4 No.5 bottom bars (9.7 in c/c)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

22 - EXISTING GRID 8 FOOTING

Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	30.1			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.883	2.5	0.753	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	12.2	58.6	0.209	Pass
Moment, positive, y-direction	kip_ft	12.2	54.2	0.226	Pass
Shear, one-way, x-direction	kips	8.9	24.5	0.363	Pass
Shear, one-way, y-direction	kips	8.9	23.3	0.381	Pass
Shear, two-way, Col 1	psi	53.965	189.737	0.284	Pass
Min.area of reinf, bot., x-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.3		Pass
Min.area of reinf, bot., y-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.3		Pass

Pad footing details

Length of footing	L _x = 4 ft
Width of footing	L _y = 4 ft
Footing area	$A = L_x \times L_y = 16 \text{ ft}^2$
Depth of footing	h = 12 in
Depth of soil over footing	h _{soil} = 12 in
Density of concrete	$\gamma_{\rm conc}$ = 150.0 lb/ft ³

ff	Project OSU Azalea House		By MAA	Sheet No.
(pn	Location Corvallis, OR		Date 2/12/2024	2
-	Client Rowell Brokaw		Revised	Job No.
rtland, Oregon			Date	223346
1.883 ksf	+	1.883 ksf	, ,	
Length of column Width of column	★ I _{x1} = 10.00 in I _{y1} = 10.00 in	1.883 ksf		
position in x-axis position in y-axis	x ₁ = 24.00 in y ₁ = 24.00 in			
Soil properties Gross allowable bearing pressure Density of soil Angle of internal friction Design base friction angle Coefficient of base friction	$q_{allow_Gross} = 2.5 \text{ ksf}$ $\gamma_{soil} = 120.0 \text{ lb/ft}^3$ $\phi_b = 30.0 \text{ deg}$ $\delta_{bb} = 30.0 \text{ deg}$ $tan(\delta_{bb}) = 0.577$			
Footing loads Self weight Soil weight	$F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$ $F_{soil} = h_{soil} \times \gamma_{soil} = 120 \text{ psf}$			
Column no.1 loads Dead load in z	F _{Dz1} = 5.6 kips			
Live load in z	F _{Lz1} = 20.2 kips			
Footing analysis for soil and st	ability			
Footing analysis for soil and sta Load combinations per ASCE 7 1.0D (0.248)	ability -16			

1	Project OSU Azalea House	By MAA	Sheet No.
крп	Location Corvallis, OR	Date 2/12/2024	3
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

1.0D + 1.0L(0.753)	
Combination 2 results: 1.0D + 1.0L	
Forces on footing	
Force in z-axis	$F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{30.1 kips}$
Moments on footing	
Moment in x-axis, about x is 0	$\begin{split} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ x_1) &= \textbf{60.2 kip_ft} \end{split}$
Moment in y-axis, about y is 0	$\begin{split} M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ y_1) &= \textbf{60.2 kip_ft} \end{split}$
Uplift verification	
Vertical force	F _{dz} = 30.12 kips
	PASS - Footing is not subject to uplift
Bearing resistance	
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in
Pad base pressures	
	$q_1 = F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.882 \text{ ksf}$
	$q_2 = F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.882 \text{ ksf}$
	$q_3 = F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.882 \text{ ksf}$
	$q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.882 \text{ ksf}$
Minimum base pressure	$q_{min} = min(q_1, q_2, q_3, q_4) = 1.882 \text{ ksf}$
Maximum base pressure	q _{max} = max(q ₁ ,q ₂ ,q ₃ ,q ₄) = 1.882 ksf
Allowable bearing capacity	
	$g_{allow} = g_{allow}$ Gross = 2.5 ksf
Allowable bearing capacity	

22 - EXISTING GRID 8 FOOTING

Footing design in accordance with ACI318-19

Material details

Compressive strength of concrete	f' _c = 4000 psi
Yield strength of reinforcement	f _y = 60000 psi
Compression-controlled strain limit (21.2.2)	ϵ_{ty} = 0.00200
Cover to top of footing	$c_{nom_t} = 3$ in
Cover to side of footing	$c_{nom_s} = 3$ in

Tedds calculation version 3.3.02

kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No. 4
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Cover to bottom of footing	c _{nom_b} = 3 in
Concrete type	Normal weight
Concrete modification factor	$\lambda = 1.00$
Column type	Concrete
Analysis and design of concrete footing	
Load combinations per ASCE 7-16 1.4D (0.077)	
1.2D + 1.6L + 0.5Lr (0.381)	
Combination 2 results: 1.2D + 1.6L + 0.5Lr	
Forces on footing	
Ultimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{44.2 kips}$
Moments on footing	
Ultimate moment in x-axis, about x is 0	$ \begin{aligned} M_{ux} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ x_1) &= \textbf{88.4 kip_ft} \end{aligned} $
Ultimate moment in y-axis, about y is 0	$\begin{split} M_{uy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ y_1) &= 88.4 \ \text{kip} \ \text{ft} \end{split}$
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$\mathbf{e}_{uy} = \mathbf{M}_{uy} / \mathbf{F}_{uz} - \mathbf{L}_y / 2 = 0$ in
Pad base pressures	
	$q_{u1} = F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = 2.764 \text{ ksf}$
	$q_{u2} = F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 2.764 \text{ ksf}$
	q_{u3} = $F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y)$ = 2.764 ksf
	q_{u4} = F_{uz} × (1 + 6 × e_{ux} / L_x + 6 × e_{uy} / L_y) / (L_x × L_y) = 2.764 ksf
Minimum ultimate base pressure	$q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 2.764 \text{ ksf}$
Maximum ultimate base pressure	$q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 2.764 \text{ ksf}$
She	ar diagram, x axis (kips)
8.9	19.5

Project OSU	Azalea House	By MAA	Sheet No.
Location Corv	rallis, OR	Date 2/12/2024	5
Client Rowell	Brokaw	Revised	Job No.
and, Oregon		Date	223346
M			
Мо	ment diagram, x axis (kip_ft)		
0		0	
	19.5		
Moment design, x direction, positive mo	ment		
Ultimate bending moment	M _{u.x.max} = 12.234 kip_ft		
Tension reinforcement provided	5 No.5 bottom bars (10.3 in c/c)		
Area of tension reinforcement provided	$A_{sx.bot.prov} = 1.55 \text{ in}^2$		
Minimum area of reinforcement (8.6.1.1)	$A_{s.min}$ = 0.0018 \times L_y \times h = 1.037 ii	1 ²	
	PASS - Area of reinforcer	nent provided exce	eds minin
Maximum spacing of reinforcement (8.7.2.2	$s_{max} = min(2 \times h, 18 in) = 18 in$		
PASS - Max	kimum permissible reinforcement	spacing exceeds a	ctual spac
Depth to tension reinforcement	d = h - c _{nom_b} - φ _{x.bot} / 2 = 8.688 in	I	
Depth of compression block	a = $A_{sx.bot.prov} \times f_y / (0.85 \times f'_c \times L_y)$) = 0.570 in	
Neutral axis factor	$\beta_1 = 0.85$		
Depth to neutral axis	c = a / β ₁ = 0.670 in		
Strain in tensile reinforcement	ϵ_t = 0.003 × d / c - 0.003 = 0.035	88	
Minimum tensile strain(8.3.3.1)	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.00500$		
	PASS - Tensile s	train exceeds minin	num requ
Nominal moment capacity	$M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) =$	65.12 kip_ft	
Flexural strength reduction factor	$\phi_{f} = min(max(0.65 + 0.25 \times (\epsilon_{t} - \epsilon_{t})))$	ε _{ty}) / (0.003), 0.65), 0	.9) = 0.900
Design moment capacity	$\phi M_n = \phi_f \times M_n = $ 58.608 kip_ft		
	$M_{u.x.max} / \phi M_n = 0.209$		
	PASS - Design moment capacit	y exceeds ultimate	moment l
One-way shear design, x direction			
Ultimate shear force	V _{u.x} = 8.896 kips		
Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.688 i$	n	
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$		
Ratio of longitudinal reinforcement	$\rho_w = A_{sx.bot.prov} \ / \ (L_y \times d_v) = \textbf{0.00372}$		
Shear strength reduction factor	$\phi_{\rm v}=0.75$		
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 imes \lambda_s imes \lambda imes (ho_w)^{1/3} imes \sqrt{(1+2)^{1/3}}$	$f_c \times 1 \text{ psi}) \times L_y \times d_v, 5$	$\lambda \times \lambda \times \sqrt{f_{c}}$
	1 psi) × L_y × d_v) = 32.683 kips		
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 24.512 kips		
	$V_{u.x} / \phi V_n = 0.363$		

laaff	Project OSU Azalea House	By MAA	Sheet No.
Крп	Location Corvallis, OR	Date 2/12/2024	6
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

lzzaff	Project OSU Azalea House	By MAA	Sheet No.
KPH	Location Corvallis, OR	Date 2/12/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$
Ratio of longitudinal reinforcement	$\rho_w = A_{sy.bot.prov} / (L_x \times d_v) = 0.00401$
Shear strength reduction factor	$\phi_{v} = 0.75$
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v.$
	1 psi) × L _x × d _v) = 31.096 kips
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 23.322 kips
	V _{u.y} / ∲V _n = 0.381
	PASS - Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1	
Depth to reinforcement	d _{v2} = 8.375 in
Shear perimeter length (22.6.4)	l _{xp} = 18.375 in
Shear perimeter width (22.6.4)	l _{yp} = 18.375 in
Shear perimeter (22.6.4)	$b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500$ in
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$
Ultimate bearing pressure at center of shear a	area q _{up.avg} = 2.764 ksf
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times$
Ultimate shear load	$\begin{split} F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p = \textbf{33.219 kips} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= I_{y1} / I_{x1} = \textbf{1.00} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{414.753 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} &= min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} &= min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_v &= \textbf{0.75} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2)	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} &= min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_v &= \textbf{0.75} \\ v_n &= v_{cp} = \textbf{252.982 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d))	$\begin{split} F_{up} &= \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} &= min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_v &= \textbf{0.75} \\ v_n &= v_{cp} = \textbf{252.982 psi} \\ \phi_{vn} &= \phi_v \times v_n = \textbf{189.737 psi} \end{split}$
Ultimate shear load Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d))	$\begin{split} F_{up} &= \gamma_D \times F_{D21} + \gamma_L \times F_{L21} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times \\ A_p &= \textbf{33.219 kips} \\ v_{ug} &= max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = \textbf{53.965 psi} \\ \beta &= l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_s &= \textbf{40} \\ \lambda_s &= \textbf{1} \\ v_{cpa} &= (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} &= (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} &= 4 \times \lambda_s \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} &= min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_v &= \textbf{0.75} \\ v_n &= v_{cp} = \textbf{252.982 psi} \\ \phi_{vn} &= \phi_v \times v_n = \textbf{189.737 psi} \\ v_{ug} / \phi v_n &= \textbf{0.284} \end{split}$

lzraff	Project OSU Azalea House	By MAA	Sheet No.
KPH	Location Corvallis, OR	Date 2/12/2024	0
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

5 No.5 bottom bars (10.3 in c/c)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

23 - EXISTING GRID E FOOTING

Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	39.6			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	2.473	2.5	0.989	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	16.7	58.6	0.285	Pass
Moment, positive, y-direction	kip_ft	16.7	54.2	0.308	Pass
Shear, one-way, x-direction	kips	12.1	23.3	0.521	Pass
Shear, one-way, y-direction	kips	12.1	23.3	0.521	Pass
Shear, two-way, Col 1	psi	73.719	189.737	0.389	Pass
Min.area of reinf, bot., x-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.3		Pass
Min.area of reinf, bot., y-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.3		Pass

Pad footing details

Length of footing	L _x = 4 ft
Width of footing	L _y = 4 ft
Footing area	$A = L_x \times L_y = 16 \text{ ft}^2$
Depth of footing	h = 12 in
Depth of soil over footing	h _{soil} = 12 in
Density of concrete	$\gamma_{\rm conc}$ = 150.0 lb/ft ³

ff	Project OSU Azalea House		By MAA	Sheet No.
	Location Corvallis, OR		Date 2/13/2024	2
-	Client Rowell Brokaw		Revised	Job No.
rtland, Oregon			Date	223346
1				
2.473 ksf	+ 1	2.473 ksf		
	x			
2.473 ksf		2.473 ksf		
Column no.1 details				
Length of column	l _{x1} = 10.00 in			
Width of column	l _{y1} = 10.00 in			
position in x-axis	x ₁ = 24.00 in			
position in y-axis	y ₁ = 24.00 in			
Soil properties				
Gross allowable bearing pressure	q _{allow_Gross} = 2.5 ksf			
Density of soil	γ _{soil} = 120.0 lb/ft ³			
Angle of internal friction	$\phi_{\rm b}$ = 30.0 deg			
Design base friction angle	δ_{bb} = 30.0 deg			
Coefficient of base friction	tan(δ _{bb}) = 0.577			
Footing loads				
Self weight	$F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$			
Soil weight	F_{soil} = $h_{soil} imes \gamma_{soil}$ = 120 psf			
Column no.1 loads				
Dead load in z	F _{Dz1} = 7.7 kips			
Live load in z	F _{Lz1} = 27.5 kips			
Footing analysis for soil and stab	ility			
Load combinations por ASCE 7.1	- 6			

Location Corvallis, OR Date 2/13/2024	
Client Rowell Brokaw Revised Job No.	
Portland, Oregon Date 223346	

1.02 • 1.02 (0.000)	
Combination 2 results: 1.0D + 1.0L	
Forces on footing	
Force in z-axis	$F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 39.6 \text{ kips}$
Moments on footing	
Moment in x-axis, about x is 0	$\begin{split} M_{dx} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x \ / \ 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ x_1) &= \textbf{79.1 kip_ft} \end{split}$
Moment in y-axis, about y is 0	$\begin{split} M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) \\ y_1) &= \textbf{79.1 kip_ft} \end{split}$
Uplift verification	
Vertical force	F _{dz} = 39.56 kips
	PASS - Footing is not subject to uplift
Bearing resistance	
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in
Pad base pressures	
	q_1 = F_{dz} × (1 - 6 × e_{dx} / L_x - 6 × e_{dy} / L_y) / (L_x × L_y) = 2.472 ksf
	$q_2 = F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 2.472 \text{ ksf}$
	$q_3 = F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 2.472 \text{ ksf}$
	$q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 2.472 \text{ ksf}$
Minimum base pressure	$q_{min} = min(q_1,q_2,q_3,q_4) = 2.472 \text{ ksf}$
Maximum base pressure	$q_{max} = max(q_1, q_2, q_3, q_4) = 2.472 \text{ ksf}$
Allowable bearing capacity	
Allowable bearing capacity	$q_{allow} = q_{allow_Gross} = 2.5 \text{ ksf}$
	q _{max} / q _{allow} = 0.989

Footing design in accordance with ACI318-19

Material details

Compressive strength of concrete	f' _c = 4000 psi
Yield strength of reinforcement	f _y = 60000 psi
Compression-controlled strain limit (21.2.2)	ϵ_{ty} = 0.00200
Cover to top of footing	$c_{nom_t} = 3$ in
Cover to side of footing	$c_{nom_s} = 3$ in

Tedds calculation version 3.3.02

kpff	Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/13/2024	Sheet No. 4
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Cover to bottom of footing	$c_{nom_b} = 3$ in
Concrete type	Normal weight
Concrete modification factor	$\lambda = 1.00$
Column type	Concrete
Analysis and design of concrete footing	
Load combinations per ASCE 7-16 1.4D (0.101)	
1.2D + 1.6L + 0.5Lr (0.521)	
Combination 2 results: 1.2D + 1.6L + 0.5L	
Forces on footing	
Ultimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{58.5 kips}$
Moments on footing	
Ultimate moment in x-axis, about x is 0	$\begin{split} M_{ux} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x \ / \ 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) \\ x_1) &= \textbf{116.9 kip_ft} \end{split}$
Ultimate moment in y-axis, about y is 0	$\begin{split} M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) = \textbf{116.9 kip_ft} \end{split}$
Eccentricity of base reaction	
Eccentricity of base reaction in x-axis	$e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 0$ in
Eccentricity of base reaction in y-axis	$e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0$ in
Pad base pressures	
	q_{u1} = F_{uz} × (1 - 6 × e_{ux} / L_x - 6 × e_{uy} / L_y) / (L_x × L_y) = 3.654 ksf
	$q_{u2} = F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{3.654 ksf}$
	$q_{u3} = F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = 3.654 \text{ ksf}$
	$q_{u4} = F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 3.654 \text{ ksf}$
Minimum ultimate base pressure	$q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 3.654 \text{ ksf}$
Maximum ultimate base pressure	$q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 3.654 \text{ ksf}$
Sh	ear diagram, x axis (kips)
12.1	26.6

Project OSU A	Azalea House	By MAA	Sheet No.
	allis, OR	Date 2/13/2024	5
Client Rowell	Brokaw	Revised	Job No.
and, Oregon		Date	223346
			·
Мо	ment diagram, x axis (kip_ft)		
	10.7		
0		0	
	26.6		
	20.0		
Moment design, x direction, positive mor	ment		
Ultimate bending moment	M _{u.x.max} = 16.699 kip_ft		
Tension reinforcement provided	5 No.5 bottom bars (10.3 in c/c))	
Area of tension reinforcement provided	$A_{sx.bot.prov}$ = 1.55 in ²		
Minimum area of reinforcement (8.6.1.1)	$A_{s.min}$ = 0.0018 $ imes$ L_y $ imes$ h = 1.037 i	n²	
	PASS - Area of reinforce	ment provided exce	eds minin
Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$		
PASS - Max	kimum permissible reinforcement	spacing exceeds a	ctual spa
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_{x,bot} / 2 = 8.688$ ir	ı	
Depth of compression block	a = $A_{sx.bot.prov} \times f_y / (0.85 \times f'_c \times L)$	y) = 0.570 in	
Neutral axis factor	$\beta_1 = 0.85$		
Depth to neutral axis	$c = a / \beta_1 = 0.670$ in		
Strain in tensile reinforcement	ϵ_t = 0.003 × d / c - 0.003 = 0.035	88	
Minimum tensile strain(8.3.3.1)	$\epsilon_{min} = \epsilon_{ty} + 0.003 = 0.00500$		
	PASS - Tensile s	strain exceeds minii	num requ
Nominal moment capacity	$M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) =$	65.12 kip_ft	
Flexural strength reduction factor	ϕ_{f} = min(max(0.65 + 0.25 × (ϵ_{t} -	$\epsilon_{ty})$ / (0.003), 0.65), 0	.9) = 0.900
Design moment capacity	$\phi M_n = \phi_f \times M_n = $ 58.608 kip_ft		
	$M_{u.x.max} / \phi M_n = 0.285$		
	PASS - Design moment capaci	ty exceeds ultimate	moment l
One-way shear design, x direction			
Ultimate shear force	V _{u.x} = 12.142 kips		
Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.688$ i	n	
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$		
Ratio of longitudinal reinforcement	$\rho_w = A_{sx.bot.prov} / (L_y \times d_v) = 0.00372$		
Shear strength reduction factor	$\phi_{\rm v}=0.75$		
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 imes \lambda_s imes \lambda imes (ho_w)^{1/3} imes \sqrt{(1/3)^{1/3}}$	$f_c \times 1 psi$) × L _y × d _v , 8	$5 \times \lambda \times \sqrt{f'_{c}}$
	1 psi) \times L _y \times d _v) = 32.683 kips		
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 24.512 kips		
	V _{u.x} / φV _n = 0.495		

Location Corvallis, OR Date 2/13/2024	laaff	Project OSU Azalea House	By MAA	Sheet No.
▲	KPII	Location Corvallis, OR	Date 2/13/2024	6
Client Rowell Brokaw Revised Job No.	-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon Date 223346	Portland, Oregon		Date	223346

lzzaff	Project OSU Azalea House	By MAA	Sheet No.
KPH	Location Corvallis, OR	Date 2/13/2024	1
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Depth to reinforcement	$d_v = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in
Size effect factor (22.5.5.1.3)	$\lambda_s = 1$
Ratio of longitudinal reinforcement	$\rho_w = A_{sy,bot,prov} / (L_x \times d_v) = 0.00401$
Shear strength reduction factor	$\phi_v = 0.75$
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v \times d_v.$
	1 psi) × L _x × d _v) = 31.096 kips
Design shear capacity	$\phi V_n = \phi_v \times V_n =$ 23.322 kips
	$V_{u.y} / \phi V_n = 0.521$
	PASS - Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1	
Depth to reinforcement	d _{v2} = 8.375 in
Shear perimeter length (22.6.4)	l _{xp} = 18.375 in
Shear perimeter width (22.6.4)	l _{yp} = 18.375 in
Shear perimeter (22.6.4)	$b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500$ in
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$
Ultimate bearing pressure at center of shear a	area q _{up.avg} = 3.654 ksf
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times$
	A _p = 45.379 kips
Ultimate shear stress from vertical load	A _p = 45.379 kips v _{ug} = max(F _{up} / (b _o × d _{v2}),0 psi) = 73.719 psi
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2)	A_p = 45.379 kips v_{ug} = max(F_{up} / (b _o × d _{v2}),0 psi) = 73.719 psi β = I _{y1} / I _{x1} = 1.00
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3)	$A_{p} = 45.379 \text{ kips}$ $v_{ug} = \max(F_{up} / (b_{o} \times d_{v2}), 0 \text{ psi}) = 73.719 \text{ psi}$ $\beta = I_{y1} / I_{x1} = 1.00$ $\alpha_{s} = 40$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3)	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = \max(F_{up} / (b_{o} \times d_{v2}), 0 \; psi) = \textbf{73.719 psi} \\ \beta = I_{y1} / \; I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = \max(F_{up} / (b_{o} \times d_{v2}), 0 \; psi) = \textbf{73.719 psi} \\ \beta = I_{y1} / \; I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} \; = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f'c \times 1 \; psi)} = \textbf{379.473 psi} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{array}{l} A_{p} = \textbf{45.379 \ kips} \\ v_{ug} = \max(F_{up} \ / \ (b_{o} \times d_{v2}), 0 \ psi) = \textbf{73.719 \ psi} \\ \beta = I_{y1} \ / \ I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 \ / \ \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f'c \times 1 \ psi)} = \textbf{379.473 \ psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} \ / \ b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f'c \times 1 \ psi)} = \textbf{414.753 \ psi} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = max(F_{up} / (b_{o} \times d_{v2}), 0 \text{ psi}) = \textbf{73.719 psi} \\ \beta = I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} / b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} = 4 \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{252.982 psi} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2)	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = max(F_{up} / (b_{o} \times d_{v2}), 0 \text{ psi}) = \textbf{73.719 psi} \\ \beta = l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} / b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} = 4 \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = \max(F_{up} / (b_{o} \times d_{v2}), 0 \text{ psi}) = \textbf{73.719 psi} \\ \beta = I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{379.473 psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} / b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{414.753 psi} \\ v_{cpc} = 4 \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \text{ psi})} = \textbf{252.982 psi} \\ v_{cp} = \min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_{v} = \textbf{0.75} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2)	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = max(F_{up} / (b_{o} \times d_{v2}), 0 \ psi) = \textbf{73.719 psi} \\ \beta = I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{379.473 psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} / b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{414.753 psi} \\ v_{cpc} = 4 \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{252.982 psi} \\ v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_{v} = \textbf{0.75} \\ v_{n} = v_{cp} = \textbf{252.982 psi} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d))	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = max(F_{up} / (b_{o} \times d_{v2}), 0 \ psi) = \textbf{73.719 psi} \\ \beta = l_{y1} / l_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{379.473 psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} / b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{414.753 psi} \\ v_{cpc} = 4 \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{252.982 psi} \\ v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_{v} = \textbf{0.75} \\ v_{n} = v_{cp} = \textbf{252.982 psi} \\ \phi_{vn} = \phi_{v} \times v_{n} = \textbf{189.737 psi} \end{array}$
Ultimate shear stress from vertical load Column geometry factor (Table 22.6.5.2) Column location factor (22.6.5.3) Size effect factor (22.5.5.1.3) Concrete shear strength (22.6.5.2) Shear strength reduction factor Nominal shear stress capacity (Eq. 22.6.1.2) Design shear stress capacity (8.5.1.1(d))	$\begin{array}{l} A_{p} = \textbf{45.379 kips} \\ v_{ug} = \max(F_{up} / (b_{o} \times d_{v2}), 0 \ psi) = \textbf{73.719 psi} \\ \beta = I_{y1} / I_{x1} = \textbf{1.00} \\ \alpha_{s} = \textbf{40} \\ \lambda_{s} = \textbf{1} \\ v_{cpa} = (2 + 4 / \beta) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{379.473 psi} \\ v_{cpb} = (\alpha_{s} \times d_{v2} / b_{o} + 2) \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{414.753 psi} \\ v_{cpc} = 4 \times \lambda_{s} \times \lambda \times \sqrt{(f_{c} \times 1 \ psi)} = \textbf{252.982 psi} \\ v_{cp} = \min(v_{cpa}, v_{cpb}, v_{cpc}) = \textbf{252.982 psi} \\ \phi_{v} = \textbf{0.75} \\ v_{n} = v_{cp} = \textbf{252.982 psi} \\ \phi_{vn} = \phi_{v} \times v_{n} = \textbf{189.737 psi} \\ v_{ug} / \phi_{vn} = \textbf{0.389} \end{array}$

lzraff	Project OSU Azalea House	By MAA	Sheet No.
KPII	Location Corvallis, OR	Date 2/13/2024	0
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

⁵ No.5 bottom bars (10.3 in c/c)