February 13, 2024

Ms. Serena Lim
Rowell Brokaw Architects
1203 Willamette St., \#210
Eugene, OR 97401

Re: Oregon State University
 Azalea House $2^{\text {nd }}$ Floor Remodel

Dear Serena,

Attached please find calculation sheets 1 through 96, dated February 13, 2024, which verify the structural adequacy of the OSU Azalea House Remodel Project as shown on drawings S-001 through S-602, dated February 13, 2024. Design is based on the requirements of the 2022 Oregon Structural Specialty Code, which is based on the 2021 International Building Code.

If you have any questions or need further information, please call me.

Sincerely,

Michael Arellano, PE

1,	Project	OSU Azalea Hous	${ }^{\text {By }}$ MAA	Sheet No.
	Location Corvallis, OR		Date 02/09/24	
	Client	Rowell Brokaw	Revised	$\begin{array}{\|c} \hline \text { Job No. } \\ 223346 \end{array}$
			Date	

2nd FLOOR LOADING

DL = 15 PSF
EXISTING LL = 50 PSF + 15 PSF Partitions (per DCI Renovation Dwgs, dated Feb 2, 2015)
OUTDOOR DECK
DL = 30 PSF
LL = 100 PSF
CANOPIES
DL = 15 PSF
LL = 25 PSF

GL BEAM REINFORCING GRID E

24) Check PI reinforcing for loads imposed by new deck loading

Use Full Deck DL and LL (conservatively) rather than difference from original low roof framing and snow load.
-Deck Loads
PDL $=30$ psf $\times 8^{\prime} \times\left(4^{\prime} / 12^{\prime}\right)=80$ plf
PLL $=100 \mathrm{psf} \times 8^{\prime} \times\left(4^{\prime} / 12^{\prime}\right)=267 \mathrm{plf}$
Existing GL Beam span $=18{ }^{\prime}$
Mmax $=347$ plf $x 18^{\prime \wedge} 2 / 8=14,054 \mathrm{lb}-\mathrm{ft}$ or 168.6 k -in
Plate Reinforcing $1 / 4$ " thick $\times 15$ " each side.
Splates $=2 \times b \times d^{\wedge} 2 / 6=2 \times .25 \times 15^{\wedge} 2 / 6=18.75$ in $^{\wedge} 3$

- Check plate stress $\mathrm{Fb}=168.6 / 18.75=8.99 \mathrm{ksi}$

Fallowable $=0.6 \times 36=24 \mathrm{ksi} \quad \mathrm{OK} / /$

WoodWorks	COMPANY KPFF Consulting Engineers Feb. 12, 2024 10:34	PROJECT 1 - Typical Ceiling Joist.wwb

Design Check Calculation Sheet
 WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude	Unit	
tern	Start	End	Start End				
DL	Dead	Full Area				$10.00(16.0 ")$	psf
LL	Full Area				$25.00(16.0 ")$	psf	
Self-weight	Snow	Dead	Full UDL			4.0	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

1-Typical Ceiling Joist

Lumber-soft, D.Fir-L, No.2, 2x12 (1-1/2"x11-1/4")
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Floor joist spaced at 16.0 " c/c; Total length: 20.05'; Clear span: 19.955'; Volume $=2.3$ cu.ft.
Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help);
This section PASSES the design code check.
WARNING: Member length exceeds typical stock length of 18.0 [ft]
Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=41$	$\mathrm{Fv}^{\prime}=207$	psi	$\mathrm{fv} / \mathrm{Fv}{ }^{\prime}=0.20$
Bending (+)	$\mathrm{fb}=961$	$\mathrm{Fb}^{\prime}=1190$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.81$
Live Defl'n	$0.42=\mathrm{L} / 569$	$0.67=\mathrm{L} / 360$	in	0.63
Total Defl'n	$0.64=\mathrm{L} / 374$	$1.00=\mathrm{L} / 240$	in	0.64

1 - Typical Ceiling Joist.wwb

Additional Data:

| FACTORS: | F/E(psi) | CD | CM | Ct | CL | CF | Cfu | Cr | Cfrt | Ci | Cn | LC\# |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fv' | 180 | 1.15 | 1.00 | 1.00 | - | - | - | - | 1.00 | 1.00 | 1.00 | 2 |
| Fb'+ | 900 | 1.15 | 1.00 | 1.00 | 1.000 | 1.000 | - | 1.15 | 1.00 | 1.00 | - | 2 |
| Fcp' | 625 | - | 1.00 | 1.00 | - | - | - | - | 1.00 | 1.00 | - | - |
| E' $^{\prime}$ | 1.6 | million | 1.00 | 1.00 | - | - | - | - | 1.00 | 1.00 | - | 2 |
| Emin' | 0.58 | million | 1.00 | 1.00 | - | - | - | - | 1.00 | 1.00 | - | 2 |

CRITICAL LOAD COMBINATIONS:

```
Shear : LC #2 = D+S
Bending(+): LC #2 = D+S
Deflection: LC #2 = D+S (live)
LC #2 = D+S (total)
Bearing : Support 1 - LC #2 = D+S
                                    Support 2 - LC #2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
    V max = 507, V design = 458 lbs; M(+) = 2534 lbs-ft
EI = 284.76e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

COMPANY
KPFF Consulting Engineers
Feb. 12, 2024 10:36

PROJECT

3 - Ceiling Beam Grid 8.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)
Loads:

Load	Type	Distribution	Pat-	Location[ft] tern	Magnitude Start		End	Start
SL		End						
LL	Dead	Full UDL	No			160.0	plf	
Self-weight	Snow	Dead	Full UDL	No			400.0	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

${ }^{* *}$ Minimum bearing length governed by the required width of the supporting member.

3 - Ceiling GL Beam Grid 8

Glulam-Balanced, West Species, 24F-V8 DF, 5-1/2"x13-1/2"
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Total length: 21.55^{\prime}; Clear span: $16.857^{\prime}, 4.411^{\prime}$ '; Volume $=11.1$ cu.ft.; 9 laminations, $5-1 / 2^{\prime \prime}$ maximum width, Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=92$	Fv' =	305	psi	fv/Fv' $=0.30$
Bending (+)	$\mathrm{fb}=1295$	$\mathrm{Fb}^{\prime}=$	2760	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.47$
Bending (-)	$\mathrm{fb}=420$	$\mathrm{Fb}^{\prime}=$	2674	psi	$\mathrm{fb} / \mathrm{Fb}{ }^{\prime}=0.16$
Deflection:					
Interior Live	$0.31=\mathrm{L} / 662$	$0.57=$	L/ 360	in	0.54
Total	$0.44=\mathrm{L} / 459$	$0.85=$	L/240	in	0.52
Cantil. Live	$-0.21=\mathrm{L} / 259$	$0.30=$	L/180	in	0.69
Total	$-0.30=\mathrm{L} / 179$	$0.45=$	L/120	in	0.67

Additional Data:

FACTORS:	F/E(psi)	CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr LC\#	
Fv'	265	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb'+	2400	1.15	1.00	1.00	1.000	1.000	-	-	1.00	1.00	-	2
Fb'-	2400	1.15	1.00	1.00	0.969	1.000	-	-	1.00	1.00	-	2
Fcp'	650	-	1.00	1.00	-	-	-	-	1.00	-	-	-
E' $^{\prime}$	1.8	million	1.00	1.00	-	-	-	-	1.00	-	-	2
Eminy'	0.85	million	1.00	1.00	-	-	-	-	1.00	-	-	2

CRITICAL LOAD COMBINATIONS:
Shear : LC \#2 = D+S
Bending (+) : LC \#2 = D+S
Bending(-): LC \#2 = D+S
Deflection: LC \#2 = D+S (live) LC \#2 = D+S (total)
Bearing : Support $1-L C \# 2=D+S$
Support 2 - LC \#2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
$V \max =5249, \mathrm{~V}$ design $=4550$ lbs; $\mathrm{M}(+)=18028$ lbs-ft; $\mathrm{M}(-)=5843 \mathrm{lbs}-\mathrm{ft}$
$E I=2029.78 e 06$ lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection $=1.0$ dead + "live"
Lateral stability(-): $\mathrm{Lu}=17.00^{\prime} \mathrm{Le}=27.8^{\prime} \mathrm{RB}=12.2$; Lu based on full span

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
5. GLULAM: bxd = actual breadth x actual depth.
6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude	Unit		
tern	Start	End	Start	End				
DL	Dead	Full UDL				70.0	plf	
LL	Full UDL				175.0	plf		
Self-weight	Snow	Dead	Full UDL				9.7	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

4-Ceiling GL Beam Grid D

Glulam-Unbalan., West Species, 24F-V4 DF, 3-1/2"x12"
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Total length: 19.59'; Clear span: 19.409'; Volume $=5.7$ cu.ft.; 8 laminations, $3-1 / 2^{\prime \prime}$ maximum width, Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.
Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=79$	Fv' = 305	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.26$
Bending (+)	$\mathrm{fb}=1729$	$\mathrm{Fb}^{\prime}=2760$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.63$
Live Defl'n	$0.63=\mathrm{L} / 372$	$0.65=\mathrm{L} / 360$	in	0.97
Total Defl'n	$0.91=\mathrm{L} / 256$	$0.98=\mathrm{L} / 240$	in	0.94

4 - Ceiling Beam Grid D.wwb

Additional Data:

FACTORS:	F/E(psi)	CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC\#
Fv'	265	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb'+	2400	1.15	1.00	1.00	1.000	1.000	-	-	1.00	1.00	-	2
Fcp'	650	-	1.00	1.00	-	-	-	-	1.00	-	-	-
E' $^{\prime}$	1.8 million	1.00	1.00	-	-	-	-	1.00	-	-	2	
Eminy'	0.85 million	1.00	1.00	-	-	-	-	1.00	-	-	2	

CRITICAL LOAD COMBINATIONS:

```
Shear : LC #2 = D+S
Bending(+): LC #2 = D+S
Deflection: LC #2 = D+S (live)
LC #2 = D+S (total)
Bearing : Support 1 - LC #2 = D+S
                                Support 2 - LC #2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
    V max = 2483, V design = 2217 lbs; M(+) = 12105 lbs-ft
EI = 907.19e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
4. GLULAM: bxd = actual breadth x actual depth.
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

(11) WoodWorks ${ }^{\oplus}$	COMPANY KPFF Consulting Engineers Feb. 12, 2024 10:44	PROJECT 5 - Ceiling Beam Grid H.wwb
Design Check Calculation Sheet WoodWorks Sizer 2019 (Update 1)		

Loads:

Load	Type	Distribution	Pattern	Location [ft] Start End	Magnitude Start End	Unit
DL	Dead	Full UDL			90.0	plf
LL	Snow	Full UDL			225.0	plf
Self-weight	Dead	Full UDL			11.4	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

5-Ceiling GL Beam Grid H

Glulam-Unbalan., West Species, 24F-V4 DF, 5-1/2"x9"
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Total length: 14.56'; Clear span: 14.445 '; Volume $=5.0$ cu.ft.; 6 laminations, $5-1 / 2^{\prime \prime}$ maximum width,
Lateral support: top = continuous, bottom = at supports;
This section PASSES the design code check.
Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=64$	Fv' =	305	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.21$
Bending (+)	$\mathrm{fb}=1386$	$\mathrm{Fb}^{\prime}{ }^{\text {/ }}=$	2760	psi	$\mathrm{fb} / \mathrm{Fb}{ }^{\prime}=0.50$
Live Defl'n	$0.37=\mathrm{L} / 467$	$0.48=$	L/360	in	0.77
Total Defl'n	$0.54=\mathrm{L} / 322$	$0.73=$	L/240	in	0.74

Additional Data:

FACTORS:	F/E(psi)	CD	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	Cn*Cvr	LC\#
Fv'	265	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb'+	2400	1.15	1.00	1.00	1.000	1.000	-	-	1.00	1.00	-	2
Fcp'	650	-	1.00	1.00	-	-	-	-	1.00	-	-	-
E'	1.8	million	1.00	1.00	-	-	-	-	1.00	-	-	2
Eminy'	0.85 million	1.00	1.00	-	-	-	-	1.00	-	-	2	

CRITICAL LOAD COMBINATIONS:

```
Shear : LC #2 = D+S
Bending(+): LC #2 = D+S
Deflection: LC #2 = D+S (live)
LC #2 = D+S (total)
Bearing : Support 1 - LC #2 = D+S
                                Support 2 - LC #2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
V max = 2366, V design = 2113 lbs; M(+) = 8578 lbs-ft
EI = 601.42e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
4. GLULAM: bxd = actual breadth x actual depth.
5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

COMPANY
KPFF Consulting Engineers
Feb. 12, 2024 10:56

PROJECT

6 - Typical Header 4ft Span.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)
Loads:

| Load | Type | Distribution | Pat- | Location [ft] | Magnitude
 tern | | Unit |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| Start | End | Start | End | | | | |
| DL | Dead | Full UDL | | | 50.0 | plf | |
| LL | Full UDL | | | 125.0 | plf | | |
| Self-weight | Snow | Dead | Full UDL | | | 2.0 | plf |

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

*Minimum bearing length setting used: $1 / 2^{2}$ for end supports

6 - Typical Header 4ft Span

Lumber-soft, D.Fir-L, No.2, 2x6 (1-1/2"x5-1/2")
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Floor joist spaced at 12.0 " c/c; Total length: 4.04'; Clear span: 3.958 '; Volume $=0.2$ cu.ft.
Lateral support: top = continuous, bottom = at supports;
This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design	Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=49$	$\mathrm{Fv}=207$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.24$	
Bending (+)	$\mathrm{fb}=562$	$\mathrm{Fb}=1345$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.42$	
Live Defl'n	$0.02=<\mathrm{L} / 999$	$0.13=\mathrm{L} / 360$	in	0.16	
Total Defl'n	$0.03=<\mathrm{L} / 999$	$0.20=\mathrm{L} / 240$	in	0.15	

Additional Data:

FACTORS:	$\mathrm{F} / \mathrm{E}(\mathrm{psi})$	CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	$\mathrm{LC} \mathrm{\#}$
Fv'	180	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb' $^{\prime}$	900	1.15	1.00	1.00	1.000	1.300	-	1.00	1.00	1.00	-	2
Fcp'	625	-	1.00	1.00	-	-	-	-	1.00	1.00	-	-
E'	1.6	million	1.00	1.00	-	-	-	-	1.00	1.00	-	2
Emin'	0.58	million	1.00	1.00	-	-	-	-	1.00	1.00	-	2

```
CRITICAL LOAD COMBINATIONS:
    Shear : LC \#2 = D+S
    Bending(+): LC \#2 = D+S
    Deflection: LC \#2 = D+S (live)
    LC \#2 = D+S (total)
    Bearing : Support \(1-\mathrm{LC} \# 2=\mathrm{D}+\mathrm{S}\)
    Support 2 - LC \#2 = D+S
    D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
    All LC's are listed in the Analysis output
    Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
    \(V \max =354, \mathrm{~V}\) design \(=269\) lbs; \(\mathrm{M}(+)=354\) lbs-ft
    \(E I=33.27 e 06\) lb-in^2
    "Live" deflection is due to all non-dead loads (live, wind, snow...)
    Total deflection \(=1.0\) dead + "live"
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

COMPANY
KPFF Consulting Engineers
Feb. 12, 2024 10:57

PROJECT

6 - Typical Header 6ft Span.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)
Loads:

| Load | Type | Distribution | Pat- | Location [ft] | Magnitude
 tern | | Unit |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| Start | End | Start | End | | | | |
| DL | Dead | Full UDL | | | 100.0 | plf | |
| LL | Full UDL | | | 250.0 | plf | | |
| Self-weight | Snow | Dead | Full UDL | | | 4.6 | plf |

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

*Minimum bearing length setting used: $1 / 2$ " for end supports

6 - Typical Header 6ft Span

Lumber-soft, D.Fir-L, No.2, 4x6 (3-1/2"x5-1/2")
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Floor joist spaced at 12.0 c/c; Total length: 6.04'; Clear span: 5.958^{\prime}; Volume $=0.8$ cu.ft.
Lateral support: top = continuous, bottom = at supports;
This section PASSES the design code check.
Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=70$	$\mathrm{Fv}^{\prime}=207$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.34$
Bending (+)	$\mathrm{fb}=1085$	$\mathrm{Fb}^{\prime}=1345$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.81$
Live Defl'n	$0.09=L / 766$	$0.20=L / 360$	in	0.47
Total Defl'n	$0.13=\mathrm{L} / 540$	$0.30=\mathrm{L} / 240$	in	0.44

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

	COMPANY KPFF Consulting Engineers Feb. 12, 2024 10:57	PROJECT 6 - Typical Header 8ft Span.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)
Loads:

| Load | Type | Distribution | Pat- | Location [ft] | Magnitude
 tern | | Unit |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- |
| Start | End | Start | End | | | | |
| DL | Dead | Full UDL | | | | 100.0 | plf |
| LL | Full UDL | | | 250.0 | plf | | |
| Self-weight | Snow | Dead | Full UDL | | | 6.0 | plf |

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

6 - Typical Header 8ft Span

Lumber-soft, D.Fir-L, No.2, 4x8 (3-1/2"x7-1/4")
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Floor joist spaced at $12.0^{\prime \prime} \mathrm{c} / \mathrm{c}$; Total length: 8.05^{\prime}; Clear span: 7.945 '; Volume $=1.4 \mathrm{cu} . \mathrm{ft}$.
Lateral support: top = continuous, bottom = at supports;
This section PASSES the design code check.
Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=71$	$\mathrm{Fv}^{\prime}=207$	psi	$\mathrm{fv} / \mathrm{Fv}^{\prime}=0.34$
Bending (+)	$\mathrm{fb}=1115$	$\mathrm{Fb}^{\prime}=1345$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.83$
Live Defl'n	$0.13=\mathrm{L} / 740$	$0.27=\mathrm{L} / 360$	in	0.49
Total Defl'n	$0.18=\mathrm{L} / 520$	$0.40=\mathrm{L} / 240$	in	0.46

Additional Data:												
FACTORS:	F/E(psi)	$C D$	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC\#
Fv'	180	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb' ${ }^{\text {+ }}$	900	1.15	1.00	1.00	1.000	1.300	-	1.00	1.00	1.00	-	2
Fcp ${ }^{\prime}$	625	-	1.00	1.00	-	-	-	-	1.00	1.00	-	-
E^{\prime}	1.6 mil	lion	1.00	1.00	-	-	-	-	1.00	1.00	-	2
Emin'	0.58 mil	lion	1.00	1.00	-	-	-	-	1.00	1.00	-	2
CRITICAL LOAD COMBINATIONS:												
Shear : LC \#2 = D+S												
Bending (+): LC \#2 = D+S												
Deflection: LC \#2 = D+S (live)												
Bearing	Bearing : Support 1-LC \#2 = D+S											
All LC's are listed in the Analysis output Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2												
CALCULATIONS:												
V max $=1424, \mathrm{~V}$ design $=1199$ lbs; $\mathrm{M}(+)=2848 \mathrm{lbs}$ - ft												
"Live" deflection is due to all non-dead loads (live, wind, snow...)												

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

Design Check Calculation Sheet
 WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location [ft]	Magnitude Starn		Unit
Start	End	Start End					
DL	Dead	Partial Area		0.03	8.03	$30.00(16.0 ")$	psf
LL	Partial Area		0.03	8.03	$100.00(16.0 ")$	psf	
Self-weight	Live						
Dead	Full UDL				6.7	plf	

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

*Minimum bearing length setting used: $1 / 2^{"}$ for end supports

7-2nd FI Deck Joist

Lumber-soft, D.Fir-L, No.2, 3x12 (2-1/2"x11-1/4")
Supports: All - Timber-soft Beam, D.Fir-L No. 2
Floor joist spaced at 16.0 " c/c; Total length: 12.05 '; Clear span: 11.953 '; Volume $=2.4$ cu.ft.
Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help);
This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	$\mathrm{fv}=43$	$\mathrm{Fv}^{\prime}=180$	psi	$f v / F v^{\prime}=0.24$
Bending (+)	$\mathrm{fb}=588$	$\mathrm{Fb}^{\prime}=1035$	psi	$\mathrm{fb} / \mathrm{Fb}^{\prime}=0.57$
Live Defl'n	$0.10=<L / 999$	$0.40=\mathrm{L} / 360$	in	0.25
Total Defl'n	$0.13=<L / 999$	$0.60=\mathrm{L} / 240$	in	0.22

7-2nd FI Deck Joist.wwb

Additional Data:

FACTORS :	F/E(psi)	$C D$	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC\#
Fv'	180	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb' ${ }^{\text {+ }}$	900	1.00	1.00	1.00	1.000	1.000	-	1.15	1.00	1.00	-	2
Fcp ${ }^{\prime}$	625	-	1.00	1.00	-	-	-	-	1.00	1.00	-	-
E'	1.6 mil	lion	1.00	1.00	-	-	-	-	1.00	1.00	-	2
Emin'	0.58 mil	lion	1.00	1.00	-	-	-	-	1.00	1.00	-	2

CRITICAL LOAD COMBINATIONS:

```
Shear : LC #2 = D+L
Bending(+): LC #2 = D+L
Deflection: LC #2 = D+L (live)
                LC #2 = D+L (total)
Bearing : Support 1 - LC #2 = D+L
                                Support 2 - LC #2 = D+L
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
    V max = 965, V design = 798 lbs; M(+) = 2584 lbs-ft
    EI = 474.60e06 lb-in^2
    "Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

(11) WoodWorks ${ }^{\circ}$	COMPANY KPFF Consulting Engineers Feb. 12, 2024 11:45	PROJECT 8-2nd FI Beam Grid C.wwb

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)
Loads:

| Load | Type | Distribution | Pat- | Location [ft] | Magnitude
 tern | | Unit |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| Start | End | Start | End | | | | |
| DL | Dead | Full UDL | No | | | 160.0 | plf |
| LL | Live | Full UDL | No | | | 533.0 | plf |
| Self-weight | Dead | Full UDL | No | | 15.2 | plf | |

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

${ }^{* *}$ Minimum bearing length governed by the required width of the supporting member.

8-2nd FI GL Beam Grid C
 Glulam-Balanced, West Species, 24F-V8 DF, 5-1/2"x12"

Supports: All - Timber-soft Beam, D.Fir-L No. 2
Total length: 14.3'; Clear span: 12.634', 1.436 '; Volume = 6.6 cu.ft.; 8 laminations, 5-1/2" maximum width,
Lateral support: top = continuous, bottom = at supports;
This section PASSES the design code check.

8-2nd FI Beam Grid C.wwb

WoodWorks® Sizer 2019 (Update 1)

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Additional Data:

FACTORS :	F/E (psi)	$C D$	CM	Ct	CL	CV	Cfu	Cr	Cfrt	Notes	$\mathrm{Cn} * \mathrm{Cvr}$	LC\#
Fv'	265	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb ${ }^{\prime}+$	2400	1.00	1.00	1.00	1.000	1.000	-	-	1.00	1.00	-	2
Fb ${ }^{\prime}$ -	2400	1.00	1.00	1.00	0.985	1.000	-	-	1.00	1.00	-	2
Fcp ${ }^{\prime}$	650	-	1.00	1.00	-	-	-	-	1.00	-	-	-
E^{\prime}	1.8 mil	lion	1.00	1.00	-	-	-	-	1.00	-	-	2
Eminy ${ }^{\prime}$	0.85 mil	lion	1.00	1.00	-	-	-	-	1.00	-	-	2

CRITICAL LOAD COMBINATIONS:

```
Shear : LC #2 = D+L
Bending(+): LC #2 = D+L
Bending(-): LC #2 = D+L
Deflection: LC #2 = D+L (live)
                                    LC #2 = D+L (total)
    Bearing : Support 1 - LC #2 = D+L
                            Support 2 - LC #2 = D+L
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
V max = 4577, V design = 3824 lbs; \(M(+)=13995\) lbs-ft; \(M(-)=797\) lbs-ft
EI = 1425.58e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"
Lateral stability(-): Lu = 12.75' Le = 21.38' RB = 10.1; Lu based on full span
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.
3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
5. GLULAM: bxd = actual breadth x actual depth.
6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
7. GLULAM: bearing length based on smaller of $\operatorname{Fcp}(t e n s i o n)$, $\mathrm{Fcp}\left(\mathrm{comp}^{\prime} \mathrm{n}\right)$.

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

9 - TYPICAL CANOPY BEAM

In accordance with AISC360 15th Edition published 2016 using the LRFD method

ANALYSIS

Tedds calculation version 1.0.36

Geometry

Geometry (ft) - Steel (AISC) - W 6x15

Span	Length (ft)	Section	Start Support	End Support
1	11	$\mathrm{~W} 6 \times 15$	Pinned	Roller Pin X
2	1.5	$\mathrm{~W} 6 \times 15$	Roller Pin X	Free

W 6x15: Area $4 \mathrm{in}^{2}$, Inertia Major $29 \mathrm{in}^{4}$, Inertia Minor $9 \mathrm{in}^{4}$, Shear area parallel to Minor $1 \mathrm{in}^{2}$, Shear area parallel to Major 3 in 2
Steel (AISC): Density 490 lbm/ft ${ }^{3}$, Youngs 29000 ksi, Shear 11200 ksi, Thermal $0.000012{ }^{\circ} \mathrm{C}^{-1}$

Loading

Self weight included
Dead - Loading (kips/ft)

Live - Loading (kips/ft)

Load combination factors

Load combination	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{\omega} \\ & 3_{0}^{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$		$\stackrel{\otimes}{3}$
1.2D + 1.6L (Strength)	1.20	1.20	1.60
1.0D + 1.0L (Service)	1.00	1.00	1.00

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Member Loads

Member	Load case	Load Type	Orientation	Description
Beam	Dead	UDL	GlobalZ	$0.18 \mathrm{kips} / \mathrm{ft}$
Beam	Live	UDL	GlobalZ	$0.3 \mathrm{kips} / \mathrm{tt}$

Results

Forces

Service combinations - Deflection envelope (in)

Resistance factors

Shear
Flexure
Tensile yielding
Tensile rupture
Compression
$\phi_{v}=1.00$
$\phi_{b}=0.90$
$\phi_{t, y}=0.90$
$\phi_{t, r}=0.75$
$\phi_{\mathrm{c}}=0.90$

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date $2 / 12 / 2024$ |
| | Revised | |
| | | Date |

Beam - Span 1 design

Section details

Section type W 6x15 (AISC 15th Edn (v15.0))
ASTM steel designation
A992
Steel yield stress
$\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$
Steel tensile stress
$\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$
Modulus of elasticity
$\mathrm{E}=29000 \mathrm{ksi}$

W 6x15 (AISC 15th Edn (v15.0)) Section depth, d, 5.99 in Section breadth, h, 5.99 in Weight of section, Weight, $15 \mathrm{lbf} / \mathrm{ft}$ Flange thickness, $\downarrow, 0.26$ in Web thickness, $\mathrm{t}_{\mathrm{w}}, 0.23$ in Area of section, A, 4.4 if Radius of gyration about x-axis, $\mathrm{r}, 2.56$ in Radius of gyration about y-axis, $r, 1.45$ in Elastic section modulus about x-axis, $\mathrm{S}_{\mathrm{X}}, 9.72 \mathrm{in}^{3}$ Elastic section modulus about y-axis, S., $3.11 \mathrm{in}^{3}$ Plastic section modulus about x-axis, $Z_{k}, 10.8$ in 3 Plastic section modulus about y-axis, $Z, 4.75$ in 3 Second moment of area about x-axis, $\chi, 29.1$ in 4 Second moment of area about y-axis, $\downarrow, 9.32$ in 4

Lateral restraint

Top flange has full lateral restraint
Bottom flange has lateral restraint at supports only

Classification of sections for local buckling - Section B4

Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio
$b_{f} /\left(2 \times t_{f}\right)=11.52$
Limiting ratio for compact section
Limiting ratio for non-compact section
$\lambda_{\text {pff }}=0.38 \times \sqrt{ }\left[E / F_{y}\right]=9.15$

Classification of web in flexure - Table B4.1b (case 15)
Width to thickness ratio
$(\mathrm{d}-2 \times \mathrm{k}) / \mathrm{t}_{\mathrm{w}}=21.61$
Limiting ratio for compact section
Limiting ratio for non-compact section
$\lambda_{\text {pwf }}=3.76 \times \sqrt{ }\left[E / F_{y}\right]=90.55$
$\lambda_{\text {ruf }}=5.70 \times \sqrt{ }\left[E / F_{y}\right]=137.27$ Compact
Section is noncompact in flexure

Check design at start of span

Design of members for shear - Chapter G

Required shear strength
Web area
$V_{r, x}=3.9 \mathrm{kips}$
$A_{w}=d \times t_{w}=1.378 \mathrm{in}^{2}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Web plate buckling coefficient

Web shear coefficient - eq G2-2
Nominal shear strength - eq G2-1
Resistance factor
Design shear strength
$\mathrm{k}_{\mathrm{v}}=5.34$
$(\mathrm{d}-2 \times \mathrm{k}) / \mathrm{t}_{\mathrm{w}}<=2.24 \times \sqrt{ }\left(\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right)$
$\mathrm{C}_{\mathrm{v} 1}=1.000$
$\mathrm{V}_{\mathrm{n}, \mathrm{x}}=0.6 \times \mathrm{F}_{\mathrm{y}} \times \mathrm{A}_{w} \times \mathrm{C}_{\mathrm{v} 1}=41.3 \mathrm{kips}$
$\phi_{v}=1.00$
$V_{c, x}=\phi_{v} \times V_{n, x}=41.3 \mathrm{kips}$
$V_{r, x} / V_{\mathrm{c}, \mathrm{x}}=0.093$
PASS - Design shear strength exceeds required shear strength

Check design 5ft 4.773in along span

Design of members for flexure - Chapter F
Required flexural strength
$\mathrm{M}_{\mathrm{r}, \mathrm{X}}=10.4$ kips_ft

Compression flange local buckling - Section F3.2

$\lambda=b_{f} /\left(2 \times t_{f}\right)=11.519$
Nominal flexural strength for compression flange local buckling - eq F3-1
$M_{n, f l}, x=M_{p, x}-\left(M_{p, x}-0.7 \times F_{y} \times S_{x}\right) \times\left(\lambda-\lambda_{p f f}\right) /\left(\lambda_{\text {ff }}-\lambda_{p f f}\right)=42.4$
kips_ft

Design flexural strength - F1

Nominal flexural strength
Design flexural strength
$M_{n, x}=M_{n, f l b, x}=42.4$ kips_ft
$M_{c, x}=\phi_{b} \times M_{n, x}=38.1$ kips_ft
$M_{r, x} / M_{c, x}=0.273$
PASS - Design flexural strength exceeds required flexural strength

Check design at end of span

Design of members for shear - Chapter G

Required shear strength
Web area
Web plate buckling coefficient

Web shear coefficient - eq G2-2
Nominal shear strength - eq G2-1
Resistance factor
Design shear strength
$V_{r, x}=4 \mathrm{kips}$
$\mathrm{A}_{\mathrm{w}}=\mathrm{d} \times \mathrm{t}_{\mathrm{w}}=1.378 \mathrm{in}^{2}$
$\mathrm{k}_{\mathrm{v}}=5.34$
$(\mathrm{d}-2 \times \mathrm{k}) / \mathrm{t}_{\mathrm{w}}<=2.24 \times \sqrt{ }\left(\mathrm{E} / \mathrm{F}_{\mathrm{y}}\right)$
$\mathrm{C}_{\mathrm{v} 1}=1.000$
$\mathrm{V}_{\mathrm{n}, \mathrm{x}}=0.6 \times \mathrm{F}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{w}} \times \mathrm{C}_{\mathrm{v} 1}=\mathbf{4 1 . 3} \mathrm{kips}$
$\phi_{v}=1.00$
$\mathrm{V}_{\mathrm{c}, \mathrm{x}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}, \mathrm{x}}=41.3 \mathrm{kips}$
$V_{r, x} / V_{c, x}=0.097$
PASS - Design shear strength exceeds required shear strength

Design of members for flexure - Chapter F

Required flexural strength
Plastic moment - eq F2-1
$\mathrm{M}_{\mathrm{r}, \mathrm{X}}=0.8 \mathrm{kips} \mathrm{ft}$
$\mathrm{M}_{\mathrm{p}, \mathrm{x}}=\mathrm{F}_{\mathrm{y}} \times \mathrm{Z}_{\mathrm{x}}=45$ kips_ft

Project OSU Azalea House	By MAA	Sheet No.
5	5	
Location Corvallis, OR	Date $2 / 12 / 2024$	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Lateral-torsional buckling - Section F3.1

Unbraced length
$\mathrm{L}_{\mathrm{b}}=11 \mathrm{ft}$
Limiting unbraced length for yielding - eq F2-5 $L_{p}=1.76 \times r_{y} \times \sqrt{ }\left(E / F_{y}\right)=5.122 \mathrm{ft}$
Distance between flange centroids
$h_{0}=5.73$ in
$\mathrm{c}=1$
$\mathrm{r}_{\text {ts }}=1.66$ in
Limiting unbraced length for inelastic LTB - eq F2-6 $\mathrm{L}_{\mathrm{r}}=1.95 \times \mathrm{r}_{\mathrm{ts}} \times \mathrm{E} /\left(0.7 \times \mathrm{F}_{\mathrm{y}}\right) \times \sqrt{ }\left(\left(\mathrm{J} \times \mathrm{c} /\left(\mathrm{S}_{\mathrm{x}} \times \mathrm{h}_{\mathrm{o}}\right)\right)+\sqrt{ }((\mathrm{J} \times \mathrm{c} /\right.$
$\left.\left.\left.\left(S_{x} \times h_{0}\right)\right)^{2}+6.76 \times\left(0.7 \times F_{y} / E\right)^{2}\right)\right)=16.482 \mathrm{ft}$
Moment at quarter point of segment
$\mathrm{M}_{\mathrm{A}}=7.9 \mathrm{kips} \mathrm{ft}$
Moment at center-line of segment
$\mathrm{M}_{\mathrm{B}}=10.4$ kips_ft
Moment at three quarter point of segment
$\mathrm{Mc}=7.5 \mathrm{kips} \mathrm{ft}$
Maximum moment in segment
$\mathrm{M}_{\text {max }}=\mathbf{1 0 . 4}$ kips_ft
LTB modification factor - eq F1-1
$\mathrm{C}_{\mathrm{b}}=12.5 \times \mathrm{M}_{\text {max }} /\left(2.5 \times \mathrm{M}_{\text {max }}+3 \times \mathrm{M}_{\mathrm{A}}+4 \times \mathrm{M}_{\mathrm{B}}+3 \times \mathrm{Mc}_{\mathrm{C}}\right)=\mathbf{1 . 1 4 3}$
Nominal flexural strength for lateral-torsional buckling - eq F2-2
$M_{n, t t b, x}=\min \left(C_{b} \times\left(M_{p, x}-\left(M_{p, x}-0.7 \times F_{y} \times S_{x}\right) \times\left(L_{b}-L_{p}\right) /\left(L_{r}-L_{p}\right)\right)\right.$,
$\left.\mathrm{M}_{\mathrm{p}, \mathrm{x}}\right)=41.6 \mathrm{kips} \mathrm{ft}$

Compression flange local buckling - Section F3.2

$\lambda=b_{f} /\left(2 \times t_{f}\right)=11.519$
Nominal flexural strength for compression flange local buckling - eq F3-1
$M_{n, f l i, x}=M_{p, x}-\left(M_{p, x}-0.7 \times F_{y} \times S_{x}\right) \times\left(\lambda-\lambda_{p f f}\right) /\left(\lambda_{\text {fff }}-\lambda_{p f f}\right)=42.4$
kips_ft

Design flexural strength - F1

Nominal flexural strength
$M_{n, x}=\min \left(M_{n, t t b, x}, M_{n, f l b, x}\right)=41.6$ kips_ft
Design flexural strength
$\mathrm{M}_{\mathrm{c}, \mathrm{x}}=\phi_{\mathrm{b}} \times \mathrm{M}_{\mathrm{n}, \mathrm{x}}=37.4 \mathrm{kips} \mathrm{ft}$
$M_{\mathrm{r}, \mathrm{x}} / \mathrm{M}_{\mathrm{c}, \mathrm{x}}=0.021$
PASS - Design flexural strength exceeds required flexural strength

Consider Combination 2-1.0D + 1.0L (Service)

Check design 5ft 5.586in along span

Design of members for x -x axis deflection

Maximum deflection
Allowable deflection
$\delta_{\mathrm{x}}=0.19$ in
$\delta_{x, \text { Allowable }}=L_{\text {m1_s } 1} / 360=0.367$ in
$\delta_{x} / \delta_{x, \text { Allowable }}=0.519$
PASS - Allowable deflection exceeds design deflection

TABLE 3
BENDING STRESS AND MODULUS OF ELASTICITY VALUES FOR HEAVY TIMBER DECKING SPECIES ${ }^{a}$

Species	Select Quality		Commercial Quality		Agency ${ }^{\text {d }}$
	$\begin{gathered} \text { Bending } \\ \text { Stress } \\ \text { psi } \end{gathered}$	Modulus of Elasticity ${ }^{\text {C }}$ psi	$\begin{gathered} \text { Bending } \\ \text { Stress } \\ \text { psi } \end{gathered}$	Modulus of Elasticity ${ }^{\text {c }}$ psi	
Cedar, Northern White Cedars, Western Cedars, Western (North) Coast Species	$\begin{aligned} & 1100 \\ & 1450 \\ & 1400 \\ & 1450 \\ & \hline \end{aligned}$	$\begin{array}{r} 800,000 \\ 1,100,000 \\ 1,100,000 \\ 1,500,000 \end{array}$	$\begin{aligned} & 950 \\ & 1200 \\ & 1200 \\ & 1200 \\ & \hline \end{aligned}$	$\begin{gathered} 700,000 \\ 1,000,000 \\ 1,000,000 \\ 1,400,000 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 3,4 \\ 2 \\ 2 \end{gathered}$
Douglas Fir-Larch Dougias Fir-Larch (North) Douglas Fir (South) Fir, Balsam	$\begin{aligned} & 2000 \\ & 2000 \\ & 1900 \\ & 1650 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,800,000 \\ & 1,800,000 \\ & 1,400,000 \\ & 1,500,000 \end{aligned}$	$\begin{aligned} & 1650 \\ & \hline 1650 \\ & 1600 \\ & 1400 \end{aligned}$	$\begin{aligned} & 1,700,000 \\ & 1,700,000 \\ & 1,300,000 \\ & 1,300,000 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3,4 \\ 2 \\ 3 \\ 1 \\ \hline \end{gathered}$
Hem-Fir Hem-Fir (North) Hemlock, Eastern-Tamarack Hemlock, Eastern-Tamarack (North)	$\begin{aligned} & 1600 \\ & 1500 \\ & 1700 \\ & 1700 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,500,000 \\ & 1,500,000 \\ & 1,300,000 \\ & 1,300,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 \\ & 1300 \\ & 1450 \\ & 1450 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,400,000 \\ & 1,400,000 \\ & 1,100,000 \\ & 1,100,000 \\ & \hline \end{aligned}$	$\begin{gathered} 3,4 \\ 2 \\ 1 \\ 2 \\ \hline \end{gathered}$
Hemlock, Western Hemlock, Western (North) Northern Species	$\begin{aligned} & 1750 \\ & 1750 \\ & 1050 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,600,000 \\ & 1,600,000 \\ & 1,1,00,000 \end{aligned}$	$\begin{aligned} & 1450 \\ & 1450 \\ & 875 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,400,000 \\ & 1,400,000 \\ & 1,000,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 2 \end{aligned}$
Pine, Eastern White Pine, Eastern White (North) Pine, Northern	$\begin{aligned} & 1300 \\ & 1050 \\ & 1550 \end{aligned}$	$\begin{aligned} & 1,200,000 \\ & 1,200,000 \\ & 1,400,000 \end{aligned}$	$\begin{gathered} 1100 \\ 875 \\ 1300 \end{gathered}$	$\begin{aligned} & 1,100,000 \\ & 1,100,000 \\ & 1,300,000 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$
Pine, Ponderosa Pine, Red Pine, Southern Pine, Western White	$\begin{aligned} & 1450 \\ & 1350 \\ & 1650 \\ & 1300 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,300,000 \\ & 1,300,000 \\ & 1,600,000 \\ & 1,400,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1250 \\ & 1100 \\ & 1650 \\ & 1050 \end{aligned}$	$\begin{aligned} & 1,100,000 \\ & 1,200,000 \\ & 1,600,000 \\ & 1,300,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$
Redwood, California SPF, South Spruce, Coast Sitka Spruce, Eastern	$\begin{aligned} & 1700 \\ & 1350 \\ & 1450 \\ & 1300 \end{aligned}$	$\begin{aligned} & 1,100,000 \\ & 1,400,000 \\ & 1,700,000 \\ & 1,500,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 \\ & 1100 \\ & 1200 \\ & 1100 \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & 1,200,000 \\ & 1,500,000 \\ & 1,400,000 \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ 1,3 \\ 2 \\ 1 \end{gathered}$
Spruce-Pine-Fir Spruce, Sitka Westem Woods	$\begin{aligned} & 1400 \\ & 1500 \\ & 1300 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,500,000 \\ & 1,500,000 \\ & 1,200,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1150 \\ & 1250 \\ & 1100 \end{aligned}$	$1,300,000$ $1,300,000$ $1,100,000$	$\begin{aligned} & 2 \\ & 4 \\ & 3 \\ & \hline \end{aligned}$

${ }^{\text {a }}$ The design values in bending $\left(F_{b}\right)$, except for Redwood, are based on decking 4 in. thick. For other thicknesses, multiply by the size factor, C_{F}, as follows:

Thickness	$\frac{\mathrm{C}_{\mathrm{F}}}{}$
$2 \mathrm{in}$.	1.10
$3 \mathrm{in}$.	1.04

Design values for visually graded decking are those recommended by the regional lumber rules writing agencies. These values are ased on decking that is used where the moisture content in-service will not exceed 19%. When the moisture content inservice exceeds 19% for an extended period of time, the tabular design values shall be multiplied by the wet service factor, C_{M}, as follows:

*When $\left(F_{b}\right)\left(C_{F}\right)<1150$ psi, $C_{M}=1.0$ for bending.
b Repetitive member use values.
c The tabulated values for modulus of elasticity are the average for the species grouping. For information concerning coefficient of variation of modulus of elasticity, see the appropriate grading rules for the species.
${ }^{d}$ Stresses listed are as assigned by the following grading rules agencies: NELMA (1), NLGA (Canadian) (2), WWPA (3), WCLIB (4), SPIB (5), and RIS (6).
e If specified as "close grain", California Redwood select decking is assigned a bending stress value of 1850 psi and a modulus of elasticity value of $1,400,000$ psi when used at 19% M.C.

TABLE 6

THREE AND FOUR INCH NOMINAL THICKNESS ALLOWABLE ROOF LOAD LIMITED BY BENDING SIMPLE SPAN AND CONTROLLED RANDOM LAYUPS (3 or more spans)

Bending Stress psi	Allowable Uniformly Distributed Total Roof Load ${ }^{\text {a, c, e, f, g }}$, psf																									
	3 inch Nominal Thickness ${ }^{\text {b }}$ Span, ft													4 inch Nominal Thickness Span, ft												
	8	9	10	11	12	13	14	15	16	17	18	19	20	8	9	10	11	12	13	14	15	16	17	18	19	20
875	114	90	73	60	51	43	37	32	28	25	22	20	18	223	176	143	118	99	84	73	64	56	49	44	40	36
950	124	98	79	65	55	47	40	35	31	27	24	22	20	242	192	155	128	108	92	79	69	61	54	48	43	39
1000	130	103	83	69	58	49	42	37	32	29	26	23	21	255	202	163	135	113	97	83	72	64	56	50	45	41
1050	137	108	88	72	61	52	45	39	34	30	27	24	22	268	212	172	142	119	101	88	76	67	59	53	48	43
1100	143	113	92	76	64	54	47	41	36	32	28	25	23	281	222	180	148	125	106	92	80	70	62	55	50	45
1150	150	118	96	79	66	57	49	42	37	33	30	26	24	293	232	188	155	130	111	96	83	73	65	58	52	47
1200	156	123	100	83	69	59	51	44	39	35	31	28	25	306	242	196	162	136	116	100	87	76	68	60	54	49
1250	163	129	104	86	72	62	53	46	41	36	32	29	26	319	252	204	169	142	121	104	91	80	71	63	56	51
1300	169	134	108	90	75	64	55	48	42	37	33	30	27	332	262	212	175	147	126	108	94	83	73	66	59	53
1350	176	139	112	93	78	66	57	50	44	39	35	31	28	344	272	220	182	153	130	112	98	86	76	68	61	55
1400	182	144	117	96	81	69	60	52	46	40	36	32	29	357	282	229	189	159	135	117	102	89	79	70	63	57
1450	189	149	121	100	84	71	62	54	47	42	37	33	30	370	292	237	196	164	140	121	105	92	82	73	66	59
1500	195	154	125	103	87	74	64	56	49	43	38	35	31	383	302	245	202	170	145	125	109	96	85	76	68	61
1550	202	159	129	107	90	76	66	57	50	45	40	36	32	396	312	253	209	176	150	129	112	99	88	78	70	63
1600	208	165	133	110	92	79	68	59	52	46	41	37	33	408	323	261	216	181	155	133	116	102	90	81	72	65
1650	215	170	138	114	95	81	70	61	54	48	42	38	34	421	333	270	223	187	159	138	120	105	93	83	75	67
1700	221	175	142	117	98	84	72	63	55	49	44	39	35	434	343	278	229	193	164	142	123	108	96	86	77	69
1750	228	180	146	120	101	86	74	65	57	50	45	40	36	447	353	286	236	198	169	146	127	112	99	88	79	71
1900	247	195	158	131	110	94	81	70	62	55	49	44	40	485	383	310	256	216	184	158	138	121	107	96	86	78
2000	260	206	167	138	116	99	85	74	65	58	51	46	42	510	403	327	270	227	193	167	145	128	113	101	90	82

a These load values may also be used for cantilevered pieces intermixed, combination simple span and two-span continuous, and two-span continuous layups.
b 2-1/2 in. net thickness. To determine allowable loads for 2-5/8 in. net thickness, multiply tabulated loads by 1.10.
c All spans to the right of the double line require special ordering of additional long lengths to assure that at least 20% of the decking is equal to the span length or longer.
d 3-1/2 in. net thickness.
e Duration of load, $C_{D}=1.0$ used in this table. For other durations of load, adjust by the appropriate factor.
f No increase for size effect has been applied $\left(C_{F}=1.00\right) . F_{b}$ values have been previously adjusted.
9 Dry conditions of use.

COMPANY
KPFF Consulting Engineers
Feb. 13, 2024 10:27

PROJECT

11 - Critical Grid 8 Column.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Location [ft]	Magnitude Start End	
Start End	Unit				
DL	Dead	Axial	(EcC. = 0.00")	2408	lbs
LL	Axial	(Ecc. =0.00")	5438	lbs	
Self-weight	Snow	Dead	Axial		72

Reactions (lbs):

11 - Critical grid 8 Column

Timber-soft, D.Fir-L, No.1, 6x6 (5-1/2"x5-1/2")
Support: Non-wood
Total length: 10.0 '; Volume $=2.1$ cu.ft.; Post or timber Pinned base; Ke \times Lb: $1.0 \times 10.0=10.0 \mathrm{ft}$; Ke \times Ld: $1.0 \times 10.0=10.0 \mathrm{ft}$;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design V Value	Unit	Analysis/Design
Axial	$\mathrm{fc}=262$	$\mathrm{Fc}^{\prime}=738$	psi	$\mathrm{fc} / \mathrm{FC}^{\prime}=0.35$
Axial Bearing	$\mathrm{fc}=262$	$\mathrm{FC}^{\star}=1150$	psi	$\mathrm{fc} / \mathrm{FC}^{\star}=0.23$

Additional Data:

| FACTORS: | F/E (psi) | CD | CM | Ct | CL/CP | CF | Cfu | Cr | Cfrt | Ci | LC\# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| FC' | 1000 | 1.15 | 1.00 | 1.00 | 0.641 | 1.000 | - | - | 1.00 | 1.00 | 2 |
| FC* | 1000 | 1.15 | 1.00 | 1.00 | - | 1.000 | - | - | 1.00 | 1.00 | 2 |

CRITICAL LOAD COMBINATIONS:

```
Axial : LC #2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.

(11) WoodWorks ${ }^{\oplus}$ SOFTWARE FOR WOOD DESIGN			COMPANY KPFF Consulting Engineers Feb. 13, 2024 10:28		PROJECT 12-Critical Grid D and G Post.wwc		
Design Check Calculation Sheet WoodWorks Sizer 2019 (Update 1)							
Loads:							
Load	Type	Distribution	Location [ft] Start End	Magnitude Start		Unit	
$\begin{array}{\|l} \hline \text { DL } \\ \mathrm{LL} \end{array}$	Dead Snow Dead	Axial Axial Axial	(Ecc. $=0.00 ")$ (Ecc. $=0.00 ")$	$\begin{array}{r} 780 \\ 1714 \end{array}$		$\begin{aligned} & \mathrm{lbs} \\ & \mathrm{lbs} \\ & \hline \end{aligned}$	

Reactions (lbs):

12 - Critical grid D and G Post
 Lumber Post, D.Fir-L, No.2, 4x4 (3-1/2"x3-1/2")

Support: Non-wood
Total length: 10.0'; Volume $=0.9$ cu.ft.
Pinned base; Ke x Lb: $1.0 \times 10.0=10.0 \mathrm{ft}$; Ke x Ld: $1.0 \times 10.0=10.0 \mathrm{ft}$;
This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	$\mathrm{fc}=206$	$\mathrm{FC}^{\prime}=384$	psi	$\mathrm{fc} / \mathrm{FC}^{\prime}=0.54$
Axial Bearing	$\mathrm{fc}=206$	$\mathrm{FC}^{\star}=1785$	psi	$\mathrm{fc} / \mathrm{FC}^{\star}=0.12$

Additional Data:

| FACTORS: | F/E(psi) | CD | CM | Ct | CL/CP | CF | Cfu | Cr | Cfrt | Ci | LC\# |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| FC' | 1350 | 1.15 | 1.00 | 1.00 | 0.215 | 1.150 | - | - | 1.00 | 1.00 | 2 |
| FC* | 1350 | 1.15 | 1.00 | 1.00 | - | 1.150 | - | - | 1.00 | 1.00 | 2 |

CRITICAL LOAD COMBINATIONS:
Axial : LC \#2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.

COMPANY
KPFF Consulting Engineers
Feb. 13, 2024 10:29

PROJECT

13-Critical Grid H Post.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	$\begin{array}{cc} \text { Location } & {[f t]} \\ \text { Start } & \text { End } \\ \hline \end{array}$	Magnitude Start End	Unit
DL	Dead	Axial	(Ecc. $=0.00^{\prime \prime}$)	900	lbs
LL	Snow	Axial	$\left(\right.$ Ecc. $=0.00{ }^{\prime \prime}$)	2250	lbs
Self-weight	Dead	Axial		72	lbs

Reactions (lbs):

13 - Critical grid H Post
 Timber-soft, D.Fir-L, No.1, 6×6 (5-1/2"x5-1/2") Support: Non-wood
 Total length: 10.0 '; Volume $=2.1$ cu.ft.; Post or timber

 Pinned base; Ke \times Lb: $1.0 \times 10.0=10.0 \mathrm{ft}$; Ke \times Ld: $1.0 \times 10.0=10.0 \mathrm{ft}$;This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	$\mathrm{fc}=107$	$\mathrm{Fc}=738$	psi	$\mathrm{fc} / \mathrm{Fc}^{\prime}=0.14$
Axial Bearing	$\mathrm{fc}=107$	$\mathrm{FC}^{\star}=1150$	psi	$\mathrm{fc} / \mathrm{FC}^{\star}=0.09$

Additional Data:

| FACTORS: | F/E (psi) | CD | CM | Ct | CL/CP | CF | Cfu | Cr | Cfrt | Ci | LC\# |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| FC' | 1000 | 1.15 | 1.00 | 1.00 | 0.641 | 1.000 | - | - | 1.00 | 1.00 | 2 |
| FC* * | 1000 | 1.15 | 1.00 | 1.00 | - | 1.000 | - | - | 1.00 | 1.00 | 2 |

CRITICAL LOAD COMBINATIONS:

```
Axial : LC #2 = D+S
D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
```


Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.

Gravity Beam Design
RAM SBeam v5.01
OSU Azalea House
Entry Canopy Beam

STEEL CODE: AISC 360-05 ASD

| SPAN INFORMATION (ft): | I-End (0.00,0.00) | J-End (5.33,0.00) |
| :---: | :---: | :---: |\quad Fy $=46.0 \mathrm{ksi}$

Mp (kip-ft) $=32.70$
Top flange braced by decking.

LINE LOADS (k/ft):

Load	Dist (ft)	DL	LL
1	0.000	0.015	0.000
	2.000	0.015	0.000
2	0.000	0.090	0.150
	2.000	0.090	0.150
3	2.000	0.015	0.000
	2.333	0.015	0.000
4	2.000	0.090	0.150
	2.333	0.090	0.150
5	2.333	0.015	0.000
	5.333	0.015	0.000
6	2.333	0.090	0.150
	5.333	0.090	0.150

SHEAR: Max Va $(D L+L L)=2.85 \mathrm{kips} \quad \mathrm{Vn} / 1.67=46.21 \mathrm{kips}$
MOMENTS:

Span	Cond	LoadCombo	Ma kip-ft	ft	Lb ft	Cb	Ω	Mn / Ω $\mathrm{kip}-\mathrm{ft}$
Left		Max -	DL+LL	-0.5	2.0	2.0	1.00	1.67
Center	Max -	DL+LL	-1.1	2.3	0.3	1.29	1.67	19.58
Right	Max -	DL+LL	-1.1	2.3	3.0	1.00	1.67	19.58
Controlling		DL+LL	-1.1	2.3	3.0	1.00	1.67	19.58

REACTIONS (kips):

	Left	Right
DL reaction	-0.56	1.12
Max +LL reaction	1.23	2.50
Max -LL reaction	-2.03	-0.90
Max +total reaction	0.67	3.61
Max -total reaction	-2.59	0.22

DEFLECTIONS:

Left cantilever:

Dead load (in)
$=-0.001$
Pos Live load (in)
$=-0.001$
$\mathrm{L} / \mathrm{D}=38136$
Pos Total load (in)
$=-0.002$
$\mathrm{L} / \mathrm{D}=22475$

Gravity Beam Design

| Center span: | | | |
| :--- | :--- | :--- | :--- | :--- |
| Dead load (in) | at | $2.18 \mathrm{ft}=$ | 0.000 |
| Live load (in) | at | $2.18 \mathrm{ft}=$ | 0.000 |
| Net Total load (in) | at | $2.18 \mathrm{ft}=$ | 0.000 |
| Right cantilever: | | | |
| Dead load (in) | -0.004 | L/D $=20196$ | |
| Pos Live load (in) | $=-0.005$ | L/D $=14082$ | |
| Pos Total load (in) | $=-0.009$ | L/D $=8297$ | |

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date $2 / 12 / 2024$ |
| | Revised | |
| | | Date |

15 - ENTRY CANOPY COLUMN

Steel column design in accordance with AISC360-16 and the LRFD method

Column and loading details

Column details

Column section
HSS 4x0.250

Design loading

Required axial strength
Maximum moment about x axis
Maximum moment about y axis
Maximum shear force parallel to y axis
Maximum shear force parallel to x axis
$\mathrm{P}_{\mathrm{r}}=2$ kips (Compression)
$\mathrm{M}_{\mathrm{x}}=0.9 \mathrm{kips} \mathrm{ft}$
$\mathrm{M}_{\mathrm{y}}=3.2 \mathrm{kips} \mathrm{ft}$
$V_{\text {ry }}=0.0 \mathrm{kips}$
$V_{\text {rx }}=0.3 \mathrm{kips}$

Material details

Steel grade
Yield strength
Ultimate strength
Modulus of elasticity
Shear modulus of elasticity
A500 Gr. B
$\mathrm{F}_{\mathrm{y}}=42 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$
$\mathrm{E}=29000 \mathrm{ksi}$
G = 11200 ksi
Unbraced lengths
For buckling about x axis
For buckling about y axis
For torsional buckling
$L_{x}=120$ in
$\mathrm{L}_{y}=120$ in
$L_{z}=120$ in

Effective length factors

For buckling about x axis
$K_{x}=1.00$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

For buckling about y axis
For torsional buckling

Effective unbraced lengths

For buckling about x axis
For buckling about y axis
For torsional buckling
$K_{y}=1.00$
$\mathrm{K}_{\mathrm{z}}=1.00$
$L_{c x}=L_{x} \times K_{x}=120$ in
$L_{c y}=L_{y} \times K_{y}=120$ in
$L_{c z}=L_{z} \times K_{z}=120 \mathrm{in}$

Section classification

Section classification for local buckling (cl. B4)
Width to thickness ratio

$$
\lambda=D_{o} / t=17.167
$$

Compression

Limit for nonslender section
$\lambda_{r_{-} c}=0.11 \times E / F_{y}=75.952$
The section is nonslender in compression

Flexure

Limit for compact section
Limit for noncompact section
$\lambda_{\mathrm{P}_{\mathrm{f}}}=0.07 \times \mathrm{E} / \mathrm{F}_{\mathrm{y}}=48.333$
$\lambda_{r_{-} f}=0.31 \times E / F_{y}=214.048$
The section is compact in flexure

Slenderness

Member slenderness
Slenderness ratio about x axis
$\mathrm{SR}_{\mathrm{x}}=\mathrm{L}_{\mathrm{cx}} / \mathrm{r}_{\mathrm{x}}=90.2$
Slenderness ratio about y axis
$S R_{y}=L_{c y} / r_{y}=90.2$

Second order effects

Second order effects for bending about y axis (cl. C2.1b)
Second order effects are already included or do not need to be considered therefore:-

P- δ amplifier
Required flexural strength (x axis)
Required flexural strength (y axis)
$B_{1 x}=B_{1 y}=1.0$
$M_{r x}=B_{1 x} \times M_{x}=0.9$ kips_ft
$M_{r y}=B_{1 y} \times M_{y}=3.2$ kips_ft

Design of members for shear parallel to \mathbf{x} axis - Chapter \mathbf{G}

Required shear strength
Nominal shear strength - eq G5-1
Resistance factor for shear
Design shear strength

Compressive strength

Elastic critical buckling stress

$$
\mathrm{F}_{\mathrm{ex}}=\pi^{2} \times \mathrm{E} /\left(\mathrm{SR}_{\mathrm{x}}\right)^{2}=35.2 \mathrm{ksi}
$$

	Project OSU Azalea H	By MAA	Sheet No.
	Location Corvallis, OR	Date 2/12/2024	
	Client Rowell Brokaw	Revised	$\begin{array}{\|c} \text { Job No. } \\ 223346 \end{array}$
Portland, Oregon		Date	

Flexural buckling stress
$F_{c r x}=\left(0.658 F_{y} / F_{\text {ex }}\right) \times F_{y}=25.5 \mathrm{ksi}$
Nominal compressive strength for flexural buckling $\quad P_{n x}=F_{c r x} \times A=70.3$ kips
Flexural buckling about y axis (cl. E3)

Elastic critical buckling stress
Flexural buckling stress
$\mathrm{F}_{\mathrm{ey}}=\pi^{2} \times \mathrm{E} /\left(\mathrm{SR}_{\mathrm{y}}\right)^{2}=35.2 \mathrm{ksi}$
$F_{\text {cry }}=\left(0.658 F_{y} / F_{\text {ey }}\right) \times F_{y}=25.5 \mathrm{ksi}$

Nominal compressive strength for flexural buckling $\quad P_{n y}=F_{\text {cry }} \times A=70.3 \mathrm{kips}$
Design compressive strength (cl.E1)
Resistance factor for compression
$\phi_{\mathrm{c}}=0.90$
Design compressive strength
$P_{c}=\phi_{c} \times \min \left(P_{n x}, P_{n y}\right)=63.3 \mathrm{kips}$
PASS - The design compressive strength exceeds the required compressive strength

Flexural strength about the major axis

Yielding (cl. F8.1)
Nominal flexural strength
$M_{n x _y l d}=M_{\text {ny_yld }}=F_{y} \times Z=11.6$ kips_ft
Design flexural strength (cl. F1)
Resistance factor for flexure
$\phi_{b}=0.90$
Design flexural strength
$\mathrm{M}_{\mathrm{cx}}=\mathrm{M}_{\mathrm{cy}}=\phi_{\mathrm{b}} \times \mathrm{M}_{\mathrm{nx} \text { _lld }}=10.4$ kips_ft
PASS - The design flexural strength about the x axis exceeds the required flexural strength PASS - The design flexural strength about the y axis exceeds the required flexural strength

Combined forces

Member utilization (cl. H1.1)
Equation $\mathrm{H} 1-1 \mathrm{~b}$
$U R=\operatorname{abs}\left(P_{r}\right) /\left(2 \times P_{c}\right)+\left(M_{r x} / M_{c x}+M_{r y} / M_{c y}\right)=0.407$
PASS - The member is adequate for the combined forces

COMPANY
KPFF Consulting Engineers
Feb. 13, 2024 10:34

PROJECT

16-Critical Grid C Column.wwc

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)
Loads:

Load	Type	Distribution	$\begin{array}{cc} \text { Location } & {[f t]} \\ \text { Start } & \text { End } \\ \hline \end{array}$	Magnitude Start End	Unit
DL	Dead	Axial	(Ecc. $=0.00^{\prime \prime}$)	2910	lbs
LL	Snow	Axial	$\left(\right.$ Ecc. $=0.00{ }^{\prime \prime}$)	8046	lbs
Self-weight	Dead	Axial		86	lbs

Reactions (lbs):

16 - Critical grid C Column
Timber-soft, D.Fir-L, No.1, 6×6 (5-1/2"x5-1/2")
Support: Non-wood
Total length: 12.0^{\prime}; Volume $=2.5$ cu.ft.; Post or timber Pinned base; Ke x Lb: $1.0 \times 12.0=12.0 \mathrm{ft}$; Ke x Ld: $1.0 \times 12.0=12.0 \mathrm{ft}$;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018 :

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc $=365$	$\mathrm{FC}^{\prime}=578$	psi	$\mathrm{fc} / \mathrm{Fc}^{\prime}=0.63$
Axial Bearing	$\mathrm{fc}=365$	FC* $=1150$	psi	$\mathrm{fc} / \mathrm{Fc}$ * $=0.32$

Additional Data:

FACTORS:	F/E(psi)	CD	CM	Ct	CL/CP	CF	Cfu	Cr	Cfrt	Ci	LC\#
Fc'	1000	1.15	1.00	1.00	0.503	1.000	-	-	1.00	1.00	2
FC*	1000	1.15	1.00	1.00	-	1.000	-	-	1.00	1.00	2

CRITICAL LOAD COMBINATIONS:
Axial : LC \#2 = D+S
 All LC's are listed in the Analysis output
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

Design Notes:

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
2. Please verify that the default deflection limits are appropriate for your application.

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

17 - DECK CANOPY COLUMN

Steel column design in accordance with AISC360-16 and the LRFD method

Column and loading details

Column details

Column section
HSS 4x0.250

Design loading

Required axial strength
Maximum moment about x axis
Maximum moment about y axis
Maximum shear force parallel to y axis
Maximum shear force parallel to x axis
$\mathrm{P}_{\mathrm{r}}=4$ kips (Compression)
$\mathrm{M}_{\mathrm{x}}=0.0 \mathrm{kips} \mathrm{ft}$
$\mathrm{M}_{\mathrm{y}}=0.0 \mathrm{kips} \mathrm{ft}$
$V_{\text {ry }}=0.0 \mathrm{kips}$
$V_{\text {rx }}=0.0 \mathrm{kips}$

Material details

Steel grade
Yield strength
Ultimate strength
Modulus of elasticity
Shear modulus of elasticity
A500 Gr. B
$\mathrm{F}_{\mathrm{y}}=42 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$
$\mathrm{E}=29000 \mathrm{ksi}$
G = 11200 ksi
Unbraced lengths
For buckling about x axis
For buckling about y axis
For torsional buckling
$L_{x}=120$ in
$\mathrm{L}_{\mathrm{y}}=120$ in
$L_{z}=120$ in

Effective length factors

For buckling about x axis
$K_{x}=1.00$

| | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date 2/12/2024 |
| | Revised | |
| | | Date |

For buckling about y axis
$K_{y}=1.00$
For torsional buckling
$K_{z}=1.00$

Effective unbraced lengths

For buckling about x axis
$L_{c x}=L_{x} \times K_{x}=120$ in
For buckling about y axis
$\mathrm{L}_{\mathrm{cy}}=\mathrm{L}_{y} \times \mathrm{K}_{\mathrm{y}}=120$ in
For torsional buckling
$\mathrm{L}_{\mathrm{cz}}=\mathrm{L}_{\mathrm{z}} \times \mathrm{K}_{\mathrm{z}}=120$ in

Section classification

Section classification for local buckling (cl. B4)

Width to thickness ratio

$$
\lambda=D_{o} / t=17.167
$$

Compression

Limit for nonslender section
$\lambda_{r_{-} c}=0.11 \times E / F_{y}=75.952$
The section is nonslender in compression

Slenderness

Member slenderness
Slenderness ratio about x axis

$$
\mathrm{SR}_{\mathrm{x}}=\mathrm{L}_{\mathrm{cx}} / \mathrm{r}_{\mathrm{x}}=90.2
$$

Slenderness ratio about y axis
$\mathrm{SR}_{\mathrm{y}}=\mathrm{L}_{\mathrm{cy}} / \mathrm{r}_{\mathrm{y}}=\mathbf{9 0 . 2}$

Compressive strength

Flexural buckling about x axis (cl. E3)
Elastic critical buckling stress
$\mathrm{F}_{\mathrm{ex}}=\pi^{2} \times \mathrm{E} /\left(\mathrm{SR}_{\mathrm{x}}\right)^{2}=35.2 \mathrm{ksi}$
Flexural buckling stress
$F_{\text {crx }}=\left(0.658 F_{y} / F_{e x}\right) \times F_{y}=25.5 \mathrm{ksi}$
Nominal compressive strength for flexural buckling $P_{n x}=F_{c r x} \times A=70.3$ kips
Flexural buckling about y axis (cl. E3)

Elastic critical buckling stress
Flexural buckling stress
$\mathrm{F}_{\text {ey }}=\pi^{2} \times \mathrm{E} /\left(\mathrm{SR}_{\mathrm{y}}\right)^{2}=35.2 \mathrm{ksi}$
$\mathrm{F}_{\text {cry }}=\left(0.658_{\mathrm{y}}{ }^{\prime} \mathrm{F}_{\mathrm{ey}}\right) \times \mathrm{F}_{\mathrm{y}}=\mathbf{2 5 . 5} \mathrm{ksi}$

Nominal compressive strength for flexural buckling $P_{\text {ny }}=F_{\text {cry }} \times A=70.3$ kips
Design compressive strength (cl.E1)
Resistance factor for compression

$$
\begin{aligned}
& \phi_{c}=0.90 \\
& P_{c}=\phi_{c} \times \min \left(P_{n x}, P_{n y}\right)=63.3 \mathrm{kips}
\end{aligned}
$$

PASS - The design compressive strength exceeds the required compressive strength

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

18 - TYPICAL HSS FOOTING

Footing analysis in accordance with ACI318-19
Tedds calculation version 3.3.02
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.7			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.93	1.5	0.620	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.3	32.3	0.010	Pass
Moment, positive, y-direction	kip_ft	0.3	32.3	0.010	Pass
Shear, two-way, Col 1	psi	2.678	189.737	0.014	Pass
Min.area of reinf, bot., x-direction	in 2	0.518	0.930		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	8.6		Pass
Min.area of reinf, bot., y-direction	in ${ }^{2}$	0.518	0.930		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	8.6		Pass

Pad footing details

Length of footing
Width of footing
Footing area
Depth of footing
Depth of soil over footing
Density of concrete
$\mathrm{L}_{\mathrm{x}}=\mathbf{2} \mathrm{ft}$
$\mathrm{L}_{\mathrm{y}}=\mathbf{2 \mathrm { ft }}$
$A=L_{x} \times L_{y}=4 \mathrm{ft}^{2}$
$\mathrm{h}=12$ in
$\mathrm{h}_{\text {soil }}=12$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no. 1 details

Length of column $\quad I_{x 1}=10.00$ in
Width of column
position in x -axis
position in y-axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction
$\mathrm{l}_{\mathrm{y} 1}=10.00$ in
$\mathrm{x}_{1}=12.00$ in
$y_{1}=12.00$ in
$q_{\text {allow_Gross }}=1.5 \mathrm{ksf}$
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi_{b}=30.0 \mathrm{deg}$
$\delta_{\mathrm{bb}}=30.0 \mathrm{deg}$
$\tan \left(\delta_{\text {bb }}\right)=0.577$

Footing loads

Self weight
Soil weight

Column no. 1 loads

Dead load in z
$F_{\mathrm{Dz} 1}=1.0 \mathrm{kips}$
Live load in z

Footing analysis for soil and stability

Load combinations per ASCE 7-16
1.0D (0.345)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.620)$
Combination 2 results: $1.0 \mathrm{D}+1.0 \mathrm{~L}$
Forces on footing
Force in z -axis
$\mathrm{F}_{\mathrm{dz}}=\gamma_{\mathrm{D}} \times \mathrm{A} \times\left(\mathrm{F}_{\mathrm{swt}}+\mathrm{F}_{\mathrm{soil}}\right)+\gamma_{\mathrm{D}} \times \mathrm{F}_{\mathrm{Dz} 1}+\gamma\left\llcorner\mathrm{F}_{\mathrm{Lz} 1}=3.7 \mathrm{kips}\right.$
Moments on footing
Moment in x -axis, about x is 0

Moment in y -axis, about y is 0

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dz}}=3.72 \mathrm{kips}$
PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0$ in
Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{dy}}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=\mathbf{0}$ in
Pad base pressures

Minimum base pressure
Maximum base pressure
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times e_{\mathrm{dx}} / L_{x}+6 \times e_{\mathrm{dy}} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{3}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{4}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{\text {min }}=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=0.93 \mathrm{ksf}$
$q_{\text {max }}=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=0.93 \mathrm{ksf}$
Allowable bearing capacity
Allowable bearing capacity
$q_{\text {allow }}=q_{\text {allow_Gross }}=1.5 \mathrm{ksf}$
$q_{\text {max }} / q_{\text {allow }}=0.620$
PASS - Allowable bearing capacity exceeds design base pressure

18 - TYPICAL HSS FOOTING

Footing design in accordance with ACl318-19

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$
$\varepsilon_{t y}=0.00200$
Cover to top of footing
Cover to side of footing
$\mathrm{Cnom}_{\mathrm{t}}=3$ in
$\mathrm{Cnom}_{\mathrm{s}}=3$ in

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing
Concrete type
Concrete modification factor
Column type
Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.004)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$ (0.014)
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on footing

Ultimate force in z-axis

Moments on footing

Ultimate moment in x -axis, about x is 0

Ultimate moment in y -axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$\mathrm{Cnom}_{\text {_ }}=3$ in
Normal weight
$\lambda=1.00$
Concrete
$F_{\mathrm{uz}}=\gamma_{\mathrm{D}} \times \mathrm{A} \times\left(\mathrm{F}_{\mathrm{swt}}+\mathrm{F}_{\mathrm{soil}}\right)+\gamma_{\mathrm{D}} \times \mathrm{F}_{\mathrm{Dz} 1}+\gamma_{L} \times \mathrm{F}_{\mathrm{Lz} 1}=5.1 \mathrm{kips}$
$M_{u x}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{x} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times x_{1}\right)+\gamma\left\llcorner\times\left(F_{L z 1} \times\right.\right.$ $\left.\mathrm{x}_{1}\right)=5.1 \mathrm{kip} \mathrm{ft}$
$M_{u y}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)+\gamma L \times\left(F_{L z 1} \times\right.$ $\left.y_{1}\right)=5.1 \mathrm{kip} _\mathrm{ft}$
$\mathrm{e}_{\mathrm{ux}}=\mathrm{Mux}_{\mathrm{ux}} / F_{\mathrm{uz}}-\mathrm{L}_{\mathrm{x}} / 2=0$ in
$\mathrm{e}_{\mathrm{uy}}=\mathrm{M}_{\mathrm{uy}} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{y}} / 2=0$ in
$\mathrm{q}_{\mathrm{u} 1}=\mathrm{F}_{\mathrm{uz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{ux}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=1.281 \mathrm{ksf}$
$q_{u 2}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u 3}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u 4}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=1.281 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=1.281 \mathrm{ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	5
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment diagram, x axis (kip_ft)

0

Moment design, \mathbf{x} direction, positive moment
Ultimate bending moment
$M_{u . \text {. } \text { max }}=0.326 \mathrm{kip}$ ft
Tension reinforcement provided
3 No. 5 bottom bars (8.6 in c / c)
Area of tension reinforcement provided
$\mathrm{A}_{\text {sx.bot.prov }}=0.93$ in 2
Minimum area of reinforcement (8.6.1.1)
$\mathrm{A}_{\mathrm{s} . \text { min }}=0.0018 \times \mathrm{L}_{y} \times \mathrm{h}=0.518 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}}^{\mathrm{b}}-\phi_{\mathrm{x} . \mathrm{bot}} / 2=8.688 \mathrm{in}$
$a=A_{\text {sx.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{y}\right)=0.684$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.804 \mathrm{in}$
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=0.02940$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$M_{n}=A_{\text {sx.bot.prov }} \times f_{y} \times(d-a / 2)=38.807$ kip_ft
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=34.926 \mathrm{kip} \mathrm{ft}$
$M_{u . x . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.009$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, x direction
One-way shear design does not apply. Shear failure plane fall outside extents of foundation.
Shear diagram, y axis (kips)

	Project OSU Azalea Ho	By MAA	Sheet No.
	Location Corvallis, OR	Date 2/12/2024	
	Client Rowell Brokaw	Revised	Job No.223346
Portland, Oregon		Date	

Moment diagram, y axis (kip_ft)

Moment design, y direction, positive moment
Ultimate bending moment
$M_{u . y_{\text {max }}}=0.326 \mathrm{kip}$ _ft
Tension reinforcement provided
Area of tension reinforcement provided
3 No. 5 bottom bars (8.6 in c / c)

Minimum area of reinforcement (8.6.1.1)
$A_{\text {sy.bot.prov }}=0.93$ in 2
$\mathrm{A}_{\mathrm{s} . \min }=0.0018 \times \mathrm{L}_{\mathrm{x}} \times \mathrm{h}=0.518 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}} \mathrm{b}-\phi_{\mathrm{x} \text {.bot }}-$ фy.bot $/ 2=8.062$ in
$a=A_{\text {sy.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{x}\right)=0.684$ in
$\beta_{1}=0.85$
$c=a / \beta_{1}=0.804$ in
$\varepsilon_{t}=0.003 \times d / c-0.003=0.02707$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$M_{n}=A_{\text {sy.bot.prov }} \times f_{y} \times(d-a / 2)=35.901$ kip_ft
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=32.311 \mathrm{kip} \mathrm{ft}$
$M_{u . \text { max }^{2}} / \phi \mathrm{M}_{\mathrm{n}}=0.010$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction
One-way shear design does not apply. Shear failure plane fall outside extents of foundation.
Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\mathrm{d}_{\mathrm{v} 2}=8.375 \mathrm{in}$
$\mathrm{I}_{\mathrm{xp}}=18.375 \mathrm{in}$
$\mathrm{l}_{\mathrm{yp}}=18.375 \mathrm{in}$
$b_{0}=2 \times\left(l_{1} 1+d_{v 2}\right)+2 \times\left(l_{y 1}+d_{v 2}\right)=73.500$ in
$A_{p}=I_{x, \text { perim }} \times l_{y, \text { perim }}=337.641 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-I_{x 1} \times l_{y 1}=237.641$ in 2
Ultimate bearing pressure at center of shear area

$$
\text { qup.avg }=1.281 \mathrm{ksf}
$$

ortland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Ultimate shear load

Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Size effect factor (22.5.5.1.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}-q_{\text {up.avg }} \times$ $\mathrm{A}_{\mathrm{p}}=1.484 \mathrm{kips}$
$v_{u g}=\max \left(F_{\text {up }} /\left(b_{o} \times d_{v 2}\right), 0 \mathrm{psi}\right)=2.411 \mathrm{psi}$
$\beta=\mathrm{l}_{\mathrm{y} 1} / \mathrm{I}_{\mathrm{x} 1}=1.00$
$\alpha_{s}=40$
$\lambda_{\mathrm{s}}=1$
$\mathrm{v}_{\mathrm{cpa}}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right)=\mathbf{3 7 9 . 4 7 3} \mathrm{psi}$
$\mathrm{v}_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=414.753 \mathrm{psi}$
$\mathrm{v}_{\mathrm{cpc}}=4 \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=252.982 \mathrm{psi}$
$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{V}_{\mathrm{cpa}}, \mathrm{V}_{\mathrm{cpb}}, \mathrm{V}_{\mathrm{cpc}}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi_{v}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi v_{n}=\phi_{v} \times v_{n}=189.737 \mathrm{psi}$
$V_{\text {ug }} / \phi V_{\mathrm{n}}=0.013$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

19 - GRID H FOOTING

Footing analysis in accordance with ACI318-19
Tedds calculation version 3.3.02
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.7			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.93	1.5	0.620	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.3	34.9	0.009	Pass
Moment, positive, y-direction	kip_ft	0.3	32.3	0.010	Pass
Shear, two-way, Col 1	psi	2.411	189.737	0.013	Pass
Min.area of reinf, bot., x-direction	in 2	0.518	0.930		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	8.6		Pass
Min.area of reinf, bot., y-direction	in ${ }^{2}$	0.518	0.930		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	8.6		Pass

Pad footing details

Length of footing
Width of footing
Footing area
Depth of footing
Depth of soil over footing
Density of concrete
$\mathrm{L}_{\mathrm{x}}=\mathbf{2} \mathrm{ft}$
$\mathrm{L}_{\mathrm{y}}=\mathbf{2 \mathrm { ft }}$
$A=L_{x} \times L_{y}=4 \mathrm{ft}^{2}$
$h=12$ in
$\mathrm{h}_{\text {soil }}=12$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y -axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction

Footing loads

Self weight
Soil weight

Column no. 1 loads

Dead load in z
Live load in z
$\mathrm{I}_{\mathrm{x} 1}=10.00$ in
$\mathrm{l}_{\mathrm{y} 1}=10.00$ in
$\mathrm{x}_{1}=12.00$ in
$\mathrm{y}_{1}=12.00$ in
qalow_Gross $=1.5 \mathrm{ksf}$
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{tt}^{3}$
$\phi_{b}=30.0 \mathrm{deg}$
$\delta_{\text {bb }}=30.0 \mathrm{deg}$
$\tan \left(\delta_{\text {bb }}\right)=0.577$
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=150 \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=\mathbf{1 2 0} \mathrm{psf}$
$\mathrm{F}_{\mathrm{Dz} 1}=1.0 \mathrm{kips}$
$\mathrm{F}_{\mathrm{Lz} 1}=1.7 \mathrm{kips}$

Footing analysis for soil and stability
Load combinations per ASCE 7-16
1.0D (0.345)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.620)

Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis
$F_{d z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soil }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=3.7 \mathrm{kips}$
Moments on footing
Moment in x -axis, about x is 0

Moment in y-axis, about y is 0

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dz}}=3.72 \mathrm{kips}$
PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0$ in
Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{dy}}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=0$ in
Pad base pressures

Minimum base pressure
Maximum base pressure
$q_{1}=F_{d z} \times\left(1-6 \times e_{d x} / L_{x}-6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{3}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{4}=\mathrm{F}_{\mathrm{dz}} \times\left(1+6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}+6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=0.93 \mathrm{ksf}$
$q_{\text {min }}=\min \left(q_{1}, q_{2}, q_{3}, q_{4}\right)=0.93 \mathrm{ksf}$
$\mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=0.93 \mathrm{ksf}$
Allowable bearing capacity
Allowable bearing capacity
$q_{\text {allow }}=$ qallow_Gross $=1.5 \mathrm{ksf}$
$q_{\text {max }} /$ qallow $=0.620$
PASS - Allowable bearing capacity exceeds design base pressure

19 - GRID H FOOTING

Footing design in accordance with $\mathrm{ACl} 318-19$

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
Cover to top of footing
Cover to side of footing
$\mathrm{f}^{\prime}{ }_{c}=4000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$
$\varepsilon_{\text {ty }}=0.00200$
$\mathrm{Cnom}_{\mathrm{n}} \mathrm{t}=3$ in
$\mathrm{Cnom}_{\text {_s }}=3$ in

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

$\mathrm{C}_{\text {nom_b }}=3$ in
Normal weight
$\lambda=1.00$
Concrete

Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.004)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}(0.013)$
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on footing

Ultimate force in z-axis

Moments on footing

Ultimate moment in x-axis, about x is 0

Ultimate moment in y-axis, about y is 0

Eccentricity of base reaction
Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$F_{u z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soil }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=5.1 \mathrm{kips}$
$M_{u x}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{x} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times X_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$ $\left.\mathrm{x}_{1}\right)=5.1 \mathrm{kip} _\mathrm{ft}$
$M_{u y}=\gamma_{D} \times\left(A \times\left(F_{s w t}+F_{\text {soii }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$ $\left.\mathrm{y}_{1}\right)=5.1 \mathrm{kip} _\mathrm{ft}$
$\mathrm{e}_{\mathrm{ux}}=\mathrm{M}_{\mathrm{ux}} / F_{\mathrm{uz}}-\mathrm{L}_{\mathrm{x}} / 2=0 \mathrm{in}$
$\mathrm{e}_{\mathrm{uy}}=\mathrm{M}_{\mathrm{uy}} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{y}} / 2=0$ in
$q_{u 1}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u 2}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u 3}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u 4}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.281 \mathrm{ksf}$
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=1.281 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{\mathrm{u} 1}, q_{\mathrm{u} 2}, q_{\mathrm{u}}, q_{\mathrm{u} 4}\right)=1.281 \mathrm{ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	5
Client Rowell Brokaw	Revised	
	Date	Job No.
223346		

Moment diagram, x axis (kip_ft)

Moment design, x direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{\text {u. . } \text { max }}=\mathbf{0 . 3 2 6} \mathrm{kip} \mathrm{ft}$
3 No. 5 bottom bars (8.6 in c/c)
$\mathrm{A}_{\text {sx.bot.prov }}=0.93 \mathrm{in}^{2}$
$A_{s . \min }=0.0018 \times L_{y} \times h=0.518 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times \mathrm{h}, 18 \mathrm{in})=18 \mathrm{in}$
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

$$
\begin{aligned}
& d=h-C_{\text {nom_b }}-\phi_{x . b o t} / 2=8.688 \text { in } \\
& a=A_{\text {sx.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{y}\right)=0.684 \text { in } \\
& \beta_{1}=0.85 \\
& c=a / \beta_{1}=0.804 \text { in } \\
& \varepsilon_{t}=0.003 \times d / c-0.003=0.02940 \\
& \varepsilon_{\min }=\varepsilon_{\text {ty }}+0.003=0.00500
\end{aligned}
$$

PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sx.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=38.807 \mathrm{kip} \mathrm{ft}$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{t}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=34.926 \mathrm{kip} _\mathrm{ft}$
$M_{u . x . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.009$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, x direction
One-way shear design does not apply. Shear failure plane fall outside extents of foundation.
Shear diagram, y axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	6
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment diagram, y axis (kip_ft)

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{u . y \text { max }}=0.326 \mathrm{kip} \mathrm{ft}$
3 No. 5 bottom bars (8.6 in c/c)
$A_{\text {sy.bot.prov }}=0.93$ in 2
$\mathrm{A}_{\mathrm{s} . \min }=0.0018 \times \mathrm{L}_{\mathrm{x}} \times \mathrm{h}=0.518 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-$ Cnom_b $-\phi_{\mathrm{x} \text {.bot }}-$ фy.bot $/ 2=8.062$ in
$a=A_{\text {sy.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{x}\right)=0.684$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.804 \mathrm{in}$
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=0.02707$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=35.901 \mathrm{kip} \mathrm{ft}$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{t}-\varepsilon_{t y}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=32.311 \mathrm{kip} _\mathrm{ft}$
$M_{u . y . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.010$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
One-way shear design does not apply. Shear failure plane fall outside extents of foundation.
Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\mathrm{d}_{\mathrm{v} 2}=8.375$ in
$\mathrm{I}_{\mathrm{xp}}=18.375$ in
$\mathrm{l}_{\mathrm{yp}}=18.375 \mathrm{in}$
$b_{0}=2 \times\left(l_{1} 1+d_{v 2}\right)+2 \times\left(l_{y 1}+d_{v 2}\right)=73.500$ in
$A_{p}=l_{x, \text { perim }} \times l_{\text {l.perim }}=337.641$ in 2
$A_{\text {sur }}=A_{p}-I_{x 1} \times l_{y 1}=237.641 \mathrm{in}^{2}$
Ultimate bearing pressure at center of shear area

$$
q_{\text {up. avg }}=1.281 \mathrm{ksf}
$$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Ultimate shear load

Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Size effect factor (22.5.5.1.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}-q_{u p . a v g} \times$ $\mathrm{A}_{\mathrm{p}}=1.484 \mathrm{kips}$
$v_{u g}=\max \left(F_{u p} /\left(b_{o} \times d_{v 2}\right), 0 \mathrm{psi}\right)=2.411 \mathrm{psi}$
$\beta=l_{y 1} / l_{x 1}=1.00$
$\alpha_{s}=40$
$\lambda_{\mathrm{s}}=1$
$\mathrm{v}_{\text {cpa }}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times V\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times{ }^{\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right)=414.753 \mathrm{psi}, ~}$
$v_{\mathrm{cpc}}=4 \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=252.982 \mathrm{psi}$
$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{v}_{\mathrm{cpa}}, \mathrm{v}_{\mathrm{cpb}}, \mathrm{V}_{\mathrm{cpc}}\right)=252.982 \mathrm{psi}$
$\phi_{v}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi V_{n}=\phi_{v} \times V_{n}=189.737 \mathrm{psi}$
$V_{\text {ug }} / \phi V_{\mathrm{n}}=0.013$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

20 - GRID C FOOTING

Footing analysis in accordance with ACI318-19
Tedds calculation version 3.3.02
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	10.8			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.194	1.5	0.796	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	2.5	46.8	0.052	Pass
Moment, positive, y-direction	kip_ft	2.5	43.3	0.057	Pass
Shear, one-way, x-direction	kips	1.7	18.8	0.092	Pass
Shear, one-way, y-direction	kips	1.7	17.9	0.096	Pass
Shear, two-way, Col 1	psi	14.907	189.737	0.079	Pass
Min.area of reinf, bot., x-direction	in ${ }^{2}$	0.778	1.240		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	9.7		Pass
Min.area of reinf, bot., y-direction	in ${ }^{2}$	0.778	1.240		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	9.7	Pass	

Pad footing details

Length of footing
Width of footing
Footing area
Depth of footing
Depth of soil over footing
Density of concrete
$\mathrm{L}_{\mathrm{x}}=\mathbf{3} \mathrm{ft}$
$\mathrm{L}_{\mathrm{y}}=3 \mathrm{ft}$
$\mathrm{A}=\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}=9 \mathrm{ft}^{2}$
$h=12$ in
$\mathrm{h}_{\text {soil }}=12$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Portland, Oregon	Project OSU Azalea Ho	By MAA	Sheet No.
	Location Corvallis, OR	Date 2/12/2024	
	Client Rowell Brokaw	Revised	Job No. 223346
		Date	

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y-axis
Soil properties
Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction

Footing loads

Self weight
Soil weight

Column no. 1 loads

Dead load in z
Live load in z
$\mathrm{I}_{\mathrm{x} 1}=10.00$ in
$\mathrm{l}_{\mathrm{y} 1}=10.00 \mathrm{in}$
$\mathrm{x}_{1}=18.00$ in
$y_{1}=18.00$ in
qallow_Gross $=1.5 \mathrm{ksf}$
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi_{b}=30.0 \mathrm{deg}$
$\delta_{\text {bb }}=\mathbf{3 0 . 0}$ deg
$\tan \left(\delta_{\text {bь }}\right)=0.577$
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=150 \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=120 \mathrm{psf}$
$F_{D z 1}=1.9$ kips
$F_{\mathrm{Lz} 1}=6.4 \mathrm{kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16
1.0D (0.322)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.796)

Combination 2 results: 1.0D + 1.0L
Forces on footing
Force in z-axis
$F_{d z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soii }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=10.8 \mathrm{kips}$
Moments on footing
Moment in x -axis, about x is 0

Moment in y -axis, about y is 0

Uplift verification

Vertical force
$F_{d z}=10.75 \mathrm{kips}$
PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0$ in
Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{dy}}=\mathrm{M}_{\mathrm{dy}} / \mathrm{F}_{\mathrm{dz}}-\mathrm{L}_{\mathrm{y}} / 2=0$ in
Pad base pressures

Minimum base pressure
Maximum base pressure
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=1.194 \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / L_{x}+6 \times \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=1.194 \mathrm{ksf}$
$q_{3}=F_{d z} \times\left(1+6 \times e_{d x} / L_{x}-6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.194 k s f$
$q_{4}=F_{d z} \times\left(1+6 \times e_{d x} / L_{x}+6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.194 \mathrm{ksf}$
$\mathrm{q}_{\text {min }}=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=1.194 \mathrm{ksf}$
$\mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=1.194 \mathrm{ksf}$
Allowable bearing capacity
Allowable bearing capacity
$q_{\text {allow }}=$ qallow_Gross $=1.5 \mathrm{ksf}$
$q_{\text {max }} / q_{\text {allow }}=0.796$
PASS - Allowable bearing capacity exceeds design base pressure

20 - GRID C FOOTING

Footing design in accordance with $\mathrm{ACl} 318-19$

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=\mathbf{6 0 0 0 0} \mathrm{psi}$
$\varepsilon_{\text {ty }}=0.00200$
Cover to top of footing
Cover to side of footing
$\mathrm{Cnom}_{\text {_ }}=3$ in
$C_{\text {nom_s }}=3$ in

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing
Concrete type
Concrete modification factor
Column type
Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.021)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$ (0.096)
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on footing

Ultimate force in z-axis

Moments on footing

Ultimate moment in x -axis, about x is 0

Ultimate moment in y -axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$\mathrm{Cnom}_{\text {_ }}=3$ in
Normal weight
$\lambda=1.00$
Concrete
$F_{\mathrm{uz}}=\gamma_{\mathrm{D}} \times A \times\left(F_{\text {swt }}+F_{\text {soil }}\right)+\gamma_{\mathrm{D}} \times \mathrm{F}_{\mathrm{Dz} 1}+\gamma_{L} \times \mathrm{F}_{\mathrm{Lz} 1}=15.5 \mathrm{kips}$
$M_{\mathrm{ux}}=\gamma_{\mathrm{D}} \times\left(\mathrm{A} \times\left(\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {soil }}\right) \times \mathrm{L}_{\mathrm{x}} / 2\right)+\gamma_{\mathrm{D}} \times\left(\mathrm{F}_{\mathrm{Dz} 1} \times \mathrm{x}_{1}\right)+\gamma \mathrm{L} \times\left(\mathrm{F}_{\mathrm{Lz} 1} \times\right.$
$\left.\mathrm{x}_{1}\right)=23.2 \mathrm{kip} \mathrm{ft}$
$M_{u y}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)+\gamma L \times\left(F_{L z 1} \times\right.$ $\left.y_{1}\right)=23.2$ kip_ft
$\mathrm{e}_{\mathrm{ux}}=\mathrm{Mux}_{\mathrm{ux}} / F_{\mathrm{uz}}-\mathrm{L}_{\mathrm{x}} / 2=0$ in
$\mathrm{e}_{\mathrm{uy}}=\mathrm{M}_{\mathrm{uy}} / \mathrm{F}_{\mathrm{uz}}-\mathrm{L}_{\mathrm{y}} / 2=0$ in
$\mathrm{q}_{\mathrm{u} 1}=\mathrm{F}_{\mathrm{uz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{ux}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{uy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=1.718 \mathrm{ksf}$
$q_{u 2}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.718 \mathrm{ksf}$
$q_{u 3}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.718 \mathrm{ksf}$
$q_{u 4}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.718 \mathrm{ksf}$
$\mathrm{qumin}_{\mathrm{min}}=\min \left(\mathrm{q}_{\mathrm{u}}, \mathrm{qu}_{\mathrm{u}}, \mathrm{q}_{\mathbf{u}}, \mathrm{q}_{\mathrm{u}}\right)=1.718 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=1.718 \mathrm{ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	5
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment diagram, x axis (kip_ft)

Moment design, \mathbf{x} direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{u . \times \text { max }}=2.454 \mathrm{kip} \mathrm{ft}$
4 No. 5 bottom bars (9.7 in c/c)
$A_{\text {sx.bot.prov }}=1.24 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s} \text {. } \text { min }}=0.0018 \times \mathrm{L}_{\mathrm{y}} \times \mathrm{h}=0.778 \mathrm{in}^{2}$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times \mathrm{h}, 18 \mathrm{in})=\mathbf{1 8}$ in

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, \mathbf{x} direction
Ultimate shear force
Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity
$\mathrm{d}=\mathrm{h}-\mathrm{C}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }} / 2=8.688$ in
$a=A_{\text {sx.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{y}\right)=0.608$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.715 \mathrm{in}$
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=0.03345$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$M_{n}=A_{\text {sx.bot.prov }} \times f_{y} \times(d-a / 2)=51.978$ kip_ft
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{t}-\varepsilon_{t y}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=46.78 \mathrm{kip} \mathrm{ft}$
$M_{u . x . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.052$
PASS - Design moment capacity exceeds ultimate moment load
$V_{u . x}=1.72 \mathrm{kips}$
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{Cnom} _\mathrm{b}-\phi_{\mathrm{x} . \text { bot }} / 2=8.688 \mathrm{in}$
$\lambda_{s}=1$
$\rho_{w}=A_{\text {sx.bot.prov }} /\left(L_{y} \times d_{y}\right)=0.00396$
$\phi_{v}=0.75$
$\mathrm{V}_{\mathrm{n}}=\min \left(8 \times \lambda_{\mathrm{s}} \times \lambda \times\left(\rho_{\mathrm{w}}\right)^{1 / 3} \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right) \times \mathrm{L}_{\mathrm{y}} \times \mathrm{d}_{\mathrm{v}}, 5 \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times \times\right.\right.$
$\left.1 \mathrm{psi}) \times \mathrm{L}_{y} \times \mathrm{dv}_{\mathrm{v}}\right)=\mathbf{2 5 . 0 4 5} \mathrm{kips}$
$\phi V_{n}=\phi_{v} \times V_{n}=18.784 \mathrm{kips}$
$\mathrm{V}_{\mathrm{u} . \mathrm{x}} / \phi \mathrm{V}_{\mathrm{n}}=0.092$

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date $2 / 12 / 2024$ |
| | Revised | |
| | | Date |

PASS - Design shear capacity exceeds ultimate shear load Shear diagram, y axis (kips)

Moment diagram, y axis (kip_ft)
2.5

0

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)
$M_{u . y \text {.max }}=2.454$ kip_ft
4 No. 5 bottom bars (9.7 in c/c)
$A_{\text {sy.bot.prov }}=1.24$ in 2
$\mathrm{A}_{\mathrm{s} \text {. } \mathrm{min}}=0.0018 \times \mathrm{L}_{\mathrm{x}} \times \mathrm{h}=0.778$ in 2
PASS - Area of reinforcement provided exceeds minimum
$S_{\text {max }}=\min (2 \times h, 18$ in $)=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}} \mathrm{b}-$ фx.bot - фy.bot $/ 2=8.062$ in
$a=A_{\text {sy.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{x}\right)=0.608$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=\mathbf{0 . 7 1 5}$ in
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 3 0 8 2}$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$M_{n}=A_{\text {sy.bot.prov }} \times f_{y} \times(d-a / 2)=48.103$ kip_ft
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{f} \times \mathrm{M}_{\mathrm{n}}=43.293 \mathrm{kip} _\mathrm{ft}$
$M_{u . \text {. } \text { max }} / \phi \mathrm{M}_{\mathrm{n}}=0.057$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
Ultimate shear force
$V_{\text {u.y }}=1.72 \mathrm{kips}$

| | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Location Corvallis, OR | Sheet No. | |
| Portland, Oregon | Client Rowell Brokaw | Revised |
| | | Date |

Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity

$$
\begin{aligned}
& d_{\mathrm{v}}=\mathrm{h}-\mathrm{C}_{\mathrm{nom} _\mathrm{b}}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062 \mathrm{in} \\
& \lambda_{\mathrm{s}}=1 \\
& \rho_{\mathrm{w}}=A_{\text {sy.bot.prov }} /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=0.00427 \\
& \phi_{\mathrm{v}}=0.75 \\
& \mathrm{~V}_{\mathrm{n}}=\min \left(8 \times \lambda_{\mathrm{s}} \times \lambda \times\left(\rho_{\mathrm{w}}\right)^{1 / 3} \times V\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}, 5 \times \lambda \times V\left(\mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}} \times\right.\right. \\
& \left.1 \mathrm{psi}) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=23.829 \mathrm{kips} \\
& \phi \mathrm{~V}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=17.872 \mathrm{kips} \\
& \mathrm{~V}_{\text {u.y }} / \phi \mathrm{V}_{\mathrm{n}}=0.096
\end{aligned}
$$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\mathrm{d}_{\mathrm{v} 2}=8.375 \mathrm{in}$
$I_{x p}=18.375$ in
$l_{y p}=18.375 \mathrm{in}$
$b_{o}=2 \times\left(\mathrm{l}_{\mathrm{x} 1}+\mathrm{d}_{\mathrm{v} 2}\right)+2 \times\left(\mathrm{l}_{\mathrm{y} 1}+\mathrm{d}_{\mathrm{v} 2}\right)=73.500$ in
$A_{p}=I_{x, \text { perim }} \times l_{y, \text { perim }}=337.641 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-I_{x 1} \times I_{y 1}=237.641$ in 2

Ultimate bearing pressure at center of shear area $\quad q_{u p . a v g}=1.718 \mathrm{ksf}$
Ultimate shear load
$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}-q_{\text {up.avg }} \times$
$A_{p}=9.176 \mathrm{kips}$
Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Size effect factor (22.5.5.1.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$v_{\mathrm{ug}}=\max \left(\mathrm{F}_{\mathrm{up}} /\left(\mathrm{b}_{\mathrm{o}} \times \mathrm{d}_{\mathrm{v} 2}\right), 0 \mathrm{psi}\right)=14.907 \mathrm{psi}$
$\beta=l_{y 1} / l_{x 1}=1.00$
$\alpha_{s}=40$
$\lambda_{\mathrm{s}}=1$
$v_{\text {cpa }}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times V\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}} \times 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times V^{\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right)=414.753 \mathrm{psi}, ~}$

$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{v}_{\mathrm{cpa}}, \mathrm{v}_{\mathrm{cpb}}, \mathrm{v}_{\mathrm{cpc}}\right)=252.982 \mathrm{psi}$
$\phi_{v}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi v_{n}=\phi_{v} \times V_{n}=189.737 \mathrm{psi}$
$V_{u g} / \phi V_{n}=0.079$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

21 - ENTRY CANOPY FOOTING

Footing analysis in accordance with ACl 318 -19
Tedds calculation version 3.3.02
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.2			Pass
Overturning stability, x	kip_ft	2.49	-4.76	1.91	Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.987	1.5	0.658	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.6	46.8	0.013	Pass
Moment, positive, y-direction	kip_ft	0.3	43.3	0.008	Pass
Shear, one-way, x-direction	kips	0.4	18.8	0.024	Pass
Shear, one-way, y-direction	kips	0.2	17.9	0.013	Pass
Shear, two-way, Col 1	psi	1.928	189.737	0.010	Pass
Min.area of reinf, bot., x-direction	in ${ }^{2}$	0.778	1.240		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	9.7		Pass
Min.area of reinf, bot., y-direction	in ${ }^{2}$	0.778	1.240		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	9.7	Pass	

Pad footing details

Length of footing
Width of footing
Footing area
Depth of footing
Depth of soil over footing
Density of concrete

$$
\begin{aligned}
& \mathrm{L}_{x}=\mathbf{3 \mathrm { ft }} \\
& \mathrm{L}_{y}=\mathbf{~ f t} \\
& \mathrm{A}=\mathrm{L}_{x} \times \mathrm{L}_{y}=9 \mathrm{ft}^{2} \\
& \mathrm{~h}=12 \mathrm{in} \\
& \mathrm{~h}_{\text {soil }}=12 \mathrm{in} \\
& \gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

| | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portand, Oregon | Location Corvallis, OR | Date $2 / 12 / 2024$ |
| | Revised | |
| | | Date |

0.987 ksf

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y-axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction
Self weight
Soil weight
$\mathrm{I}_{\mathrm{x} 1}=10.00 \mathrm{in}$
$\mathrm{l}_{\mathrm{y} 1}=10.00 \mathrm{in}$
$\mathrm{x}_{1}=18.00$ in
$y_{1}=18.00$ in
$q_{\text {allow_Gross }}=1.5 \mathrm{ksf}$
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi_{b}=\mathbf{3 0 . 0} \mathrm{deg}$
$\delta_{\mathrm{bb}}=\mathbf{3 0 . 0} \mathrm{deg}$
$\tan \left(\delta_{\text {bь }}\right)=0.577$
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=150 \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=120 \mathrm{psf}$

Column no. 1 loads

Dead load in z
$F_{D z 1}=0.5 \mathrm{kips}$
Live load in z
Dead load moment in x
Live load moment in x
Seismic load moment in x
$F_{L z 1}=0.8 \mathrm{kips}$
$M_{\mathrm{Dx} 1}=0.2 \mathrm{kip} \mathrm{ft}$
$M_{\text {Lx1 }}=0.4$ kip_ft
$\mathrm{M}_{\mathrm{Ex} 1}=3.2$ kip_ft

Footing analysis for soil and stability

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Load combinations per ASCE 7-16

1.0D (0.247)
$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.359)$
$\left(1.0+0.14 \times S_{D S}\right) D+0.7 E(0.658)$
Combination 10 results: $\left(1.0+0.14 \times S_{\text {ds }}\right) D+0.7 E$
Forces on footing
Force in z-axis
$F_{d z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soil }}\right)+\gamma_{D} \times F_{D z 1}=3.2 \mathrm{kips}$

Moments on footing

Moment in x-axis, about x is 0

$$
\begin{aligned}
& M_{d x}=\gamma_{D} \times\left(A \times\left(F_{s w t}+F_{s o i l}\right) \times L_{x} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times x_{1}+M_{D \times 1}\right)+\gamma_{E} \times \\
& \left(M_{E x 1}\right)=7.3 \mathrm{kip} f t \\
& M_{d y}=\gamma_{D} \times\left(A \times\left(F_{s w t}+F_{\text {soil }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)=4.8 \mathrm{kip} f t
\end{aligned}
$$

Moment in y -axis, about y is 0

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dz}}=3.174 \mathrm{kips}$
PASS - Footing is not subject to uplift
Stability against overturning in \mathbf{x} direction, moment about x is L_{x}

Overturning moment
Resisting moment

Factor of safety
$M_{O T x L}=\gamma_{D} \times\left(M_{D x 1}\right)+\gamma_{E} \times\left(M_{E x 1}\right)=2.49 \mathrm{kip} f t$
$M_{R x L}=-1 \times\left(\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{x} / 2\right)\right)+\gamma_{D} \times\left(F_{D z 1} \times\left(x_{1}-L_{x}\right)\right)=$ -4.76 kip_ft
$\operatorname{abs}\left(\mathrm{M}_{\mathrm{RxL}} /\right.$ MotxL $)=1.910$
PASS - Overturning moment safety factor exceeds the minimum of 1.50

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Length of bearing in x-axis
Pad base pressures

Minimum base pressure
Maximum base pressure
Allowable bearing capacity
Allowable bearing capacity
$\mathrm{e}_{\mathrm{dx}}=M_{d x} / F_{d z}-L_{x} / 2=9.426 \mathrm{in}$
$\mathrm{e}_{\mathrm{dy}}=M_{d y} / F_{d z}-L_{y} / 2=0$ in
$L_{x d}^{\prime}=\min \left(L_{x}, 3 \times\left(L_{x} / 2-\operatorname{abs}\left(e_{d x}\right)\right)\right)=\mathbf{2 5 . 7 2 1}$ in
$\mathrm{q}_{1}=\mathbf{0} \mathrm{ksf}$
$\mathrm{q}_{2}=0 \mathrm{ksf}$
$\mathrm{q}_{3}=2 \times \mathrm{F}_{\mathrm{dz}} /\left(3 \times \mathrm{L}_{\mathrm{y}} \times\left(\mathrm{L}_{\mathrm{x}} / 2-\mathrm{e}_{\mathrm{dx}}\right)\right)=0.987 \mathrm{ksf}$
$\mathrm{q}_{4}=2 \times \mathrm{F}_{\mathrm{dz}} /\left(3 \times \mathrm{L}_{\mathrm{y}} \times\left(\mathrm{L}_{\mathrm{x}} / 2-\mathrm{e}_{\mathrm{dx}}\right)\right)=0.987 \mathrm{ksf}$
$q_{\text {min }}=\min \left(q_{1}, q_{2}, q_{3}, q_{4}\right)=0 \mathrm{ksf}$
$\mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=0.987 \mathrm{ksf}$
$q_{\text {allow }}=$ qallow_Gross $=1.5 \mathrm{ksf}$
$q_{\max } / q_{\text {allow }}=0.658$
PASS - Allowable bearing capacity exceeds design base pressure

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

21 - ENTRY CANOPY FOOTING

Footing design in accordance with ACl318-19
Tedds calculation version 3.3.02

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi}$
$\varepsilon_{\text {ty }}=0.00200$
$\mathrm{Cnom}_{\text {_t }}=3 \mathrm{in}$
$\mathrm{C}_{\text {nom_s }}=\mathbf{3}$ in
Cnom_b $=3$ in
Normal weight
$\lambda=1.00$
Concrete

Analysis and design of concrete footing

Load combinations per ASCE 7-16
1.4D (0.005)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \operatorname{Lr}(0.013)$
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$
Forces on footing
Ultimate force in z-axis

Moments on footing

Ultimate moment in x-axis, about x is 0

Ultimate moment in y-axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis

Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$F_{u z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soil }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=4.7 \mathrm{kips}$
$M_{u x}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{x} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times X_{1}+M_{D x 1}\right)+\gamma_{L} \times$
$\left(F_{\mathrm{Lz} 1} \times \mathrm{X}_{1}+\mathrm{M}_{\mathrm{Lx} 1}\right)=7.9 \mathrm{kip} \mathrm{ft}$
$M_{u y}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$ $\left.y_{1}\right)=7.0 \mathrm{kip} _\mathrm{ft}$
$e_{u x}=M_{u x} / F_{u z}-L_{x} / 2=2.278$ in
$e_{u y}=M_{u y} / F_{u z}-L_{y} / 2=0$ in
$q_{u 1}=0.321 \mathrm{ksf}$
$q_{\mathrm{u} 2}=0.321 \mathrm{ksf}$
$q_{u 3}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=0.714 \mathrm{ksf}$
$q_{u 4}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=0.714 \mathrm{ksf}$
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=0.321 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=0.714 \mathrm{ksf}$

	Project OSU Azalea Ho	By MAA	Sheet No.
	Location Corvallis, OR	Date 2/12/2024	
	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	

Shear diagram, x axis (kips)

Moment diagram, x axis (kip_ft)
0.6

Moment design, x direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)
$M_{\text {u.x. } \text { max }}=0.603$ kip_ft
4 No. 5 bottom bars ($9.7 \mathrm{in} \mathrm{c/c)}$
$\mathrm{A}_{\text {sx.bot.prov }}=1.24 \mathrm{in}^{2}$
$A_{s . \min }=0.0018 \times L_{y} \times h=0.778 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-\mathrm{C}_{\text {nom_b }} \mathrm{b}-\phi_{\mathrm{x} . \text { bot }} / 2=8.688 \mathrm{in}$
$a=A_{s x . b o t . p r o v} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{y}\right)=0.608$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.715 \mathrm{in}$
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 3 3 4 5}$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{sx} . \text { bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=51.978 \mathrm{kip} \mathrm{ft}$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=46.78 \mathrm{kip} _\mathrm{ft}$
$M_{u . x . \max } / \phi M_{n}=0.013$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction
Ultimate shear force
Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
$V_{\text {u.x }}=0.448 \mathrm{kips}$
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-$ Cnom_b $-\phi_{\mathrm{x} . \text { bot }} / 2=8.688$ in
$\lambda_{\mathrm{s}}=1$
$\rho_{\mathrm{w}}=\mathrm{A}_{\mathrm{sx} . \text { bot.prov }} /\left(\mathrm{L}_{\mathrm{y}} \times \mathrm{d}_{\mathrm{v}}\right)=\mathbf{0 . 0 0 3 9 6}$

Project OSU Azalea House	By MAA

Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity
$\phi_{v}=0.75$
$V_{n}=\min \left(8 \times \lambda_{s} \times \lambda \times\left(\rho_{w}\right)^{1 / 3} \times \sqrt{ }\left(f_{c}{ }_{c} \times 1 \mathrm{psi}\right) \times L_{y} \times d_{v}, 5 \times \lambda \times V\left(\mathrm{f}^{\prime}{ }_{c} \times\right.\right.$
$\left.1 \mathrm{psi}) \times \mathrm{L}_{\mathrm{y}} \times \mathrm{d}_{\mathrm{v}}\right)=\mathbf{2 5 . 0 4 5} \mathrm{kips}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=18.784 \mathrm{kips}$
$V_{u . x} / \phi V_{n}=0.024$
PASS - Design shear capacity exceeds ultimate shear load
Shear diagram, y axis (kips)

Moment diagram, y axis (kip_ft)
0.3

0

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{\text {u.y.max }}=0.34$ kip_ft
4 No. 5 bottom bars (9.7 inc c)
Asy.bot.prov $=1.24 \mathrm{in}^{2}$
$A_{s . \text { min }}=0.0018 \times L_{x} \times h=0.778 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times h, 18 \mathrm{in})=18$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}_{\mathrm{n}} \mathrm{b}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062$ in
$a=A_{\text {sy.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{x}\right)=0.608$ in
$\beta_{1}=0.85$
$c=a / \beta_{1}=0.715 \mathrm{in}$
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003 \mathbf{= 0 . 0 3 0 8 2}$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$M_{n}=A_{\text {sy.bot.prov }} \times f_{y} \times(d-a / 2)=48.103 \mathrm{kip} _f t$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=0.900$

Design moment capacity
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=43.293 \mathrm{kip} \mathrm{ft}$
$M_{\text {u.y.max }} / \phi M_{\mathrm{n}}=0.008$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
Ultimate shear force
Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\phi \mathrm{V}_{\mathrm{n}}=\phi_{\mathrm{V}} \times \mathrm{V}_{\mathrm{n}}=17.872 \mathrm{kips}$
$V_{\text {u.y }} / \phi V_{\mathrm{n}}=0.013$
PASS - Design shear capacity exceeds ultimate shear load
$V_{\text {u. }}=0.239 \mathrm{kips}$
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{Cnom}_{\text {nob }}-\phi_{\mathrm{x} \text {.bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062$ in
$\lambda_{\mathrm{s}}=1$
$\rho_{w}=A_{\text {sy.bot.prov }} /\left(L_{x} \times d_{v}\right)=0.00427$
$\phi_{v}=0.75$
$V_{n}=\min \left(8 \times \lambda_{s} \times \lambda \times\left(\rho_{w}\right)^{1 / 3} \times \sqrt{ }\left(f_{c} \times 1 p s i\right) \times L_{x} \times d_{v}, 5 \times \lambda \times \sqrt{ }\left(f_{c}{ }_{c} \times\right.\right.$
$1 \mathrm{psi}) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}$) $=23.829 \mathrm{kips}$
$d_{v 2}=8.375$ in
$I_{x p}=18.375$ in
$I_{y p}=18.375$ in
$b_{o}=2 \times\left(I_{x 1}+d_{v 2}\right)+2 \times\left(l_{y 1}+d_{v 2}\right)=\mathbf{7 3 . 5 0 0}$ in
$A_{p}=I_{x, \text { perim }} \times l_{y, p e r i m}=337.641 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-I_{x 1} \times l_{y 1}=237.641 \mathrm{in}^{2}$

$$
q_{\text {up.avg }}=0.517 \mathrm{ksf}
$$

$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}-q_{\text {up.avg }} \times$
$A_{p}=1.187 \mathrm{kips}$
Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
$v_{\text {ug }}=\max \left(F_{\text {up }} /\left(\mathrm{b}_{\mathrm{o}} \times \mathrm{d}_{\mathrm{v} 2}\right), 0 \mathrm{psi}\right)=1.928 \mathrm{psi}$
$\beta=l_{y 1} / l_{x 1}=1.00$
Column location factor (22.6.5.3)
Size effect factor (22.5.5.1.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
$\alpha_{s}=40$
$\lambda_{\mathrm{s}}=1$
$\mathrm{v}_{\mathrm{cpa}}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times V\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=414.753 \mathrm{psi}$
$v_{\mathrm{cpc}}=4 \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=252.982 \mathrm{psi}$
$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{v}_{\mathrm{cpa}}, \mathrm{v}_{\mathrm{cpb}}, \mathrm{v}_{\mathrm{cpc}}\right)=252.982 \mathrm{psi}$
$\phi_{v}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=252.982 \mathrm{psi}$
Design shear stress capacity (8.5.1.1(d))
$\phi v_{n}=\phi_{v} \times V_{n}=189.737 \mathrm{psi}$
$\mathrm{V}_{\mathrm{ug}} / \phi \mathrm{V}_{\mathrm{n}}=0.010$
PASS - Design shear stress capacity exceeds ultimate shear stress load

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

22 - EXISTING GRID 8 FOOTING

Footing analysis in accordance with ACl 318 -19
Tedds calculation version 3.3.02
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	30.1			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.883	2.5	0.753	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	12.2	58.6	0.209	Pass
Moment, positive, y-direction	kip_ft	12.2	54.2	0.226	Pass
Shear, one-way, x-direction	kips	8.9	24.5	0.363	Pass
Shear, one-way, y-direction	kips	8.9	23.3	0.381	Pass
Shear, two-way, Col 1	psi	53.965	189.737	0.284	Pass
Min.area of reinf, bot., x-direction	in ${ }^{2}$	1.037	1.550		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.3		Pass
Min.area of reinf, bot., y-direction	in ${ }^{2}$	1.037	1.550		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.3		Pass

Pad footing details

Length of footing
Width of footing
Footing area
Depth of footing
Depth of soil over footing
Density of concrete
$L_{x}=4 \mathrm{ft}$
$\mathrm{L}_{y}=4 \mathrm{ft}$
$A=L_{x} \times L_{y}=16 \mathrm{ft}^{2}$
$h=12$ in
$h_{\text {soil }}=12 \mathrm{in}$
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y -axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction

Footing loads

Self weight
Soil weight
Column no. 1 loads
Dead load in z
Live load in z
$\mathrm{I}_{\mathrm{x} 1}=10.00$ in
$\mathrm{l}_{\mathrm{y} 1}=10.00$ in
$\mathrm{x}_{1}=24.00$ in
$\mathrm{y}_{1}=24.00$ in

Gallow_Gross = 2.5 ksf
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi_{b}=30.0 \mathrm{deg}$
$\delta_{\mathrm{bb}}=\mathbf{3 0 . 0} \mathrm{deg}$
$\tan \left(\delta_{\text {bb }}\right)=0.577$
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=150 \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=120 \mathrm{psf}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16
1.0D (0.248)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

$1.0 \mathrm{D}+1.0 \mathrm{~L}(0.753)$
Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis
$F_{d z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soii }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=30.1 \mathrm{kips}$
Moments on footing
Moment in x -axis, about x is 0

Moment in y-axis, about y is 0

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dz}}=30.12 \mathrm{kips}$
PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0$ in
Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{dy}}=M_{d y} / F_{d z}-L_{y} / 2=0$ in

Pad base pressures

Minimum base pressure
Maximum base pressure
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=1.882 \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / L_{x}+6 \times \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=1.882 \mathrm{ksf}$
$q_{3}=F_{d z} \times\left(1+6 \times e_{d x} / L_{x}-6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.882 k s f$
$q_{4}=F_{d z} \times\left(1+6 \times e_{d x} / L_{x}+6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=1.882 \mathrm{ksf}$
$q_{\text {min }}=\min \left(q_{1}, q_{2}, q_{3}, q_{4}\right)=1.882 \mathrm{ksf}$
$q_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=1.882 \mathrm{ksf}$
Allowable bearing capacity
Allowable bearing capacity
$q_{\text {allow }}=$ qallow_Gross $=2.5 \mathrm{ksf}$
$q_{\max } /$ qallow $=0.753$
PASS - Allowable bearing capacity exceeds design base pressure

22 - EXISTING GRID 8 FOOTING

Footing design in accordance with ACl318-19

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}^{\prime}=4000 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi} \\
& \varepsilon_{\text {ty }}=\mathbf{0 . 0 0 2 0 0} \\
& \mathrm{C}_{\text {nom_t }}=3 \mathrm{in} \\
& \mathrm{C}_{\text {nom_s }}=3 \mathrm{in}
\end{aligned}
$$

Cover to top of footing
Cover to side of footing

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 12 / 2024$	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cnom_b $=3$ in
Normal weight
$\lambda=1.00$
Concrete

Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.077)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \operatorname{Lr}(0.381)$
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on footing

Ultimate force in z-axis

Moments on footing

Ultimate moment in x-axis, about x is 0

Ultimate moment in y-axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$F_{u z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{s o i l}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=44.2 \mathrm{kips}$
$M_{u x}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soil }}\right) \times L_{x} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times X_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$
$\left.\mathrm{X}_{1}\right)=88.4 \mathrm{kip}$ ft
$M_{u y}=\gamma_{D} \times\left(A \times\left(F_{s w t}+F_{\text {soii }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$ $\left.y_{1}\right)=88.4$ kip_ft
$e_{u x}=M_{u x} / F_{u z}-L_{x} / 2=0$ in
$e_{u y}=M_{u y} / F_{u z}-L_{y} / 2=0$ in
$q_{u 1}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=2.764 \mathrm{ksf}$
$q_{u 2}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=2.764 \mathrm{ksf}$
$q_{u 3}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=2.764 \mathrm{ksf}$
$q_{u 4}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=2.764 \mathrm{ksf}$
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=2.764 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=2.764 \mathrm{ksf}$

Shear diagram, x axis (kips)

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date $2 / 12 / 2024$ |
| | Revised | |
| | | Date |

Moment diagram, x axis (kip_ft)

12.2

0

Moment design, \mathbf{x} direction, positive moment
Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)

Maximum spacing of reinforcement (8.7.2.2)
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, x direction
Ultimate shear force
Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity
$\mathrm{d}=\mathrm{h}-\mathrm{C}_{\text {nom_b }}-\phi_{\mathrm{x} . \mathrm{bot}} / 2=8.688 \mathrm{in}$
$a=A_{\text {sx.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{y}\right)=0.570$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.670$ in
$\varepsilon_{t}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=0.03588$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=\mathbf{0 . 0 0 5 0 0}$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sx.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=65.12 \mathrm{kip} \mathrm{ft}$
$\phi_{\mathrm{f}}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{ty}}\right) /(0.003), 0.65\right), 0.9\right)=\mathbf{0 . 9 0 0}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=\mathbf{5 8 . 6 0 8} \mathrm{kip} \mathrm{ft}$
$M_{u . x . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.209$

PASS - Design moment capacity exceeds ultimate moment load

$V_{u . x}=8.896 \mathrm{kips}$
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-$ Cnom_b $-\phi_{\mathrm{x} . \text { bot }} / 2=8.688$ in
$\lambda_{s}=1$
$\rho_{w}=A_{\text {sx.bot.prov }} /\left(L_{y} \times d_{v}\right)=0.00372$
$\phi_{v}=0.75$
$V_{n}=\min \left(8 \times \lambda_{s} \times \lambda \times\left(\rho_{w}\right)^{1 / 3} \times \sqrt{ }\left(f_{c}^{\prime} \times 1 p s i\right) \times L_{y} \times d_{v}, 5 \times \lambda \times \sqrt{ }\left(f_{c}^{\prime} \times\right.\right.$
$\left.1 \mathrm{psi}) \times \mathrm{L}_{y} \times \mathrm{d}_{\mathrm{v}}\right)=32.683 \mathrm{kips}$
$\phi V_{n}=\phi_{v} \times V_{n}=24.512 \mathrm{kips}$
$\mathrm{V}_{\mathrm{u} . \mathrm{x}} / \phi \mathrm{V}_{\mathrm{n}}=0.363$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	6
Client Rowell Brokaw	Revised	Job No.
	Date	223346

PASS - Design shear capacity exceeds ultimate shear load Shear diagram, y axis (kips)

Moment diagram, y axis (kip_ft)
12.2

0

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{u y . \text {.max }}=12.234$ kip_ft
5 No. 5 bottom bars (10.3 in c/c)
$A_{\text {sy.bot.prov }}=1.55$ in 2
$\mathrm{A}_{\mathrm{s} \text {. } \text { min }}=0.0018 \times \mathrm{L}_{\mathrm{x}} \times \mathrm{h}=1.037 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times h, 18$ in $)=18$ in

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-\mathrm{Cnom}_{\text {n }} \mathrm{b}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062$ in
$a=A_{\text {sy.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{x}\right)=0.570$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=\mathbf{0 . 6 7 0}$ in
$\varepsilon_{t}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=0.03308$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=\mathbf{6 0 . 2 7 6} \mathrm{kip} \mathrm{ft}$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{t}-\varepsilon_{t y}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{f} \times \mathrm{M}_{\mathrm{n}}=54.249 \mathrm{kip} \mathrm{ft}$
$M_{u . \text { max }^{2}} / \phi \mathrm{M}_{\mathrm{n}}=0.226$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
Ultimate shear force
$V_{u . y}=8.896 \mathrm{kips}$

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date 2/12/2024 |
| | Revised | |
| | | Date |

Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{C}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062$ in
$\lambda_{\mathrm{s}}=1$
$\rho_{\mathrm{w}}=A_{\text {sy.bot.prov }} /\left(L_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=0.00401$
$\phi_{v}=0.75$
$V_{n}=\min \left(8 \times \lambda_{s} \times \lambda \times\left(\rho_{w}\right)^{1 / 3} \times \sqrt{ }\left(f_{c} \times 1 p s i\right) \times L_{x} \times d_{v}, 5 \times \lambda \times \sqrt{ }\left(f_{c}{ }_{c} \times\right.\right.$
$\left.1 \mathrm{psi}) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=31.096 \mathrm{kips}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=23.322 \mathrm{kips}$
$V_{\text {u.y }} / \phi V_{n}=0.381$
PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\mathrm{d}_{\mathrm{v} 2}=8.375 \mathrm{in}$
$I_{x p}=18.375 \mathrm{in}$
$\mathrm{l}_{\mathrm{yp}}=18.375 \mathrm{in}$
$\mathrm{b}_{\mathrm{o}}=2 \times\left(\mathrm{l}_{\mathrm{x} 1}+\mathrm{d}_{\mathrm{v} 2}\right)+2 \times\left(\mathrm{l}_{\mathrm{y} 1}+\mathrm{d}_{\mathrm{v} 2}\right)=73.500$ in
$A_{p}=l_{x, \text { perim }} \times l_{y, \text { perim }}=337.641 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-I_{x 1} \times I_{y 1}=237.641 \mathrm{in}^{2}$

Ultimate bearing pressure at center of shear area $\quad q_{\text {up.avg }}=2.764 \mathrm{ksf}$
Ultimate shear load
$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}-q_{\text {up.avg }} \times$
$A_{p}=33.219 \mathrm{kips}$
Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Size effect factor (22.5.5.1.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$\mathrm{v}_{\mathrm{ug}}=\max \left(\mathrm{F}_{\mathrm{up}} /\left(\mathrm{b}_{\mathrm{o}} \times \mathrm{d}_{\mathrm{v} 2}\right), 0 \mathrm{psi}\right)=53.965 \mathrm{psi}$
$\beta=l_{y 1} / I_{x 1}=1.00$
$\alpha_{s}=40$
$\lambda_{\mathrm{s}}=1$
$\mathrm{v}_{\mathrm{cpa}}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$\mathrm{v}_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right)=414.753 \mathrm{psi}$
$v_{\mathrm{cpc}}=4 \times \lambda_{\mathrm{s}} \times \lambda \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c}} \times 1 \mathrm{psi}\right)=252.982 \mathrm{psi}$
$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{v}_{\mathrm{cpa}}, \mathrm{v}_{\mathrm{cpb}}, \mathrm{v}_{\mathrm{cpc}}\right)=\mathbf{2 5 2 . 9 8 2} \mathrm{psi}$
$\phi_{v}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi \mathrm{v}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=189.737 \mathrm{psi}$
$V_{\text {ug }} / \phi V_{n}=0.284$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

23 - EXISTING GRID E FOOTING

Footing analysis in accordance with ACI318-19
Tedds calculation version 3.3.02
Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	39.6			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	2.473	2.5	0.989	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	16.7	58.6	0.285	Pass
Moment, positive, y-direction	kip_ft	16.7	54.2	0.308	Pass
Shear, one-way, x-direction	kips	12.1	23.3	0.521	Pass
Shear, one-way, y-direction	kips	12.1	23.3	0.521	Pass
Shear, two-way, Col 1	psi	73.719	189.737	0.389	Pass
Min.area of reinf, bot., x-direction	in ${ }^{2}$	1.037	1.550		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.3		Pass
Min.area of reinf, bot., y-direction	in ${ }^{2}$	1.037	1.550		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.3		Pass

Pad footing details

Length of footing
Width of footing
Footing area
Depth of footing
Depth of soil over footing
Density of concrete
$\mathrm{L}_{\mathrm{x}}=\mathbf{4} \mathrm{ft}$
$L_{y}=4 \mathrm{ft}$
A $=L_{x} \times L_{y}=16 \mathrm{ft}^{2}$
$h=12$ in
$\mathrm{h}_{\text {soil }}=12$ in
$\gamma_{\text {conc }}=150.0 \mathrm{lb} / \mathrm{ft}^{3}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no. 1 details

Length of column
Width of column
position in x-axis
position in y -axis

Soil properties

Gross allowable bearing pressure
Density of soil
Angle of internal friction
Design base friction angle
Coefficient of base friction

Footing loads

Self weight
Soil weight
$\mathrm{I}_{\mathrm{x} 1}=10.00$ in
$\mathrm{l}_{\mathrm{y} 1}=10.00$ in
$\mathrm{x}_{1}=24.00$ in
$y_{1}=24.00$ in
qallow_Gross $=2.5 \mathrm{ksf}$
$\gamma_{\text {soil }}=120.0 \mathrm{lb} / \mathrm{ft}^{3}$
$\phi_{b}=30.0 \mathrm{deg}$
$\delta_{b b}=30.0 \mathrm{deg}$
$\tan \left(\delta_{\text {бь }}\right)=0.577$
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \gamma_{\text {conc }}=150 \mathrm{psf}$
$\mathrm{F}_{\text {soil }}=\mathrm{h}_{\text {soil }} \times \gamma_{\text {soil }}=\mathbf{1 2 0} \mathrm{psf}$

Column no. 1 loads

Dead load in z
$\mathrm{F}_{\mathrm{Dz} 1}=7.7 \mathrm{kips}$
Live load in z
$\mathrm{F}_{\mathrm{Lz1}}=\mathbf{2 7 . 5} \mathrm{kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16
1.0D (0.301)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (0.989)
Combination 2 results: 1.0D + 1.0L
Forces on footing
Force in z-axis
$F_{d z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soii }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=39.6 \mathrm{kips}$
Moments on footing
Moment in x -axis, about x is 0

Moment in y-axis, about y is 0

Uplift verification

Vertical force
$\mathrm{F}_{\mathrm{dz}}=39.56 \mathrm{kips}$
PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
$e_{d x}=M_{d x} / F_{d z}-L_{x} / 2=0$ in
Eccentricity of base reaction in y-axis
$\mathrm{e}_{\mathrm{dy}}=M_{d y} / F_{d z}-L_{y} / 2=0$ in
Pad base pressures

Minimum base pressure
Maximum base pressure
$\mathrm{q}_{1}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / \mathrm{L}_{\mathrm{x}}-6 \times \mathrm{e}_{\mathrm{dy}} / \mathrm{L}_{\mathrm{y}}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=2.472 \mathrm{ksf}$
$\mathrm{q}_{2}=\mathrm{F}_{\mathrm{dz}} \times\left(1-6 \times \mathrm{e}_{\mathrm{dx}} / L_{x}+6 \times \mathrm{e}_{\mathrm{dy}} / L_{y}\right) /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{L}_{\mathrm{y}}\right)=2.472 \mathrm{ksf}$
$q_{3}=F_{d z} \times\left(1+6 \times e_{d x} / L_{x}-6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=2.472 k s f$
$q_{4}=F_{d z} \times\left(1+6 \times e_{d x} / L_{x}+6 \times e_{d y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=2.472 \mathrm{ksf}$
$q_{\text {min }}=\min \left(q_{1}, q_{2}, q_{3}, q_{4}\right)=2.472 \mathrm{ksf}$
$q_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=2.472 \mathrm{ksf}$
Allowable bearing capacity
Allowable bearing capacity
$q_{\text {allow }}=$ qallow_Gross $=2.5 \mathrm{ksf}$
$q_{\text {max }} / q_{\text {allow }}=0.989$
PASS - Allowable bearing capacity exceeds design base pressure

23 - EXISTING GRID E FOOTING

Footing design in accordance with ACl318-19

Material details

Compressive strength of concrete
Yield strength of reinforcement
Compression-controlled strain limit (21.2.2)

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}^{\prime}=4000 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi} \\
& \varepsilon_{\text {ty }}=\mathbf{0 . 0 0 2 0 0} \\
& \mathrm{C}_{\text {nom_t }}=3 \mathrm{in} \\
& \mathrm{C}_{\text {nom_s }}=3 \mathrm{in}
\end{aligned}
$$

Cover to top of footing
Cover to side of footing

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing
Concrete type
Concrete modification factor
Column type
Analysis and design of concrete footing
Load combinations per ASCE 7-16
1.4D (0.101)
$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \operatorname{Lr}(0.521)$
Combination 2 results: $1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{Lr}$

Forces on footing

Ultimate force in z-axis

Moments on footing

Ultimate moment in x-axis, about x is 0

Ultimate moment in y-axis, about y is 0

Eccentricity of base reaction

Eccentricity of base reaction in x-axis
Eccentricity of base reaction in y-axis
Pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$\mathrm{Cnom}_{\text {_ }}=3$ in
Normal weight
$\lambda=1.00$
Concrete
$F_{u z}=\gamma_{D} \times A \times\left(F_{s w t}+F_{\text {soii }}\right)+\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}=58.5$ kips
$M_{u x}=\gamma_{D} \times\left(A \times\left(F_{s w t}+F_{\text {soil }}\right) \times L_{x} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times X_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$ $\left.\mathrm{x}_{1}\right)=116.9 \mathrm{kip}$ _ft
$M_{u y}=\gamma_{D} \times\left(A \times\left(F_{\text {swt }}+F_{\text {soii }}\right) \times L_{y} / 2\right)+\gamma_{D} \times\left(F_{D z 1} \times y_{1}\right)+\gamma_{L} \times\left(F_{L z 1} \times\right.$ $\left.\mathrm{y}_{1}\right)=116.9 \mathrm{kip} _\mathrm{ft}$
$e_{u x}=M_{u x} / F_{u z}-L_{x} / 2=0$ in
$e_{u y}=M_{u y} / F_{u z}-L_{y} / 2=0$ in
$q_{u 1}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=3.654 \mathrm{ksf}$
$q_{u 2}=F_{u z} \times\left(1-6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=3.654 \mathrm{ksf}$
$q_{u 3}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}-6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=3.654 \mathrm{ksf}$
$q_{u 4}=F_{u z} \times\left(1+6 \times e_{u x} / L_{x}+6 \times e_{u y} / L_{y}\right) /\left(L_{x} \times L_{y}\right)=3.654 \mathrm{ksf}$
$q_{u m i n}=\min \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=3.654 \mathrm{ksf}$
$q_{u m a x}=\max \left(q_{u 1}, q_{u 2}, q_{u 3}, q_{u 4}\right)=3.654 \mathrm{ksf}$

Shear diagram, x axis (kips)

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date $2 / 13 / 2024$ |
| | Revised | |
| | | Date |

Moment diagram, x axis (kip_ft)

Moment design, \mathbf{x} direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{u x . \text {.max }}=16.699 \mathrm{kip}$ ft
5 No. 5 bottom bars (10.3 in c / c)
$A_{\text {sx.bot.prov }}=1.55$ in 2
$\mathrm{A}_{\mathrm{s} \text {. } \text { in }}=0.0018 \times \mathrm{L}_{y} \times \mathrm{h}=1.037 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times h, 18 \mathrm{in})=\mathbf{1 8}$ in
PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity

One-way shear design, \mathbf{x} direction
Ultimate shear force
Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity
$\mathrm{d}=\mathrm{h}-\mathrm{C}_{\text {nom_b }} \mathrm{b}-$ фx.bot $/ 2=8.688$ in
$a=A_{\text {sx.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{y}\right)=0.570$ in
$\beta_{1}=0.85$
$\mathrm{c}=\mathrm{a} / \beta_{1}=0.670$ in
$\varepsilon_{t}=0.003 \times d / c-0.003=0.03588$
$\varepsilon_{\text {min }}=\varepsilon_{\mathrm{ty}}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\mathrm{sx} . \text { bot.prov }} \times \mathrm{ff}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=65.12 \mathrm{kip} \mathrm{ft}$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{t}-\varepsilon_{t y}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=\mathbf{5 8 . 6 0 8} \mathrm{kip} \mathrm{ft}$
$M_{u . x . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.285$

PASS - Design moment capacity exceeds ultimate moment load

$V_{u . x}=12.142$ kips
$\mathrm{d}_{\mathrm{v}}=\mathrm{h}-\mathrm{C}_{\text {nom_b }}-\phi_{\mathrm{x} . \text { bot }} / 2=8.688$ in
$\lambda_{\mathrm{s}}=1$
$\rho_{w}=A_{\text {sx.botprov }} /\left(L_{y} \times d_{v}\right)=0.00372$
$\phi_{v}=0.75$
$V_{n}=\min \left(8 \times \lambda_{s} \times \lambda \times\left(\rho_{w}\right)^{1 / 3} \times \sqrt{ }\left(f_{c}^{\prime} \times 1 p s i\right) \times L_{y} \times d_{v}, 5 \times \lambda \times \sqrt{ }\left(f_{c}^{\prime} \times\right.\right.$
$\left.1 \mathrm{psi}) \times \mathrm{L}_{y} \times \mathrm{d}_{\mathrm{v}}\right)=32.683 \mathrm{kips}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=24.512 \mathrm{kips}$
$V_{\text {u.x }} / \phi V_{n}=0.495$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	6
Client Rowell Brokaw	Revised	Job No.
	Date	223346

PASS - Design shear capacity exceeds ultimate shear load Shear diagram, y axis (kips)

Moment diagram, y axis (kip_ft)
16.7

Moment design, y direction, positive moment

Ultimate bending moment
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement (8.6.1.1)
$M_{\text {u.y. } \text { max }}=16.699 \mathrm{kip} _\mathrm{ft}$
5 No. 5 bottom bars (10.3 in c/c)
Asy.bot.prov $=1.55 \mathrm{in}^{2}$
$A_{s . \text { min }}=0.0018 \times L_{x} \times h=1.037 \mathrm{in}^{2}$
PASS - Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement (8.7.2.2) $\quad S_{\max }=\min (2 \times h, 18 \mathrm{in})=18$ in

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement
Depth of compression block
Neutral axis factor
Depth to neutral axis
Strain in tensile reinforcement
Minimum tensile strain(8.3.3.1)

Nominal moment capacity
Flexural strength reduction factor
Design moment capacity
$\mathrm{d}=\mathrm{h}-\mathrm{C}_{\text {nom_ }} \mathrm{b}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062$ in
$a=A_{\text {sy.bot.prov }} \times f_{y} /\left(0.85 \times f_{c}^{\prime} \times L_{x}\right)=0.570$ in
$\beta_{1}=0.85$
$c=a / \beta_{1}=0.670$ in
$\varepsilon_{\mathrm{t}}=0.003 \times \mathrm{d} / \mathrm{c}-0.003=\mathbf{0 . 0 3 3 0 8}$
$\varepsilon_{\text {min }}=\varepsilon_{\text {ty }}+0.003=0.00500$
PASS - Tensile strain exceeds minimum required
$\mathrm{M}_{\mathrm{n}}=\mathrm{A}_{\text {sy.bot.prov }} \times \mathrm{f}_{\mathrm{y}} \times(\mathrm{d}-\mathrm{a} / 2)=\mathbf{6 0 . 2 7 6} \mathrm{kip} _\mathrm{ft}$
$\phi_{f}=\min \left(\max \left(0.65+0.25 \times\left(\varepsilon_{t}-\varepsilon_{t y}\right) /(0.003), 0.65\right), 0.9\right)=0.900$
$\phi \mathrm{M}_{\mathrm{n}}=\phi_{\mathrm{f}} \times \mathrm{M}_{\mathrm{n}}=54.249 \mathrm{kip} \mathrm{ft}$
$M_{u . y . \max } / \phi \mathrm{M}_{\mathrm{n}}=0.308$
PASS - Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
Ultimate shear force
$V_{u . y}=12.142$ kips

| 2 | Project OSU Azalea House | By MAA |
| :--- | :--- | :--- | :--- |
| Portland, Oregon | Location Corvallis, OR | Date $2 / 13 / 2024$ |
| | Revised | |
| | | Date |

Depth to reinforcement
Size effect factor (22.5.5.1.3)
Ratio of longitudinal reinforcement
Shear strength reduction factor
Nominal shear capacity (Eq. 22.5.5.1)

Design shear capacity
$d_{\mathrm{v}}=\mathrm{h}-\mathrm{C}_{\mathrm{nom} _\mathrm{b}}-\phi_{\mathrm{x} . \text { bot }}-\phi_{\mathrm{y} . \text { bot }} / 2=8.062 \mathrm{in}$
$\lambda_{\mathrm{s}}=1$
$\rho_{\mathrm{w}}=A_{\text {sy.bot.prov }} /\left(\mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=0.00401$
$\phi_{\mathrm{v}}=0.75$
$\mathrm{~V}_{\mathrm{n}}=\min \left(8 \times \lambda_{\mathrm{s}} \times \lambda \times\left(\rho_{\mathrm{w}}\right)^{1 / 3} \times V\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}, 5 \times \lambda \times V\left(\mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}} \times\right.\right.$
$\left.1 \mathrm{psi}) \times \mathrm{L}_{\mathrm{x}} \times \mathrm{d}_{\mathrm{v}}\right)=31.096 \mathrm{kips}$
$\phi \mathrm{V}_{\mathrm{n}}=\phi_{\mathrm{v}} \times \mathrm{V}_{\mathrm{n}}=23.322 \mathrm{kips}$
$\mathrm{V}_{\text {u.y }} / \phi \mathrm{V}_{\mathrm{n}}=0.521$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement
Shear perimeter length (22.6.4)
Shear perimeter width (22.6.4)
Shear perimeter (22.6.4)
Shear area
Surcharge loaded area
$\mathrm{d}_{\mathrm{v} 2}=8.375 \mathrm{in}$
$I_{x p}=18.375$ in
$l_{y p}=18.375 \mathrm{in}$
$\mathrm{b}_{\mathrm{o}}=2 \times\left(\mathrm{l}_{\mathrm{x} 1}+\mathrm{d}_{\mathrm{v} 2}\right)+2 \times\left(\mathrm{l}_{\mathrm{y} 1}+\mathrm{d}_{\mathrm{v} 2}\right)=73.500$ in
$A_{p}=I_{x, \text { perim }} \times l_{y, \text { perim }}=337.641 \mathrm{in}^{2}$
$A_{\text {sur }}=A_{p}-I_{x 1} \times I_{y 1}=237.641 \mathrm{in}^{2}$

Ultimate bearing pressure at center of shear area $\quad q_{u p . a v g}=3.654 \mathrm{ksf}$
Ultimate shear load
$F_{\text {up }}=\gamma_{D} \times F_{D z 1}+\gamma_{L} \times F_{L z 1}+\gamma_{D} \times A_{p} \times F_{\text {swt }}+\gamma_{D} \times A_{\text {sur }} \times F_{\text {soil }}-q_{\text {up.avg }} \times$
$\mathrm{A}_{\mathrm{p}}=45.379 \mathrm{kips}$
Ultimate shear stress from vertical load
Column geometry factor (Table 22.6.5.2)
Column location factor (22.6.5.3)
Size effect factor (22.5.5.1.3)
Concrete shear strength (22.6.5.2)

Shear strength reduction factor
Nominal shear stress capacity (Eq. 22.6.1.2)
Design shear stress capacity (8.5.1.1(d))
$\mathrm{V}_{\mathrm{ug}}=\max \left(\mathrm{F}_{\mathrm{up}} /\left(\mathrm{b}_{\mathrm{o}} \times \mathrm{d}_{\mathrm{v} 2}\right), 0 \mathrm{psi}\right)=73.719 \mathrm{psi}$
$\beta=l_{y 1} / l_{x 1}=1.00$
$\alpha_{s}=40$
$\lambda_{\mathrm{s}}=1$
$v_{\text {cpa }}=(2+4 / \beta) \times \lambda_{\mathrm{s}} \times \lambda \times V\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}} \times 1 \mathrm{psi}\right)=379.473 \mathrm{psi}$
$v_{\mathrm{cpb}}=\left(\alpha_{\mathrm{s}} \times \mathrm{d}_{\mathrm{v} 2} / \mathrm{b}_{\mathrm{o}}+2\right) \times \lambda_{\mathrm{s}} \times \lambda \times V^{\left(\mathrm{f}^{\prime} \mathrm{c} \times 1 \mathrm{psi}\right)=414.753 \mathrm{psi}, ~}$

$\mathrm{v}_{\mathrm{cp}}=\min \left(\mathrm{v}_{\mathrm{cpa}}, \mathrm{v}_{\mathrm{cpb}}, \mathrm{v}_{\mathrm{cpc}}\right)=252.982 \mathrm{psi}$
$\phi_{v}=0.75$
$\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{cp}}=252.982 \mathrm{psi}$
$\phi v_{n}=\phi_{v} \times v_{n}=189.737 \mathrm{psi}$
$V_{u g} / \phi V_{n}=0.389$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Portland, Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date $2 / 13 / 2024$	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

