

February 13, 2024

Ms. Serena Lim **Rowell Brokaw Architects** 1203 Willamette St., #210 Eugene, OR 97401

Re: Oregon State University

Azalea House 2nd Floor Remodel

... Aellano

Dear Serena,

Attached please find calculation sheets 1 through 96, dated February 13, 2024, which verify the structural adequacy of the OSU Azalea House Remodel Project as shown on drawings S-001 through S-602, dated February 13, 2024. Design is based on the requirements of the 2022 Oregon Structural Specialty Code, which is based on the 2021 International Building Code.

If you have any questions or need further information, please call me.

Sincerely,

Michael Arellano, PE

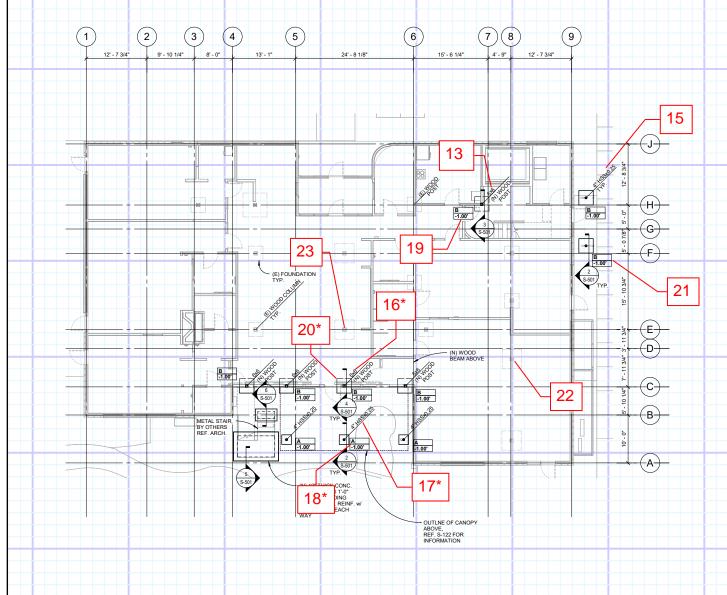
Project No. 10022300346

OREGON

EXPIRES 12/31/25

Project	OSU Azalea House	Ву	MAA	Sheet No.
_ocation	Corvallis, OR	Date	02/09/24	
Client	Rowell Brokaw	Revi	sed	Job No.
		Date		223346

2nd FLOOR LOADING DL = 15 PSFEXISTING LL = 50 PSF +15 PSF Partitions (per DCI Renovation Dwgs, dated Feb 2, 2015) OUTDOOR DECK DL = 30 PSFLL = 100 PSF **CANOPIES** DL = 15 PSFLL = 25 PSF(5) (6) (7)(8)14 13 -J-EXPANSION JOINT NEW HEADER ABOVE. REF. NOTE 8 AND S123 REFLECTED CEILING PLAN, TYP. -G 1/2" PLYWOOD OVER 3" T & G ODECKING 12 (E) 4x12 @ 12" o.c. E-(-D-) 11* (E) (2) 2x10 BEAM ABOVE TO BE RE-SUPPORTED BY NEW STUD WALL (E) 3x12 @ 16" o.c. (E) 2x12 @ 16" o. 8* -A-METAL STAIF BY OTHERS REF. ARCH. 1/2" PLYWOOD OVER 3" T&G DECKING 10 2nd Floor Framing plan NTS * Indicates critical element



Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
		Date	223346

FOUNDATIONS

Allowable Bearing Pressure = 2500 PSF <u>Existing Foundations</u> Per DCI Remodel Drawings (Reference Attached)

1500 PSF New Foundations per OSSC 1806.3

Foundation plan NTS

* Indicates critical element

Project OSU Azalea House	^{By} MAA	Sheet No.
Location Corvallis, OR	Date 02/09/24	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

lant l		Location Corvallis, OR	Date 02/09/24		
Kpii	•	Client Rowell Brokaw	Revised	Job No.	
Portland, Oregon			Date	223346	
CEILING FRA	MING				
1) Typical 2x1	2 Ceiling Joist				
-Span 20'-0"	WDL = 10 psf				
	WLL = 25 psf				
2x12 DF No.2	: @ 16" o.c. (Se	ee attached)			
2) Typical 2x8	Ceiling Joist				
-Span 13-0	WDL = 10 psf WLL = 25 psf				
2x8 DF No.2	@ 16" o.c. (See	e attached)			
3) Ceiling Bea	ani gna o				
-Span 17' + 4.	.5' Cantilever	WDL = 16' x 10 psf = 160 plf WLL = 16' x 25 psf = 400 plf			
GL5-1/2x13-1	/2 24FV8 (se	e attached)			
4) Ceiling Bea	am grid D				
-Span 19.5'	WDL = 7' x 10	0 psf = 70 plf			
	ا 25 x 25 ا	0SI = 175 PII			
GL3-1/2x12	24FV4 (see at	tached)			
5) Ceiling Bea	am grid H				
-Span 14.5'	WDL = 9' x 10	nsf = 90 nlf			
Оран т но	$WLL = 9' \times 25$				
GL5-1/2x9 2	24FV4 (see atta	ached)			
'/-1'9	(230 alle				

Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
		Date	223346

-	Rowell Blokaw		
Portland, Oregon		Date	223346
CEILING FRAMING			
6) Typical Headers			
-Span 4' WDL = 10' x 1			
WLL = 10' x 25	o pst = 250 pit		
(2) 2x6 DF No.2 (See attache	d)		
-Span 6' WDL = 10' x 1	0 psf = 100 plf		
WLL = 10' x 25			
4x6 DF No.2 (See attached)			
Span 9' M/DL 10' v 1	00 pef 100 plf		
-Span 8' WDL = 10' x 1 WLL = 10' x 2	00 psf = 100 plf 50 psf = 250 plf		
	50 po. 200 pii		
4x8 DF No.2 (See attached)			

Project OSU Azalea House	^{By} MAA	Sheet No.
Location Corvallis, OR	Date 02/09/24	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

2nd FL FRAMING 7) Typical Deck Joist -Span 12'-0" WDL = 30 psf applied from 0' to 8' WLL = 100 psf applied from 0' to 8' 3x12 DF No.2 @ 16" o.c. (See attached) 8) Critical Deck Beam Grid C -Span 12'-75" +1.5' cantilever $WDL = (8' \times 30 \text{ psf}) \times 8'/12' = 160 \text{ plf}$ WLL = $(8' \times 100 \text{ psf}) \times 8'/12' = 533 \text{ plf}$ GL5-1/2x12 24FV8 (see attached) 9) Critical Canopy Beam -Span 11'-0" +1.5' cantilever $WDL = 12' \times 15pf = 180 plf$ $WLL = 12' \times 25 psf = 300 plf$ W6x15 (see attached) 10) 3" T&G Decking -Span 12'-0" WTotal = 40 PSF Allowable WLL = 95 psf OK// (see attached) 11) Critical Grid 8 Column PDL = 2408 lbsPLL = 5438 lbs6x6 DF No. 1 (see attached) 12) Critical Grid D and G Post PDL = 780 lbsPLL = 1714 lbs 4x4 DF No. 2 (see attached)

Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
		Date	223346

Portland, Oregon	Client Rowell Brokaw	Revised	223346		
		Date	223340		
2nd FL FRAMING	2nd FL FRAMING				
13) Critical Grid H Post					
PDL = 18'/2 x 20'/2 x 10 psf =	= 900 lbs				
PLL = 18'/2 x 20'/2 x 25 psf =	2250 lbs				
6x6 DF No. 1 (see attached)					
14) Typical Entry Canopy Be	am				
WDL = 12'/2 x 15 psf = 90 plf WLL = 12'/2 x 25 psf = 150 p	if				
HSS6x4x1/4 (see attached)					

Project OSU Azalea House	^{By} MAA	Sheet No.
Location Corvallis, OR	Date 02/09/24	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

ALLOWABLE SOIL BEARING PRESSURE FOR EXISTING FOUNDATIONS PER DCI RENOVATION DRAWINGS DATED 2/9/2015

SOILS AND FOUNDATIONS

REFERENCE STANDARDS: Conform to OSSC Chapter 18 "Soils and Foundations."

GEOTECHNICAL REPORT: Recommendations contained in a memorandum by Foundation Engineering, Inc. dated December 9th, 2014 were used for design.

CONTRACTOR'S RESPONSIBILITIES: Contractor shall be responsible to review the Geotechnical Report and shall follow the recommendations specified therein including, but not limited to, subgrade preparations, pile installation procedures, ground water management and steep slope Best Management Practices."

GEOTECHNICAL SUBGRADE INSPECTION: The Geotechnical Engineer shall inspect all sub-grades and prepared soil bearing surfaces, prior to placement of foundation reinforcing steel and concrete. Geotechnical Engineers shall provide a letter to the owner stating that soils are adequate to support the "Allowable Foundation Bearing Pressure(s)" shown below.

DESIGN SOIL VALUES:

FOUNDATIONS and FOOTINGS: Foundations shall bear on either on competent native soil or compacted structural fill as per the geotechnical report. Exterior perimeter footings shall bear not less than 18 inches below finish grade, unless otherwise specified by the geotechnical engineer and/or the building official.

ENGINEERS 6400 W 6TH AVENUE - SUITE 650 400 SW 6TH AVENUE - SUITE 650 PORTLAND, OREGON 972 604 PHONE: (030) 242-2444 PKC (030)

Hennebery Eddy Architects

PORTLAND OREGON 97205 503 227 4860 TEL 503 227 4920 FAX www.henneberyeddy.com

CONSTRUCTION

OSU STUDENT COMMUNITY CENTER

DCI Project no. HEA Project no. Date: 14031-0087 14011 FEBRUARY 9, 2015

Revisions:

Drawn by: Checked by Sheet:

STRUCTURAL GENERAL NOTES LEGEND & ABBREVIATIONS

S100

Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
•		Date	223346

COLUMNS AND FOOTINGS

15) Entry Canopy Column

PDL = $12'/2 \times 5' \times 15 \text{ psf} = 450 \text{ lbs}$ PLL = $12'/2 \times 5' \times 25 \text{ psf} = 750 \text{ lbs}$

Eccentricity = 6"

 $MDL = 450 \times 0.5' = 225 \text{ lb-ft}$ $MLL = 750 \times 0.5' = 375 \text{ lb-ft}$

Seismic Loading V = 0.703 (R=1 cantilever column) x 450 lbs = 320 lbs

ME = 320 lbs x 10' = 3200 lbs-ft

- 4" Diameter HSS x0.25" (see attached)
- 16) Critical Grid C Column
- Deck Loads

PDL = 12' x 160 plf = 1920 lbs PLL = 12' x 533 plf = 6396 lbs

Canopy Loads

PDL = $11'/2 \times 24'/2 \times 15 \text{ psf} = 990 \text{ lbs}$ PLL = $11'/2 \times 24'/2 \times 25 \text{ psf} = 1650 \text{ lbs}$

6x6 DF No. 1 (see attached)

17) Critical Back Canopy Column

PDL = $11'/2 \times 24'/2 \times 15 \text{ psf} = 990 \text{ lbs}$ PLL = $11'/2 \times 24'/2 \times 25 \text{ psf} = 1650 \text{ lbs}$

4" Diameter HSS x0.25" (see attached)

Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
		Date	223346

COLUMNS AND FOOTINGS 18) Critical Back Canopy Footing $PDL = 11'/2 \times 24'/2 \times 15 \text{ psf} = 990 \text{ lbs}$ $PLL = 11'/2 \times 24'/2 \times 25 \text{ psf} = 1650 \text{ lbs}$ Type A Footing 2'x2'x1' w/(3) #5 bars each way (see attached) 19) Grid H Footing PDL = 900 lbsPLL = 2250 lbs Type B Footing 3'x3'x1' w/(4) #5 bars each way (see attached) 20) Grid C Footing PDL = 1920 lbs PLL = 6396 lbsType B Footing 3'x3'x1' w/(4) #5 bars each way (see attached) 21) Entry Canopy Footing PDL = 450 lbsPLL = 750 lbsEccentricity = 6" MDL = 225 lb-ftMLL = 375 lb-ftSeismic Loading ME = 3200 lbs-ft Type B Footing 3'x3'x1' w/(4) #5 bars each way (see attached)

Project	OSU Azalea House	^{By} MAA	Sheet No.
Location	Corvallis, OR	Date 02/09/24	
Client	Rowell Brokaw	Revised	Job No.
		Date	223346

COLUMNS AND FOOTINGS 22) Check Existing Column and Footing Grid 8 -Ceiling Loads $PDL = 28'/2 \times 32'/2 \times 10 \text{ psf} = 2240 \text{ lbs}$ $PLL = 28'/2 \times 32'/2 \times 25 \text{ psf} = 5600 \text{ lbs}$ 2nd Floor Loads $PDL = 28'/2 \times 32'/2 \times 15 \text{ psf} = 3360 \text{ lbs}$ $PLL = 28'/2 \times 32'/2 \times 65 \text{ psf} = 14560 \text{ lbs}$ Existing Column GL8-3/4x9 L2 OK// (see attached) Existing Footing 4'x4'x1' w/(5) #5 bars each way OK// (see attached) 23) Check Existing Column and Footing Grid E -Ceiling Loads $PDL = 28'/2 \times 36'/2 \times 10 \text{ psf} = 2520 \text{ lbs}$ $PLL = 28'/2 \times 36'/2 \times 25 \text{ psf} = 6300 \text{ lbs}$ 2nd Floor Loads $PDL = 28'/2 \times 36'/2 \times 15 \text{ psf} = 3780 \text{ lbs}$ $PLL = 28'/2 \times 36'/2 \times 65 \text{ psf} = 16380 \text{ lbs}$ Deck Loads $PDL = 18' \times 80 \text{ plf} = 1440 \text{ lbs}$ $PLL = 18' \times 267 \text{ plf} = 4806 \text{ lbs}$ Existing Column GL8-3/4x9 L2 OK// (see attached) Existing Footing 4'x4'x1' w/(5) #5 bars each way OK// (see attached)

Project OSU Azalea House	^{By} MAA	Sheet No.
Location Corvallis, OR	Date 02/09/24	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

GL BEAM REINFORCING GRID E

24) Check PI reinforcing for loads imposed by new deck loading

Use Full Deck DL and LL (conservatively) rather than difference from original low roof framing and snow load.

-Deck Loads

PDL = $30psf \times 8' \times (4'/12') = 80 plf$ PLL = $100 psf \times 8' \times (4'/12') = 267 plf$

Existing GL Beam span = 18'

 $Mmax = 347 plf x 18'^2 / 8 = 14,054 lb-ft or 168.6 k-in$

Plate Reinforcing 1/4" thick x 15" each side.

Splates = $2x b x d^2 / 6 = 2 x .25 x 15^2 / 6 = 18.75 in^3$

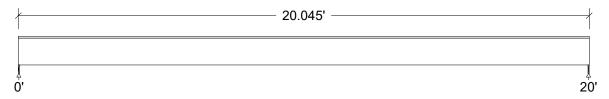
- Check plate stress Fb = 168.6 / 18.75 = 8.99 ksi

Fallowable = 0.6x 36 = 24 ksi OK//

KPFF Consulting Engineers Feb. 12, 2024 10:34

PROJECT

1 - Typical Ceiling Joist.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitude	Unit
			tern	Start	End	Start End	1
DL	Dead	Full Area				10.00(16.0")	psf
LL	Snow	Full Area				25.00(16.0")	psf
Self-weight	Dead	Full UDL				4.0	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:		
Dead	174	174
Snow	334	334
Factored:		
Total	508	508
Bearing:		
Capacity		
Joist	508	508
Support	635	635
Des ratio		
Joist	1.00	1.00
Support	0.80	0.80
Load comb	#2	#2
Length	0.54	0.54
Min req'd	0.54	0.54
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.25	1.25
Fcp sup	625	625

1 - Typical Ceiling Joist Lumber-soft, D.Fir-L, No.2, 2x12 (1-1/2"x11-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 16.0" c/c; Total length: 20.05'; Clear span: 19.955'; Volume = 2.3 cu.ft.

Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help);

This section PASSES the design code check.

WARNING: Member length exceeds typical stock length of 18.0 [ft]

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 41	Fv' = 207	psi	fv/Fv' = 0.20
Bending(+)	fb = 961	Fb' = 1190	psi	fb/Fb' = 0.81
Live Defl'n	0.42 = L/569	0.67 = L/360	in	0.63
Total Defl'n	0.64 = L/374	1.00 = L/240	in	0.64

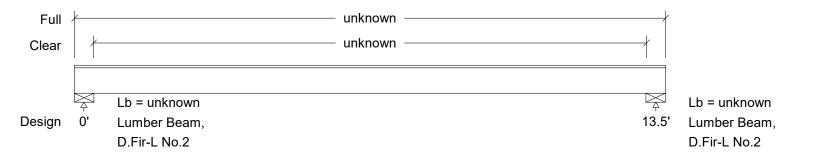
SOFTWARE FOR WOOD DESIGN

1 - Typical Ceiling Joist.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

```
Additional Data:
                                                                 Cfrt
FACTORS: F/E(psi) CD
                          CM
                                Ct
                                      CL
                                              CF
                                                    Cfu
                                                           Cr
                                                                        Ci
                                                                                    LC#
                                                                              Cn
Fv'
           180
                1.15
                         1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                             1.00
                                                                                     2
Fb'+
           900
                  1.15
                         1.00
                               1.00
                                     1.000
                                             1.000
                                                           1.15
                                                                 1.00
                                                                       1.00
                                                                                     2
 Fcp'
           625
                         1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
 Ε'
           1.6 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
 Emin'
          0.58 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
CRITICAL LOAD COMBINATIONS:
         : LC \#2 = D+S
 Shear
 Bending(+): LC \#2 = D+S
 Deflection: LC \#2 = D+S
                            (live)
             LC #2 = D+S
                            (total)
           : Support 1 - LC \#2 = D+S
 Bearing
             Support 2 - LC \#2 = D+S
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
 All LC's are listed in the Analysis output
 Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
 V \max = 507, V \text{ design} = 458 \text{ lbs}; M(+) = 2534 \text{ lbs-ft}
 EI = 284.76e06 lb-in^2
 "Live" deflection is due to all non-dead loads (live, wind, snow...)
 Total deflection = 1.0 dead + "live"
```


- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

SOFTWARE FOR WOOD DESIGN

2 - Typical Ceiling Joist.wwb

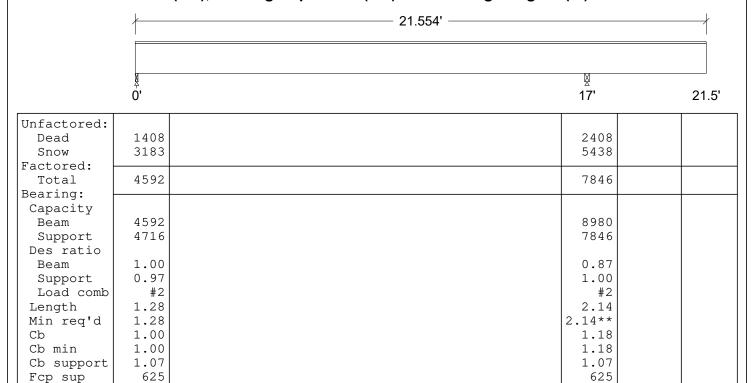
WoodWorks® Sizer 2019 (Update 1)

Feb. 13, 2024 10:16:51

KPFF Consulting Engineers Feb. 12, 2024 10:36

PROJECT

3 - Ceiling Beam Grid 8.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	de	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL	No			160.0		plf
LL	Snow	Full UDL	No			400.0		plf
Self-weight	Dead	Full UDL	No			17.1		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

^{**}Minimum bearing length governed by the required width of the supporting member.

3 - Ceiling GL Beam Grid 8 Glulam-Balanced, West Species, 24F-V8 DF, 5-1/2"x13-1/2"

Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 21.55'; Clear span: 16.857', 4.411'; Volume = 11.1 cu.ft.; 9 laminations, 5-1/2" maximum width, Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

SOFTWARE FOR WOOD DESIGN

3 - Ceiling Beam Grid 8.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 92	Fv' = 305	psi	fv/Fv' = 0.30
Bending(+)	fb = 1295	Fb' = 2760	psi	fb/Fb' = 0.47
Bending(-)	fb = 420	Fb' = 2674	psi	fb/Fb' = 0.16
Deflection:				
Interior Live	0.31 = L/662	0.57 = L/360	in	0.54
Total	0.44 = L/459	0.85 = L/240	in	0.52
Cantil. Live	-0.21 = L/259	0.30 = L/180	in	0.69
Total	-0.30 = L/179	0.45 = L/120	in	0.67

Additional Data:

```
FACTORS: F/E(psi) CD
                         CM
                                Ct
                                      CL
                                             CV
                                                    Cfu
                                                           Cr
                                                                Cfrt Notes Cn*Cvr LC#
 Fv'
           265
                  1.15
                        1.00
                               1.00
                                                                1.00
                                                                      1.00
                                                                             1.00
 Fb'+
          2400
                  1.15
                        1.00
                               1.00
                                     1.000
                                            1.000
                                                                1.00
                                                                                    2
                                                                      1.00
 Fb'-
          2400
                  1.15
                        1.00
                               1.00
                                     0.969
                                            1.000
                                                                1.00
                                                                      1.00
                                                                                    2
           650
                         1.00
                               1.00
                                                                1.00
 Fcp'
 Ε'
           1.8 million
                        1.00
                               1.00
                                                                1.00
                                                                                    2
 Eminy'
          0.85 million
                        1.00
                               1.00
                                                                1.00
                                                                                    2
```

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+S
Bending(+): LC #2 = D+S
Bending(-): LC #2 = D+S
Deflection: LC #2 = D+S

Deflection: LC #2 = D+S (live) LC #2 = D+S (total) Bearing: Support 1 - LC #2 = D+S Support 2 - LC #2 = D+S

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output

Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

CALCULATIONS:

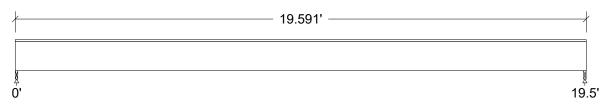
```
V max = 5249, V design = 4550 lbs; M(+) = 18028 lbs-ft; M(-) = 5843 lbs-ft EI = 2029.78e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"
Lateral stability(-): Lu = 17.00' Le = 27.88' RB = 12.2; Lu based on full span
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

KPFF Consulting Engineers Feb. 12, 2024 10:38

PROJECT

4 - Ceiling Beam Grid D.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitude	Э	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				70.0		plf
LL	Snow	Full UDL				175.0		plf
Self-weight	Dead	Full UDL				9.7		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:		
Dead	780	780
Snow	1714	1714
Factored:		
Total	2494	2494
Bearing:		
Capacity		
Beam	2494	2494
Support	2655	2655
Des ratio		
Beam	1.00	1.00
Support	0.94	0.94
Load comb	#2	#2
Length	1.10	1.10
Min req'd	1.10	1.10
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.11	1.11
Fcp sup	625	625

4 - Ceiling GL Beam Grid D Glulam-Unbalan., West Species, 24F-V4 DF, 3-1/2"x12"

Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 19.59'; Clear span: 19.409'; Volume = 5.7 cu.ft.; 8 laminations, 3-1/2" maximum width,

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 79	Fv' = 305	psi	fv/Fv' = 0.26
Bending(+)	fb = 1729	Fb' = 2760	psi	fb/Fb' = 0.63
Live Defl'n	0.63 = L/372	0.65 = L/360	in	0.97
Total Defl'n	0.91 = L/256	0.98 = L/240	in	0.94

SOFTWARE FOR WOOD DESIGN

4 - Ceiling Beam Grid D.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

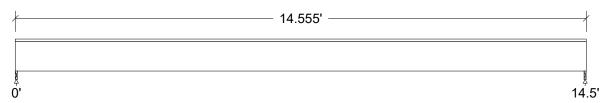
```
Additional Data:
FACTORS: F/E(psi) CD
                         CM
                                Ct
                                      CL
                                             CV
                                                    Cfu
                                                                Cfrt Notes Cn*Cvr LC#
                                                           Cr
Fv'
           265
                1.15
                        1.00
                               1.00
                                                                1.00 1.00 1.00
                                                                                    2
Fb'+
          2400
                  1.15 1.00
                               1.00
                                     1.000
                                            1.000
                                                                1.00 1.00
                                                                                    2
 Fcp'
           650
                         1.00
                               1.00
                                                                1.00
 Ε'
           1.8 million
                        1.00
                               1.00
                                                                1.00
                                                                                    2
 Eminy'
          0.85 million
                        1.00
                               1.00
                                                                1.00
                                                                                    2
CRITICAL LOAD COMBINATIONS:
 Shear
         : LC \#2 = D+S
 Bending(+): LC \#2 = D+S
 Deflection: LC \#2 = D+S
                           (live)
             LC #2 = D+S (total)
           : Support 1 - LC \#2 = D+S
 Bearing
             Support 2 - LC \#2 = D+S
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
 All LC's are listed in the Analysis output
 Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
 V \max = 2483, V \text{ design} = 2217 \text{ lbs}; M(+) = 12105 \text{ lbs-ft}
 EI = 907.19e06 lb-in^2
 "Live" deflection is due to all non-dead loads (live, wind, snow...)
 Total deflection = 1.0 dead + "live"
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

KPFF Consulting Engineers Feb. 12, 2024 10:44

PROJECT

5 - Ceiling Beam Grid H.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	.e	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				90.0		plf
LL	Snow	Full UDL				225.0		plf
Self-weight	Dead	Full UDL				11.4		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Snow Factored:	738 1637	738 1637
Total	2375	2375
Bearing:		
Capacity		
Beam	2375	2375
Support	2439	2439
Des ratio		
Beam	1.00	1.00
Support	0.97	0.97
Load comb	#2	#2
Length	0.66	0.66
Min req'd	0.66	0.66
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.07	1.07
Fcp sup	625	625

5 - Ceiling GL Beam Grid H

Glulam-Unbalan., West Species, 24F-V4 DF, 5-1/2"x9"

Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 14.56'; Clear span: 14.445'; Volume = 5.0 cu.ft.; 6 laminations, 5-1/2" maximum width,

Lateral support: top = continuous, bottom = at supports; This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 64	Fv' = 305	psi	fv/Fv' = 0.21
Bending(+)	fb = 1386	Fb' = 2760	psi	fb/Fb' = 0.50
Live Defl'n	0.37 = L/467	0.48 = L/360	in	0.77
Total Defl'n	0.54 = L/322	0.73 = L/240	in	0.74

SOFTWARE FOR WOOD DESIGN

5 - Ceiling Beam Grid H.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

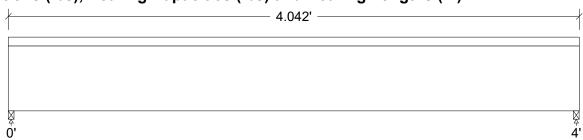
```
Additional Data:
FACTORS: F/E(psi) CD
                         CM
                               Ct
                                      CL
                                             CV
                                                   Cfu
                                                                Cfrt Notes Cn*Cvr LC#
                                                          Cr
Fv'
           265 1.15 1.00
                              1.00
                                                                1.00 1.00 1.00
Fb'+
          2400
                  1.15 1.00
                              1.00
                                     1.000
                                            1.000
                                                                1.00 1.00
                                                                                   2
 Fcp'
           650
                        1.00
                              1.00
                                                                1.00
                                                                                   2
 Ε'
           1.8 million
                       1.00
                              1.00
                                                                1.00
 Eminy' 0.85 million
                        1.00
                              1.00
                                                                1.00
                                                                                   2
CRITICAL LOAD COMBINATIONS:
         : LC \#2 = D+S
 Shear
 Bending(+): LC \#2 = D+S
 Deflection: LC \#2 = D+S
                           (live)
             LC #2 = D+S (total)
           : Support 1 - LC \#2 = D+S
 Bearing
             Support 2 - LC \#2 = D+S
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
 All LC's are listed in the Analysis output
 Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
 V \max = 2366, V \text{ design} = 2113 \text{ lbs}; M(+) = 8578 \text{ lbs-ft}
 EI = 601.42e06 lb-in^2
 "Live" deflection is due to all non-dead loads (live, wind, snow...)
 Total deflection = 1.0 dead + "live"
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
- 4. GLULAM: bxd = actual breadth x actual depth.
- 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

KPFF Consulting Engineers Feb. 12, 2024 10:56

PROJECT

6 - Typical Header 4ft Span.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	e	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				50.0		plf
LL	Snow	Full UDL				125.0		plf
Self-weight	Dead	Full UDL				2.0		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:		
Dead	105	10
Snow	253	25
Factored:		
Total	358	35
Bearing:		
Capacity		
Joist	469	46
Support	586	58
Des ratio		
Joist	0.76	0.7
Support	0.61	0.63
Load comb	#2	# 2
Length	0.50*	0.50
Min req'd	0.50*	0.50
Cb	1.00	1.00
Cb min	1.00	1.0
Cb support	1.25	1.2
Fcp sup	625	625

^{*}Minimum bearing length setting used: 1/2" for end supports

6 - Typical Header 4ft Span

Lumber-soft, D.Fir-L, No.2, 2x6 (1-1/2"x5-1/2")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 12.0" c/c; Total length: 4.04'; Clear span: 3.958'; Volume = 0.2 cu.ft.

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

SOFTWARE FOR WOOD DESIGN

6 - Typical Header 4ft Span.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 49	Fv' = 207	psi	fv/Fv' = 0.24
Bending(+)	fb = 562	Fb' = 1345	psi	fb/Fb' = 0.42
Live Defl'n	0.02 = < L/999	0.13 = L/360	in	0.16
Total Defl'n	0.03 = < L/999	0.20 = L/240	in	0.15

Additional Data:

```
FACTORS: F/E(psi) CD
                         CM
                                Ct
                                      CL
                                             CF
                                                    Cfu
                                                           Cr
                                                                Cfrt
                                                                       Ci
                                                                                   LC#
                                                                             1.00
Fv'
           180
                  1.15
                        1.00
                               1.00
                                                                1.00
                                                                       1.00
                                                                                    2
 Fb'+
                                                                                    2
           900
                  1.15
                        1.00
                               1.00
                                     1.000
                                            1.300
                                                          1.00
                                                                1.00
                                                                       1.00
 Fcp'
           625
                         1.00
                               1.00
                                                                1.00
                                                                       1.00
                                                                                    2
 Ε'
           1.6 million
                        1.00
                               1.00
                                                                1.00
                                                                       1.00
 Emin'
          0.58 million
                        1.00
                               1.00
                                                                1.00
                                                                       1.00
                                                                                    2
```

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+S Bending(+): LC #2 = D+S

Deflection: LC #2 = D+S (live) LC #2 = D+S (total) Bearing: Support 1 - LC #2 = D+S Support 2 - LC #2 = D+S

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

CALCULATIONS:

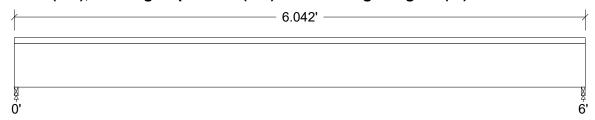
V max = 354, V design = 269 lbs; M(+) = 354 lbs-ft EI = 33.27e06 lb-in^2 "Live" deflection is due to all non-dead loads (live, wind, snow...) Total deflection = 1.0 dead + "live"

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

KPFF Consulting Engineers Feb. 12, 2024 10:57

PROJECT

6 - Typical Header 6ft Span.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	de	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				100.0		plf
LL	Snow	Full UDL				250.0		plf
Self-weight	Dead	Full UDL				4.6		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead	316	316
Snow	755	75
Factored:		
Total	1071	1071
Bearing:		
Capacity		
Joist	1094	1094
Support	1211	1211
Des ratio		
Joist	0.98	0.98
Support	0.88	0.88
Load comb	#2	#2
Length	0.50*	0.50
Min req'd	0.50*	0.50
Cb	1.00	1.00
Cb min	1.00	1.00
Cb support	1.11	1.1
Fcp sup	625	625

^{*}Minimum bearing length setting used: 1/2" for end supports

6 - Typical Header 6ft Span Lumber-soft, D.Fir-L, No.2, 4x6 (3-1/2"x5-1/2")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 12.0" c/c; Total length: 6.04'; Clear span: 5.958'; Volume = 0.8 cu.ft.

Lateral support: top = continuous, bottom = at supports; This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 70	Fv' = 207	psi	fv/Fv' = 0.34
Bending(+)	fb = 1085	Fb' = 1345	psi	fb/Fb' = 0.81
Live Defl'n	0.09 = L/766	0.20 = L/360	in	0.47
Total Defl'n	0.13 = L/540	0.30 = L/240	in	0.44

SOFTWARE FOR WOOD DESIGN

6 - Typical Header 6ft Span.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

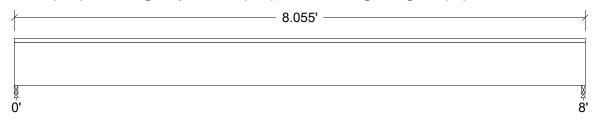
```
Additional Data:
FACTORS: F/E(psi) CD
                         CM
                                Ct
                                      CL
                                              CF
                                                    Cfu
                                                           Cr
                                                                Cfrt
                                                                        Ci
                                                                                   LC#
                                                                              Cn
Fv'
           180
                1.15
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                             1.00
                                                                                    2
                                            1.300
Fb'+
           900
                  1.15
                        1.00
                               1.00
                                     1.000
                                                          1.00
                                                                1.00
                                                                       1.00
                                                                                    2
 Fcp'
           625
                         1.00
                               1.00
                                              _
                                                                 1.00
                                                                       1.00
                                                                                    2
 Ε'
           1.6 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
CRITICAL LOAD COMBINATIONS:
          : LC \#2 = D+S
 Shear
 Bending(+): LC \#2 = D+S
 Deflection: LC \#2 = D+S
                            (live)
             LC #2 = D+S (total)
           : Support 1 - LC \#2 = D+S
 Bearing
             Support 2 - LC \#2 = D+S
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
 All LC's are listed in the Analysis output
 Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
 V \max = 1064, V \text{ design} = 894 \text{ lbs}; M(+) = 1596 \text{ lbs-ft}
 EI = 77.64e06 lb-in^2
 "Live" deflection is due to all non-dead loads (live, wind, snow...)
 Total deflection = 1.0 dead + "live"
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

KPFF Consulting Engineers Feb. 12, 2024 10:57

PROJECT

6 - Typical Header 8ft Span.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	e	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL				100.0		plf
LL	Snow	Full UDL				250.0		plf
Self-weight	Dead	Full UDL				6.0		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead	427	42
Snow	1007	100
Factored:		
Total	1434	143
Bearing:		
Capacity		
Joist	1434	143
Support	1587	158
Des ratio		
Joist	1.00	1.0
Support	0.90	0.
Load comb	#2	:
Length	0.66	0.
Min req'd	0.66	0.0
Cb	1.00	1.0
Cb min	1.00	1.0
Cb support	1.11	1.
Fcp sup	625	62

6 - Typical Header 8ft Span

Lumber-soft, D.Fir-L, No.2, 4x8 (3-1/2"x7-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 12.0" c/c; Total length: 8.05'; Clear span: 7.945'; Volume = 1.4 cu.ft.

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 71	Fv' = 207	psi	fv/Fv' = 0.34
Bending(+)	fb = 1115	Fb' = 1345	psi	fb/Fb' = 0.83
Live Defl'n	0.13 = L/740	0.27 = L/360	in	0.49
Total Defl'n	0.18 = L/520	0.40 = L/240	in	0.46

SOFTWARE FOR WOOD DESIGN

6 - Typical Header 8ft Span.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

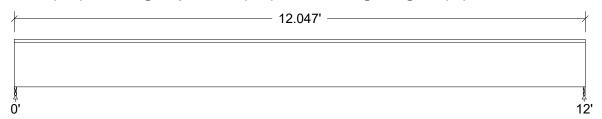
```
Additional Data:
FACTORS: F/E(psi) CD
                          CM
                                Ct
                                      CL
                                              CF
                                                    Cfu
                                                            Cr
                                                                 Cfrt
                                                                        Ci
                                                                                    LC#
                                                                               Cn
Fv'
           180
                1.15
                         1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                              1.00
                                                                                     2
                                             1.300
Fb'+
           900
                  1.15
                         1.00
                               1.00
                                     1.000
                                                           1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
 Fcp'
           625
                         1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
 Ε'
           1.6 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
 Emin'
          0.58 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
CRITICAL LOAD COMBINATIONS:
         : LC \#2 = D+S
 Shear
 Bending(+): LC \#2 = D+S
 Deflection: LC \#2 = D+S
                            (live)
             LC #2 = D+S
                            (total)
           : Support 1 - LC \#2 = D+S
 Bearing
             Support 2 - LC \#2 = D+S
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
 All LC's are listed in the Analysis output
 Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
 V \max = 1424, V \text{ design} = 1199 \text{ lbs}; M(+) = 2848 \text{ lbs-ft}
 EI = 177.83e06 lb-in^2
 "Live" deflection is due to all non-dead loads (live, wind, snow...)
 Total deflection = 1.0 dead + "live"
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

KPFF Consulting Engineers Feb. 12, 2024 11:32

PROJECT

7 - 2nd Fl Deck Joist.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	n [ft]	Magnitude	Unit
			tern	Start	End	Start End	
DL	Dead	Partial Area		0.03	8.03	30.00(16.0")	psf
LL	Live	Partial Area		0.03	8.03	100.00(16.0")	psf
Self-weight	Dead	Full UDL				6.7	plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored:		
Dead	253	14
Live	711	35
Factored:		
Total	965	50
Bearing:		
Capacity		
Joist	965	78
Support	1109	8.9
Des ratio		
Joist	1.00	0.6
Support	0.87	0.5
Load comb	#2	#
Length	0.62	0.50
Min req'd	0.62	0.50
Cb	1.00	1.0
Cb min	1.00	1.0
Cb support	1.15	1.3
Fcp sup	625	62

^{*}Minimum bearing length setting used: 1/2" for end supports

7 - 2nd FI Deck Joist Lumber-soft, D.Fir-L, No.2, 3x12 (2-1/2"x11-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Floor joist spaced at 16.0" c/c; Total length: 12.05'; Clear span: 11.953'; Volume = 2.4 cu.ft.

Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help);

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 43	Fv' = 180	psi	fv/Fv' = 0.24
Bending(+)	fb = 588	Fb' = 1035	psi	fb/Fb' = 0.57
Live Defl'n	0.10 = < L/999	0.40 = L/360	in	0.25
Total Defl'n	0.13 = < L/999	0.60 = L/240	in	0.22

SOFTWARE FOR WOOD DESIGN

7 - 2nd FI Deck Joist.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

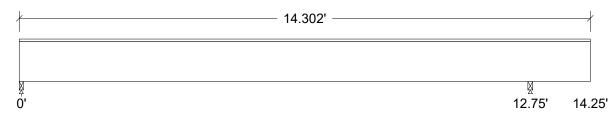
```
Additional Data:
FACTORS: F/E(psi) CD
                          CM
                                Ct
                                      CL
                                              CF
                                                    Cfu
                                                           Cr
                                                                 Cfrt
                                                                        Ci
                                                                                    LC#
                                                                              Cn
Fv'
           180
                1.00 1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                             1.00
                                                                                     2
Fb'+
           900
                  1.00
                        1.00
                               1.00
                                     1.000
                                             1.000
                                                          1.15
                                                                 1.00
                                                                       1.00
                                                                                     2
 Fcp'
           625
                         1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
 Ε'
           1.6 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
 Emin'
          0.58 million
                        1.00
                               1.00
                                                                 1.00
                                                                       1.00
                                                                                     2
CRITICAL LOAD COMBINATIONS:
         : LC \#2 = D+L
 Shear
 Bending(+): LC \#2 = D+L
 Deflection: LC \#2 = D+L
                            (live)
             LC #2 = D+L (total)
           : Support 1 - LC \# 2 = D + L
 Bearing
             Support 2 - LC \# 2 = D + L
 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
 All LC's are listed in the Analysis output
 Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2
CALCULATIONS:
 V \max = 965, V \text{ design} = 798 \text{ lbs}; M(+) = 2584 \text{ lbs-ft}
 EI = 474.60e06 lb-in^2
 "Live" deflection is due to all non-dead loads (live, wind, snow...)
 Total deflection = 1.0 dead + "live"
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

KPFF Consulting Engineers Feb. 12, 2024 11:45

PROJECT

8 - 2nd Fl Beam Grid C.wwb


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitud	de	Unit
			tern	Start	End	Start	End	
DL	Dead	Full UDL	No			160.0		plf
LL	Live	Full UDL	No			533.0		plf
Self-weight	Dead	Full UDL	No			15.2		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

Unfactored: Dead Live	1110 3379	1395 4244	
Factored:			
Total	4489	5640	
Bearing:			
Capacity			
Beam	4489	6831	
Support	4610	5640	
Des ratio			
Beam	1.00	0.83	
Support	0.97	1.00	
Load comb	#2	#2	
Length	1.26	1.54	
Min req'd	1.26	1.54**	
Cb	1.00	1.24	
Cb min	1.00	1.24	
Cb support	1.07	1.07	
Fcp sup	625	625	

^{**}Minimum bearing length governed by the required width of the supporting member.

8 - 2nd FI GL Beam Grid C Glulam-Balanced, West Species, 24F-V8 DF, 5-1/2"x12"

Supports: All - Timber-soft Beam, D.Fir-L No.2

Total length: 14.3'; Clear span: 12.634', 1.436'; Volume = 6.6 cu.ft.; 8 laminations, 5-1/2" maximum width,

Lateral support: top = continuous, bottom = at supports;

This section PASSES the design code check.

SOFTWARE FOR WOOD DESIGN

8 - 2nd Fl Beam Grid C.wwb

WoodWorks® Sizer 2019 (Update 1)

Page 2

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 87	Fv' = 265	psi	fv/Fv' = 0.33
Bending(+)	fb = 1272	Fb' = 2400	psi	fb/Fb' = 0.53
Bending(-)	fb = 72	Fb' = 2364	psi	fb/Fb' = 0.03
Deflection:				
Interior Live	0.21 = L/711	0.43 = L/360	in	0.51
Total	0.29 = L/535	0.64 = L/240	in	0.45
Cantil. Live	-0.08 = L/228	0.10 = L/180	in	0.79
Total	-0.10 = L/172	0.15 = L/120	in	0.70

Additional Data:

```
FACTORS: F/E(psi) CD
                         CM
                                Ct
                                      CL
                                             CV
                                                   Cfu
                                                           Cr
                                                                Cfrt Notes Cn*Cvr LC#
 Fv'
           265
                  1.00
                        1.00
                               1.00
                                                                1.00
                                                                      1.00
                                                                            1.00
 Fb'+
          2400
                  1.00
                        1.00
                               1.00
                                     1.000
                                            1.000
                                                                1.00
                                                                                    2
                                                                      1.00
 Fb'-
          2400
                  1.00
                        1.00
                               1.00
                                     0.985
                                            1.000
                                                                1.00
                                                                      1.00
                                                                                    2
           650
                         1.00
                               1.00
                                                                1.00
 Fcp'
 Ε'
           1.8 million
                        1.00
                               1.00
                                                                1.00
                                                                                    2
 Eminy'
          0.85 million
                        1.00
                               1.00
                                                                1.00
                                                                                    2
```

CRITICAL LOAD COMBINATIONS:

Shear : LC #2 = D+L Bending(+): LC #2 = D+L Bending(-): LC #2 = D+L

Deflection: LC #2 = D+L (live) LC #2 = D+L (total) Bearing : Support 1 - LC #2 = D+L Support 2 - LC #2 = D+L

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output

Load combinations: ASD Basic from ASCE 7--16 2.4 / IBC 2018 1605.3.2

CALCULATIONS:

```
V max = 4577, V design = 3824 lbs; M(+) = 13995 lbs-ft; M(-) = 797 lbs-ft EI = 1425.58e06 lb-in^2 "Live" deflection is due to all non-dead loads (live, wind, snow...) Total deflection = 1.0 dead + "live" Lateral stability(-): Lu = 12.75' Le = 21.38' RB = 10.1; Lu based on full span
```

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Glulam design values are for materials conforming to ANSI 117-2015 and manufactured in accordance with ANSI A190.1-2012
- 4. Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams.
- 5. GLULAM: bxd = actual breadth x actual depth.
- 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.
- 7. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).

 Project OSU Azalea House
 By MAA
 Sheet No.

 Location Corvallis, OR
 Date 2/12/2024
 1

 Client Rowell Brokaw
 Revised
 Job No.

 Date
 223346

Portland, Oregon

9 - TYPICAL CANOPY BEAM

In accordance with AISC360 15th Edition published 2016 using the LRFD method

Tedds calculation version 4.4.08

ANALYSIS

Tedds calculation version 1.0.36

Geometry

Geometry (ft) - Steel (AISC) - W 6x15

I	Span	Length (ft)	Section	Start Support	End Support
	1	11	W 6x15	Pinned	Roller Pin X
	2	1.5	W 6x15	Roller Pin X	Free

W 6x15: Area 4 in², Inertia Major 29 in⁴, Inertia Minor 9 in⁴, Shear area parallel to Minor 1 in², Shear area parallel to Major 3 in²

Steel (AISC): Density 490 lbm/ft³, Youngs 29000 ksi, Shear 11200 ksi, Thermal 0.000012 °C⁻¹

Loading

Self weight included

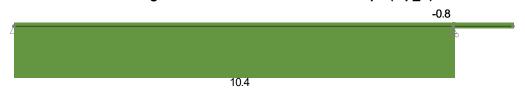
Dead - Loading (kips/ft)

Load combination factors

Load combination	Self Weight	Dead	Live
1.2D + 1.6L (Strength)	1.20	1.20	1.60
1.0D + 1.0L (Service)	1.00	1.00	1.00

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

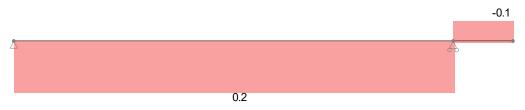
Portland, Oregon


Member Loads

Member	Load case	Load Type	Orientation	Description
Beam	Dead	UDL	GlobalZ	0.18 kips/ft
Beam	Live	UDL	GlobalZ	0.3 kips/ft

Results

Forces


Strength combinations - Moment envelope (kip_ft)

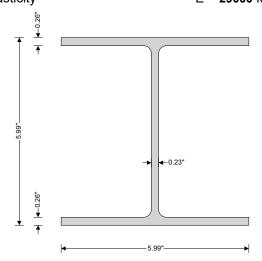
Strength combinations - Shear envelope (kips)

Service combinations - Deflection envelope (in)

Resistance factors

Shear	$\phi_{\text{\tiny V}}$ = 1.00
Flexure	$\phi_b = \textbf{0.90}$
Tensile yielding	$\varphi_{t,y}=\textbf{0.90}$
Tensile rupture	$\varphi_{t,r}=\textbf{0.75}$
Compression	$\phi_{\rm c} = 0.90$

Portland, Oregon


Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Beam - Span 1 design

Section details

Section type W 6x15 (AISC 15th Edn (v15.0))

ASTM steel designation A992
Steel yield stress $F_y = 50 \text{ ksi}$ Steel tensile stress $F_u = 65 \text{ ksi}$ Modulus of elasticity E = 29000 ksi

W 6x15 (AISC 15th Edn (v15.0))

Section depth, d, 5.99 in

Section breadth, \(\bar{q}\), 5.99 in
Weight of section, Weight, 15 lbf/ft
Flange thickness, \(\bar{q}\), 0.26 in
Web thickness, \(\bar{q}\), 0.26 in
Web thickness, \(\bar{q}\), 0.26 in
Area of section, A, 4.4 in
Radius of gyration about x-axis, \(\bar{g}\), 2.56 in
Radius of gyration about y-axis, \(\bar{g}\), 1.45 in
Elastic section modulus about y-axis, \(\bar{g}\), 9.72 in
Elastic section modulus about y-axis, \(\bar{g}\), 4.75 in
Plastic section modulus about y-axis, \(\bar{g}\), 4.75 in
Second moment of area about x-axis, \(\bar{g}\), 29.1 in
Second moment of area about y-axis, \(\bar{g}\), 9.32 in

Lateral restraint

Top flange has full lateral restraint

Bottom flange has lateral restraint at supports only

Classification of sections for local buckling - Section B4

Classification of flanges in flexure - Table B4.1b (case 10)

Width to thickness ratio $b_f / (2 \times t_f) = 11.52$

Limiting ratio for compact section $\lambda_{pff} = 0.38 \times \sqrt{[E/F_v]} = 9.15$

Limiting ratio for non-compact section $\lambda_{rff} = 1.0 \times \sqrt{[E / F_y]} = 24.08$ Noncompact

Classification of web in flexure - Table B4.1b (case 15)

Width to thickness ratio $(d - 2 \times k) / t_w = 21.61$

Limiting ratio for compact section $\lambda_{pwf} = 3.76 \times \sqrt{[E / F_y]} = 90.55$

Limiting ratio for non-compact section $\lambda_{\text{rwf}} = 5.70 \times \sqrt{[E / F_{\text{y}}]} = 137.27$ Compact

Section is noncompact in flexure

Check design at start of span

Design of members for shear - Chapter G

Required shear strength $V_{r,x} = 3.9 \text{ kips}$

Web area $A_w = d \times t_w = 1.378 \text{ in}^2$

Portland, Oregon

Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No.
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Web plate buckling coefficient $k_v = 5.34$

 $(d - 2 \times k) / t_w \le 2.24 \times \sqrt{(E / F_y)}$

Web shear coefficient - eq G2-2 $C_{v1} = 1.000$

Nominal shear strength - eq G2-1 $V_{n,x} = 0.6 \times F_y \times A_w \times C_{v1} = 41.3$ kips

Resistance factor $\phi_V = 1.00$

Design shear strength $V_{c,x} = \phi_v \times V_{n,x} = 41.3 \text{ kips}$

 $V_{r,x} / V_{c,x} = 0.093$

PASS - Design shear strength exceeds required shear strength

Check design 5ft 4.773in along span

Design of members for flexure - Chapter F

Required flexural strength $M_{r,x} = 10.4 \text{ kips}_{ft}$

Compression flange local buckling - Section F3.2

$$\lambda = b_f / (2 \times t_f) = 11.519$$

Nominal flexural strength for compression flange local buckling - eq F3-1

$$M_{n,flb,x} = M_{p,x} - (M_{p,x} - 0.7 \times F_v \times S_x) \times (\lambda - \lambda_{pff}) / (\lambda_{rff} - \lambda_{pff}) = 42.4$$

kips_ft

Design flexural strength - F1

Nominal flexural strength $M_{n,x} = M_{n,flb,x} = 42.4 \text{ kips_ft}$ Design flexural strength $M_{c,x} = \phi_b \times M_{n,x} = 38.1 \text{ kips ft}$

 $M_{r,x} / M_{c,x} = 0.273$

PASS - Design flexural strength exceeds required flexural strength

Check design at end of span

Design of members for shear - Chapter G

Required shear strength $V_{r,x} = 4 \text{ kips}$

Web area $A_{w} = d \times t_{w} = 1.378 \text{ in}^{2}$

Web plate buckling coefficient $k_v = 5.34$

 $(d - 2 \times k) / t_w \le 2.24 \times \sqrt{(E / F_v)}$

Web shear coefficient - eq G2-2 $C_{v1} = 1.000$

Nominal shear strength - eq G2-1 $V_{n,x} = 0.6 \times F_y \times A_w \times C_{y1} = 41.3$ kips

Resistance factor $\phi_V = 1.00$

Design shear strength $V_{c,x} = \phi_v \times V_{n,x} = 41.3 \text{ kips}$

 $V_{r,x} / V_{c,x} = 0.097$

PASS - Design shear strength exceeds required shear strength

Design of members for flexure - Chapter F

Required flexural strength $M_{r,x} = 0.8$ kips ft

Plastic moment - eq F2-1 $M_{p,x} = F_y \times Z_x = 45$ kips ft

	Project OSU Azalea House	By MAA	Sheet No.
KDII	Location Corvallis, OR	Date 2/12/2024	5
-	Client Rowell Brokaw	Revised	Job No.
Portland, Oregon		Date	223346

Lateral-torsional buckling - Section F3.1

Unbraced length $L_b = 11 \text{ ft}$

Limiting unbraced length for yielding - eq F2-5 $L_p = 1.76 \times r_y \times \sqrt{(E/F_y)} = 5.122$ ft

Distance between flange centroids $h_0 = 5.73 \text{ in}$

c = 1

 $r_{ts} = 1.66 in$

Limiting unbraced length for inelastic LTB - eq F2-6 $L_r = 1.95 \times r_{ts} \times E / (0.7 \times F_v) \times \sqrt{((J \times c / (S_x \times h_o)) + \sqrt{((J \times c / (S_x \times h_o)) + \sqrt{(J \times c / (S_x \times h_o)) +$

 $(S_x \times h_0)^2 + 6.76 \times (0.7 \times F_v / E)^2) = 16.482 \text{ ft}$

Moment at quarter point of segment $M_A = 7.9 \text{ kips}_ft$ Moment at center-line of segment $M_B = 10.4 \text{ kips ft}$ Moment at three quarter point of segment $M_C = 7.5 \text{ kips}_ft$ Maximum moment in segment M_{max} = 10.4 kips ft

 $C_b = 12.5 \times M_{max} / (2.5 \times M_{max} + 3 \times M_A + 4 \times M_B + 3 \times M_C) = 1.143$ LTB modification factor - eq F1-1

Nominal flexural strength for lateral-torsional buckling - eq F2-2

 $M_{n,ltb,x} = min(C_b \times (M_{p,x} - (M_{p,x} - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)),$

 $M_{p,x}$) = 41.6 kips ft

Compression flange local buckling - Section F3.2

 $\lambda = b_f / (2 \times t_f) = 11.519$

Nominal flexural strength for compression flange local buckling - eq F3-1

 $M_{n,flb,x} = M_{p,x} - (M_{p,x} - 0.7 \times F_v \times S_x) \times (\lambda - \lambda_{pff}) / (\lambda_{rff} - \lambda_{pff}) = 42.4$

kips ft

Design flexural strength - F1

Nominal flexural strength $M_{n,x} = min(M_{n,ltb,x}, M_{n,flb,x}) = 41.6 kips_ft$

 $M_{c,x} = \phi_b \times M_{n,x} = 37.4 \text{ kips_ft}$ Design flexural strength

 $M_{r,x} / M_{c,x} = 0.021$

PASS - Design flexural strength exceeds required flexural strength

Consider Combination 2 - 1.0D + 1.0L (Service)

Check design 5ft 5.586in along span

Design of members for x-x axis deflection

Maximum deflection δ_{x} = **0.19** in

Allowable deflection $\delta_{x,Allowable} = L_{m1 s1} / 360 = 0.367 in$

 $\delta_x / \delta_{x,Allowable} = 0.519$

PASS - Allowable deflection exceeds design deflection

TABLE 3
BENDING STRESS AND MODULUS OF ELASTICITY
VALUES FOR HEAVY TIMBER DECKING SPECIES^a

	Select	Quality	Commerc	ial Quality	
Species	Bending Stress ^b psi	Modulus of Elasticity ^c psi	Bending Stress ^b psi	Modulus of Elasticity ^c psi	Agency ^d
Cedar, Northern White	1100	800,000	950	700,000	1
Cedars, Western	1450	1,100,000	1200	1,000,000	3,4
Cedars, Western (North)	1400	1,100,000	1200	1,000,000	2
Coast Species	1450	1,500,000	1200	1,400,000	2
Douglas Fir-Larch	2000	1,800,000	1650	1,700,000	3,4
Douglas Fir-Larch (North)	2000	1,800,000	1650	1,700,000	2
Douglas Fir (South)	1900	1,400,000	1600	1,300,000	3
Fir, Balsam	1650	1,500,000	1400	1,300,000	1
Hem-Fir	1600	1,500,000	1350	1,400,000	3,4
Hem-Fir (North)	1500	1,500,000	1300	1,400,000	2
Hemlock, Eastern-Tamarack	1700	1,300,000	1450	1,100,000	1
Hemlock, Eastern-Tamarack (North)	1700	1,300,000	1450	1,100,000	2
Hemlock, Western	1750	1,600,000	1450	1,400,000	4
Hemlock, Western (North)	1750	1,600,000	1450	1,400,000	2
Northern Species	1050	1,100,000	875	1,000,000	2
Pine, Eastern White	1300	1,200,000	1100	1,100,000	1
Pine, Eastern White (North)	1050	1,200,000	875	1,100,000	2
Pine, Northern	1550	1,400,000	1300	1,300,000	1
Pine, Ponderosa	1450	1,300,000	1250	1,100,000	2
Pine, Red	1350	1,300,000	1100	1,200,000	2
Pine, Southern	1650	1,600,000	1650	1,600,000	5
Pine, Western White	1300	1,400,000	1050	1,300,000	2
Redwood, California	1700	1,100,000	1350	1,000,000	6
SPF, South	1350	1,400,000	1100	1,200,000	1,3
Spruce, Coast Sitka	1450	1,700,000	1200	1,500,000	2
Spruce, Eastern	1300	1,500,000	1100	1,400,000	1
Spruce-Pine-Fir	1400	1,500,000	1150	1,300,000	2
Spruce, Sitka	1500	1,500,000	1250	1,300,000	4
Western Woods	1300	1,200,000	1100	1,100,000	3

The design values in bending (F_b), except for Redwood, are based on decking 4 in. thick. For other thicknesses, multiply by the size factor, C_F, as follows:

 Thickness
 C_F

 2 in.
 1.70

 3 in.
 1.04

Design values for visually graded decking are those recommended by the regional lumber rules writing agencies. These values are ased on decking that is used where the moisture content inservice will not exceed 19%. When the moisture content inservice exceeds 19% for an extended period of time, the tabular design values shall be multiplied by the wet service factor, C_M, as follows:

 	C _M		
Fb	Fcl	E	ĺ
0.85*	0.67	0.9	

^{*} When (F_b) (C_F) < 1150 psi, C_M = 1.0 for bending.

b Repetitive member use values.

The tabulated values for modulus of elasticity are the average for the species grouping. For information concerning coefficient of variation of modulus of elasticity, see the appropriate grading rules for the species.

Stresses listed are as assigned by the following grading rules agencies: NELMA (1), NLGA (Canadian) (2), WWPA (3), WCLIB (4), SPIB (5), and RIS (6).

If specified as "close grain", California Redwood select decking is assigned a bending stress value of 1850 psi and a modulus of elasticity value of 1,400,000 psi when used at 19% M.C.

TABLE 6

THREE AND FOUR INCH NOMINAL THICKNESS
ALLOWABLE ROOF LOAD LIMITED BY BENDING
SIMPLE SPAN AND CONTROLLED RANDOM LAYUPS (3 or more spans)

						***		Allov	wable	Uni	iform	ıly Di	stribu	ited T	otal R	oof Lo	oad ^{a,}	c, e, f,	^g , psf							
Bending				3	inch N	lomin	al Th	ickne	ss ^b									4 incl	1 Non	inal T	hickn	ess d	-			
Stress						Spa	an, ft												S	pan, f	ft					
psi	8	9	10	11	12	13	14	15	16	17	18	19	20	8	9	10	11	12	13	14	15	16	17	18	19	20
875	114	90	73	60	51	43	37	32	28	25	22	20	18	223	176	143	118	99	84	73	64	56	49	44	40	36
950	124	98	79	65	55	47	40	35	31	27	24	22	20	242	192	155	128	108	92	79	69	61	54	48	43	39
1000	130	103	83	69	58	49	42	37	32	29	26	23	21	255	202	163	135	113	97	83	72	64	56	50	45	41
1050 1100	137	108	88	72	61	52	45	39	34	30	27	24	22	268	212	172	142	119	101	88	76	67	59	53	48	43
	143	113	92	76	64	54	47	41	36	32	28	25	23	281	222	180	148	125	106	92	80	70	62	55	50	45
1150	150	118	96	79	66	57	49	42	37	33	30	26	24	293	232	188	155	130	111	96	83	73	65	58	52	47
1200	156	123	100	83	69	59	51	44	39	35	31	28	25	306	242	196	162	136	116	100	87	76	68	60	54	49
1250	163	129	104	86	72	62	53	46	41	36	32	29	26	319	252	204	169	142	121	104	91	80	71	63	56	51
1300 1350	169 176	134 139	108	90 93	75 70	64 66	55 57	48	42	37	33	30	27	332	262	212	175	147	126	108	94	83	73	66	59	53
		198	112		78			50	44	39	35	31	28	344	272	220	182	153	130	112	98	86	76	68	61	55
1400	182	144	117	96	81	69	60	52	46	40	36	32	29	357	282	229	189	159	135	117	102	89	79	70	63	57
1450	189	149	121	100	84	71	62	54	47	42	37	33	30	370	292	237	196	164	140	121	105	92	82	73	66	59
1500	195	154	125	103	87	74	64	56	49	43	38	35	31	383	302	245	202	170	145	125	109	96	85	76	68	61
1550 1600	202 208	159	129	107	90	76	66	57	50	45	40	36	32	396	312	253	209	176	150	129	112	99	88	78	70	63
1000	200	165	133	110	92	79	68	59	52	46	41	37	33	408	323	261	216	181	155	133	116	102	90	81	72	65
1650	215	170	138	114	95	81	70	61	54	48	42	38	34	421	333	270	223	187	159	138	120	105	93	83	75	67
1700	221	175	142	117	98	84	72	63	55	49	44	39	35	434	343	278	229	193	164	142	123	108	96	86	77	69
1750	228	180	146	120	101	86	74	65	57	50	45	40	36	447	353	286	236	198	169	146	127	112	99	88	79	71
1900	247	195	158	131	110	94	81	70	62	55	49	44	40	485	383	310	256	216	184	158	138	121	107	96	86	78
2000	260	206	167	138	116	99	85	74	65	58	51	46	42	510	403	327	270	227	193	167	145	128	113	101	90	82

These load values may also be used for cantilevered pieces intermixed, combination simple span and two-span continuous, and two-span continuous layups.

b 2-1/2 in. net thickness. To determine allowable loads for 2-5/8 in. net thickness, multiply tabulated loads by 1.10.

All spans to the right of the double line require special ordering of additional long lengths to assure that at least 20% of the decking is equal to the span length or longer.

d 3-1/2 in. net thickness.

Duration of load, CD = 1.0 used in this table. For other durations of load, adjust by the appropriate factor.

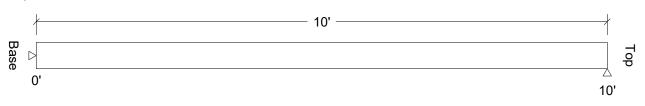
No increase for size effect has been applied (C_F = 1.00). F_b values have been previously adjusted.

^g Dry conditions of use.

KPFF Consulting Engineers Feb. 13, 2024 10:27

PROJECT

11 - Critical Grid 8 Column.wwc


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
DL	Dead	Axial	(Ecc. = 0.00")	2408	lbs
LL	Snow	Axial	(Ecc. = 0.00")	5438	lbs
Self-weight	Dead	Axial		72	lbs

Reactions (lbs):

11 - Critical grid 8 Column Timber-soft, D.Fir-L, No.1, 6x6 (5-1/2"x5-1/2")

Support: Non-wood

Total length: 10.0'; Volume = 2.1 cu.ft.; Post or timber

Pinned base; Ke x Lb: $1.0 \times 10.0 = 10.0 \text{ ft}$; Ke x Ld: $1.0 \times 10.0 = 10.0 \text{ ft}$;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc = 262	Fc' = 738	psi	fc/Fc' = 0.35
Axial Bearing	fc = 262	Fc* = 1150	psi	fc/Fc* = 0.23

Additional Data:

FACTORS:	F/E(ps:	i) CD	CM	Ct	CL/CP	CF	Cfu	Cr	Cfrt	Ci	LC#
Fc'	1000	1.15	1.00	1.00	0.641	1.000	_	_	1.00	1.00	2
Fc*	1000	1.15	1.00	1.00	_	1.000	_	_	1.00	1.00	2

CRITICAL LOAD COMBINATIONS:

Axial : LC #2 = D+S

 ${\tt D=dead\ L=live\ S=snow\ W=wind\ I=impact\ Lr=roof\ live\ Lc=concentrated\ E=earthquake}$

All LC's are listed in the Analysis output

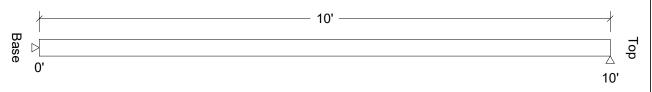
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.

KPFF Consulting Engineers Feb. 13, 2024 10:28

PROJECT

12 - Critical Grid D and G Post.wwc


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
DL	Dead	Axial	(Ecc. = 0.00")	780	lbs
LL	Snow	Axial	(Ecc. = 0.00")	1714	lbs
Self-weight	Dead	Axial		29	lbs

Reactions (lbs):

12 - Critical grid D and G Post Lumber Post, D.Fir-L, No.2, 4x4 (3-1/2"x3-1/2")

Support: Non-wood

Total length: 10.0'; Volume = 0.9 cu.ft.

Pinned base; Ke x Lb: $1.0 \times 10.0 = 10.0 \text{ ft}$; Ke x Ld: $1.0 \times 10.0 = 10.0 \text{ ft}$;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc = 206	Fc' = 384	psi	fc/Fc' = 0.54
Axial Bearing	fc = 206	Fc* = 1785	psi	fc/Fc* = 0.12

Additional Data:

FACTORS: F/E(psi) CD LC# CMCt CL/CP Cr Cfrt Сi 1.00 1.00 0.215 Fc' 1350 1.15 1.150 1.00 2 1.00 Fc* 1350 1.15 1.00 1.00 1.150 1.00 1.00 2

CRITICAL LOAD COMBINATIONS:

Axial : LC #2 = D+S

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

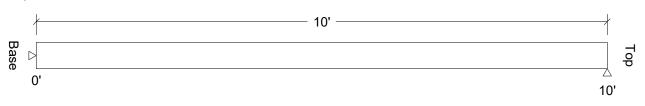
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.

KPFF Consulting Engineers Feb. 13, 2024 10:29

PROJECT

13 - Critical Grid H Post.wwc


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
DL	Dead	Axial	(Ecc. = 0.00")	900	lbs
LL	Snow	Axial	(Ecc. = 0.00")	2250	lbs
Self-weight	Dead	Axial		72	lbs

Reactions (lbs):

13 - Critical grid H Post Timber-soft, D.Fir-L, No.1, 6x6 (5-1/2"x5-1/2")

Support: Non-wood

Total length: 10.0'; Volume = 2.1 cu.ft.; Post or timber

Pinned base; Ke x Lb: $1.0 \times 10.0 = 10.0 \text{ ft}$; Ke x Ld: $1.0 \times 10.0 = 10.0 \text{ ft}$;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc = 107	Fc' = 738	psi	fc/Fc' = 0.14
Axial Bearing	fc = 107	Fc* = 1150	psi	$fc/Fc^* = 0.09$

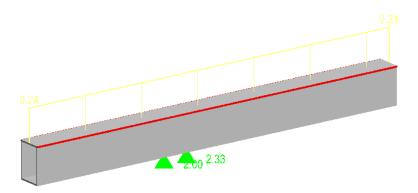
Additional Data:

FACTORS:	F/E(ps:	i) CD	CM	Ct	CL/CP	CF	Cfu	Cr	Cfrt	Ci	LC#
Fc'	1000	1.15	1.00	1.00	0.641	1.000	_	_	1.00	1.00	2
Fc*	1000	1.15	1.00	1.00	_	1.000	_	_	1.00	1.00	2

CRITICAL LOAD COMBINATIONS:

Axial : LC #2 = D+S

 ${\tt D=dead\ L=live\ S=snow\ W=wind\ I=impact\ Lr=roof\ live\ Lc=concentrated\ E=earthquake}$


All LC's are listed in the Analysis output

Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.

Tuesday, February 13, 2024, 10:29

RAM SBeam OSU Azalea House Entry Canopy Beam

Gravity Beam Design

02/13/24 10:30:02

STEEL CODE: AISC 360-05 ASD

SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (5.33,0.00)

Beam Size (User Selected) = HSS6X4X1/4 Fy = 46.0 ksi

Total Beam Length (ft) = 5.33 Cantilever on left (ft) = 2.00 Cantilever on right (ft) = 3.00

Mp (kip-ft) = 32.70 Top flange braced by decking.

LINE LOADS (k/ft):

	()		
Load	Dist (ft)	DL	LL
1	0.000	0.015	0.000
	2.000	0.015	0.000
2	0.000	0.090	0.150
	2.000	0.090	0.150
3	2.000	0.015	0.000
	2.333	0.015	0.000
4	2.000	0.090	0.150
	2.333	0.090	0.150
5	2.333	0.015	0.000
	5.333	0.015	0.000
6	2.333	0.090	0.150
	5.333	0.090	0.150
	5.555	0.090	0.130

SHEAR: Max Va (DL+LL) = 2.85 kips Vn/1.67 = 46.21 kips

MOMENTS:

Span	Cond	LoadCombo	Ma	<u>@</u>	Lb	Cb	Ω	Mn / Ω
			kip-ft	ft	ft			kip-ft
Left	Max -	DL+LL	-0.5	2.0	2.0	1.00	1.67	19.58
Center	Max -	DL+LL	-1.1	2.3	0.3	1.29	1.67	19.58
Right	Max -	DL+LL	-1.1	2.3	3.0	1.00	1.67	19.58
Controlling		DL+LL	-1.1	2.3	3.0	1.00	1.67	19.58

REACTIONS (kips):

	Leit	Kignt
DL reaction	-0.56	1.12
Max +LL reaction	1.23	2.50
Max -LL reaction	-2.03	-0.90
Max +total reaction	0.67	3.61
Max -total reaction	-2.59	0.22

DEFLECTIONS:

Left cantilever:

Dead load (in)	= -0.001	
Pos Live load (in)	= -0.001	L/D = 38136
Pos Total load (in)	= -0.002	L/D = 22475

Gravity Beam Design

Page 2/2

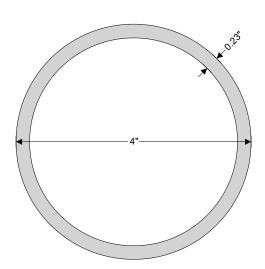
02/13/24 10:30:02

Center	spar	1:
--------	------	----

Dead load (in) at 2.18 ft = 0.000Live load (in) at 2.18 ft = 0.000Net Total load (in) at 2.18 ft = 0.000

Right cantilever:

Dead load (in) = -0.004 L/D = 20196 Pos Live load (in) = -0.005 L/D = 14082 Pos Total load (in) = -0.009 L/D = 8297



Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

15 - ENTRY CANOPY COLUMN

Steel column design in accordance with AISC360-16 and the LRFD method

Tedds calculation version 1.0.10

Column and loading details

Column details

Column section HSS 4x0.250

Design loading

Required axial strength $P_r = 2$ kips (Compression)

 $\label{eq:maximum moment about x axis} M_x = \textbf{0.9 kips_ft}$ Maximum moment about y axis $M_y = \textbf{3.2 kips_ft}$ Maximum shear force parallel to y axis $V_{ry} = \textbf{0.0 kips}$ Maximum shear force parallel to x axis $V_{rx} = \textbf{0.3 kips}$

Material details

Steel grade A500 Gr. B
Yield strength $F_y = 42$ ksi
Ultimate strength $F_u = 58$ ksi
Modulus of elasticity E = 29000 ksi
Shear modulus of elasticity G = 11200 ksi

Unbraced lengths

For buckling about x axis $L_x = 120$ in For buckling about y axis $L_y = 120$ in For torsional buckling $L_z = 120$ in

Effective length factors

For buckling about x axis $K_x = 1.00$

Dortland	Orogon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

For buckling about y axis $K_y = 1.00$ For torsional buckling $K_z = 1.00$

Effective unbraced lengths

For buckling about x axis $L_{cx} = L_x \times K_x = \textbf{120} \text{ in}$ For buckling about y axis $L_{cy} = L_y \times K_y = \textbf{120} \text{ in}$ For torsional buckling $L_{cz} = L_z \times K_z = \textbf{120} \text{ in}$

Section classification

Section classification for local buckling (cl. B4)

Width to thickness ratio $\lambda = D_o / t = 17.167$

Compression

Limit for nonslender section $\lambda_{r_c} = 0.11 \times E / F_y = 75.952$

The section is nonslender in compression

Flexure

Limit for compact section $\lambda_{p_f} = 0.07 \times \text{E / F}_y = \textbf{48.333}$ Limit for noncompact section $\lambda_{r_f} = 0.31 \times \text{E / F}_y = \textbf{214.048}$

The section is compact in flexure

Slenderness

Member slenderness

Slenderness ratio about x axis $SR_x = L_{cx} / r_x = 90.2$ Slenderness ratio about y axis $SR_y = L_{cy} / r_y = 90.2$

Second order effects

Second order effects for bending about y axis (cl. C2.1b)

Second order effects are already included or do not need to be considered therefore:-

P- δ amplifier $B_{1x} = B_{1y} = 1.0$

Required flexural strength (x axis) $M_{rx} = B_{1x} \times M_x = 0.9 \text{ kips_ft}$ Required flexural strength (y axis) $M_{ry} = B_{1y} \times M_y = 3.2 \text{ kips_ft}$

Design of members for shear parallel to x axis - Chapter G

Required shear strength $V_{rx} = 0.320 \text{ kips}$

Nominal shear strength - eq G5-1 $V_{nx} = 0.6 \times F_y \times A / 2 = 34.776$ kips

Resistance factor for shear $\phi_V = 0.90$

Design shear strength $V_{cx} = \phi_v \times V_{nx} = 31.298 \text{ kips}$

Compressive strength

Flexural buckling about x axis (cl. E3)

Elastic critical buckling stress $F_{ex} = \pi^2 \times E / (SR_x)^2 = 35.2 \text{ ksi}$

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Flexural buckling stress

$$F_{crx} = (0.658^{F_y/F_{ex}}) \times F_y = 25.5 \text{ ksi}$$

Nominal compressive strength for flexural buckling $P_{nx} = F_{crx} \times A = 70.3$ kips

Flexural buckling about y axis (cl. E3)

Elastic critical buckling stress

 $F_{ey} = \pi^2 \times E / (SR_y)^2 = 35.2 \text{ ksi}$

Flexural buckling stress

 $F_{cry} = (0.658^{F_y/F_{ey}}) \times F_y = 25.5 \text{ ksi}$

Nominal compressive strength for flexural buckling $P_{nv} = F_{crv} \times A = 70.3$ kips

Design compressive strength (cl.E1)

Resistance factor for compression

 $\phi_{c} = 0.90$

Design compressive strength

 $P_c = \phi_c \times min(P_{nx}, P_{ny}) = 63.3 \text{ kips}$

PASS - The design compressive strength exceeds the required compressive strength

Flexural strength about the major axis

Yielding (cl. F8.1)

Nominal flexural strength

 $M_{nx yld} = M_{ny yld} = F_y \times Z = 11.6 \text{ kips_ft}$

Design flexural strength (cl. F1)

Resistance factor for flexure

 $\phi_{b} = 0.90$

Design flexural strength

 $M_{cx} = M_{cy} = \phi_b \times M_{nx yld} = 10.4 \text{ kips_ft}$

PASS - The design flexural strength about the x axis exceeds the required flexural strength PASS - The design flexural strength about the y axis exceeds the required flexural strength

Combined forces

Member utilization (cl. H1.1)

Equation H1-1b

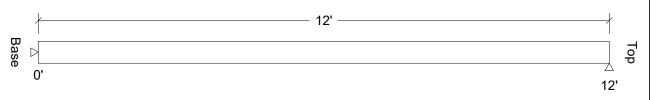
UR = abs(P_r) / (2 × P_c) + (M_{rx} / M_{cx} + M_{ry} / M_{cy}) = 0.407

PASS - The member is adequate for the combined forces

KPFF Consulting Engineers Feb. 13, 2024 10:34

PROJECT

16 - Critical Grid C Column.wwc


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Туре	Distribution	Location [ft]	Magnitude	Unit
			Start End	Start End	
DL	Dead	Axial	(Ecc. = 0.00")	2910	lbs
LL	Snow	Axial	(Ecc. = 0.00")	8046	lbs
Self-weight	Dead	Axial		86	lbs

Reactions (lbs):

16 - Critical grid C Column Timber-soft, D.Fir-L, No.1, 6x6 (5-1/2"x5-1/2")

Support: Non-wood

Total length: 12.0'; Volume = 2.5 cu.ft.; Post or timber

Pinned base; Ke x Lb: $1.0 \times 12.0 = 12.0 \text{ ft}$; Ke x Ld: $1.0 \times 12.0 = 12.0 \text{ ft}$;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Axial	fc = 365	Fc' = 578	psi	fc/Fc' = 0.63
Axial Bearing	fc = 365	Fc* = 1150	psi	$fc/Fc^* = 0.32$

Additional Data:

FACTORS: F/E(psi) CD LC# CM Ct CL/CP CF Cfrt Fc' 1000 1.15 1.00 1.00 0.503 1.000 1.00 1.00 2 Fc* 1000 1.15 1.00 1.00 1.000

CRITICAL LOAD COMBINATIONS:

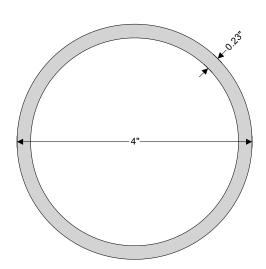
Axial : LC #2 = D+S

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.



Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

17 - DECK CANOPY COLUMN

Steel column design in accordance with AISC360-16 and the LRFD method

Tedds calculation version 1.0.10

Column and loading details

Column details

Column section HSS 4x0.250

Design loading

Required axial strength $P_r = 4 \text{ kips (Compression)}$

 $\label{eq:maximum moment about x axis} M_x = \textbf{0.0 kips_ft}$ Maximum moment about y axis $M_y = \textbf{0.0 kips_ft}$ Maximum shear force parallel to y axis $V_{ry} = \textbf{0.0 kips}$ Maximum shear force parallel to x axis $V_{rx} = \textbf{0.0 kips}$

Material details

Steel grade A500 Gr. B
Yield strength $F_y = 42$ ksi
Ultimate strength $F_u = 58$ ksi
Modulus of elasticity E = 29000 ksi
Shear modulus of elasticity G = 11200 ksi

Unbraced lengths

For buckling about x axis $L_x = 120$ in For buckling about y axis $L_y = 120$ in For torsional buckling $L_z = 120$ in

Effective length factors

For buckling about x axis $K_x = 1.00$

Portland	Oregon

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

For buckling about y axis $K_y = 1.00$ For torsional buckling $K_z = 1.00$

Effective unbraced lengths

For buckling about x axis $L_{cx} = L_x \times K_x = \textbf{120} \text{ in}$ For buckling about y axis $L_{cy} = L_y \times K_y = \textbf{120} \text{ in}$ For torsional buckling $L_{cz} = L_z \times K_z = \textbf{120} \text{ in}$

Section classification

Section classification for local buckling (cl. B4)

Width to thickness ratio $\lambda = D_o / t = 17.167$

Compression

Limit for nonslender section $\lambda_{r_c} = 0.11 \times E / F_y = 75.952$

The section is nonslender in compression

Slenderness

Member slenderness

Slenderness ratio about x axis $SR_x = L_{cx} / r_x = 90.2$ Slenderness ratio about y axis $SR_y = L_{cy} / r_y = 90.2$

Compressive strength

Flexural buckling about x axis (cl. E3)

Elastic critical buckling stress $F_{ex} = \pi^2 \times E / (SR_x)^2 = 35.2 \text{ ksi}$ Flexural buckling stress $F_{crx} = (0.658^F_y/^F_{ex}) \times F_y = 25.5 \text{ ksi}$ Nominal compressive strength for flexural buckling $P_{nx} = F_{crx} \times A = 70.3 \text{ kips}$

Flexural buckling about y axis (cl. E3)

Elastic critical buckling stress $F_{ey} = \pi^2 \times E / (SR_y)^2 = 35.2 \text{ ksi}$ Flexural buckling stress $F_{cry} = (0.658^F_y/^F_{ey}) \times F_y = 25.5 \text{ ksi}$ Nominal compressive strength for flexural buckling $P_{ny} = F_{cry} \times A = 70.3 \text{ kips}$

Design compressive strength (cl.E1)

Resistance factor for compression $\phi_c = 0.90$

Design compressive strength $P_c = \phi_c \times min(P_{nx}, P_{ny}) = 63.3$ kips

PASS - The design compressive strength exceeds the required compressive strength

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

18 - TYPICAL HSS FOOTING

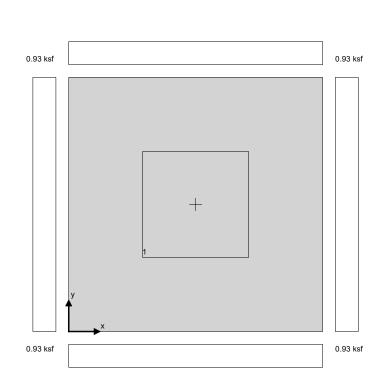
Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.7			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.93	1.5	0.620	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.3	32.3	0.010	Pass
Moment, positive, y-direction	kip_ft	0.3	32.3	0.010	Pass
Shear, two-way, Col 1	psi	2.678	189.737	0.014	Pass
Min.area of reinf, bot., x-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	8.6		Pass
Min.area of reinf, bot., y-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	8.6		Pass

Pad footing details


Footing area $A = L_x \times L_y = 4 \text{ ft}^2$

Depth of footing h = 12 inDepth of soil over footing $h_{\text{soil}} = 12 \text{ in}$

Density of concrete $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no.1 details

Length of column I_{x1} = 10.00 inWidth of column I_{y1} = 10.00 inposition in x-axis x_1 = 12.00 inposition in y-axis y_1 = 12.00 in

Soil properties

Gross allowable bearing pressure $q_{\text{allow_Gross}} = \textbf{1.5 ksf}$ Density of soil $\gamma_{\text{soil}} = \textbf{120.0 lb/ft}^3$ Angle of internal friction $\phi_b = \textbf{30.0 deg}$ Design base friction angle $\delta_{bb} = \textbf{30.0 deg}$ Coefficient of base friction $\tan(\delta_{bb}) = \textbf{0.577}$

Footing loads

Self weight $F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$ Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = 120 \text{ psf}$

Column no.1 loads

Dead load in z $F_{Dz1} = \textbf{1.0 kips}$ Live load in z $F_{Lz1} = \textbf{1.7 kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.345)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.620)

Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 3.7 \text{ kips}$

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_3) + \gamma_D \times (F_{Dz2} \times x_3) + \gamma_D \times (F_{Dz2}$

 x_1) = **3.7** kip_ft

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma_D \times (F_{Dz1}$

 y_1) = **3.7** kip_ft

Uplift verification

Vertical force $F_{dz} = 3.72 \text{ kips}$

PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \mathbf{0} \text{ in}$ Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \mathbf{0} \text{ in}$

Pad base pressures

$$\begin{split} q_1 &= F_{dz} \times \left(1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y\right) / \left(L_x \times L_y\right) = \textbf{0.93 ksf} \\ q_2 &= F_{dz} \times \left(1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y\right) / \left(L_x \times L_y\right) = \textbf{0.93 ksf} \\ q_3 &= F_{dz} \times \left(1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y\right) / \left(L_x \times L_y\right) = \textbf{0.93 ksf} \\ q_4 &= F_{dz} \times \left(1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y\right) / \left(L_x \times L_y\right) = \textbf{0.93 ksf} \end{split}$$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{0.93} \text{ ksf}$ Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{0.93} \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.620$

PASS - Allowable bearing capacity exceeds design base pressure

18 - TYPICAL HSS FOOTING

Footing design in accordance with ACI318-19

Tedds calculation version 3.3.02

Material details

 $\begin{array}{lll} \text{Compressive strength of concrete} & \text{f'_c = 4000 psi} \\ \text{Yield strength of reinforcement} & \text{f_y = 60000 psi} \\ \text{Compression-controlled strain limit (21.2.2)} & \epsilon_{ty} = 0.00200 \\ \text{Cover to top of footing} & c_{\text{nom_t}} = 3 \text{ in} \\ \text{Cover to side of footing} & c_{\text{nom_s}} = 3 \text{ in} \\ \end{array}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing $c_{nom_b} = 3$ in Normal weight

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.004)

1.2D + 1.6L + 0.5Lr (0.014)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

Ultimate force in z-axis $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 5.1 \text{ kips}$

Moments on footing

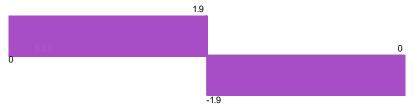
Ultimate moment in x-axis, about x is 0 $M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_3) + \gamma_D \times (F_{Dz2} \times x_3) + \gamma_D \times$

 x_1) = **5.1** kip_ft

Ultimate moment in y-axis, about y is 0 $M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma$

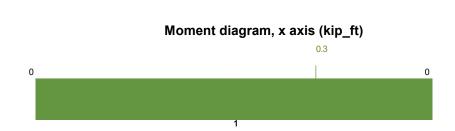
 y_1) = **5.1** kip_ft

Eccentricity of base reaction


Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = \mathbf{0}$ in Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = \mathbf{0}$ in

Pad base pressures

 $\begin{aligned} q_{u1} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \\ q_{u2} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \\ q_{u3} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \\ q_{u4} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \end{aligned}$


Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{1.281} \text{ ksf}$ Maximum ultimate base pressure $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{1.281} \text{ ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No.
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, x direction, positive moment

Ultimate bending moment $M_{u.x.max} = 0.326 \text{ kip ft}$

Tension reinforcement provided 3 No.5 bottom bars (8.6 in c/c)

Area of tension reinforcement provided $A_{sx.bot.prov} = 0.93 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s,min} = 0.0018 \times L_y \times h = 0.518 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.688$ in

Depth of compression block $a = A_{sx.bot.prov} \times f_y / (0.85 \times f'_c \times L_y) = 0.684$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.804$ in

Strain in tensile reinforcement $\varepsilon_t = 0.003 \times d / c - 0.003 = 0.02940$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sx,bot,prov} \times f_y \times (d - a / 2) = 38.807 \text{ kip}_ft$

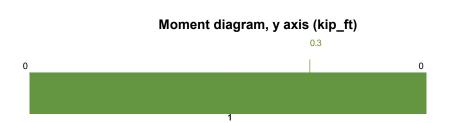
Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 34.926 \text{ kip_ft}$

 $M_{u.x.max} / \phi M_n = 0.009$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction


One-way shear design does not apply. Shear failure plane fall outside extents of foundation.

Shear diagram, y axis (kips)

Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No.
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, y direction, positive moment

Ultimate bending moment $M_{u.y.max} = 0.326 \text{ kip}_{ft}$

Tension reinforcement provided 3 No.5 bottom bars (8.6 in c/c)

Area of tension reinforcement provided $A_{sy.bot.prov} = 0.93 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_x \times h = 0.518 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x,bot} - \phi_{y,bot} / 2 = 8.062$ in

Depth of compression block $a = A_{sy.bot.prov} \times f_y / (0.85 \times f'_c \times L_x) = 0.684$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.804$ in

Strain in tensile reinforcement $\varepsilon_t = 0.003 \times d/c - 0.003 = 0.02707$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sy,bot,prov} \times f_y \times (d - a / 2) = 35.901 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 32.311 \text{ kip_ft}$

 $M_{u.y.max} / \phi M_n = 0.010$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

One-way shear design does not apply. Shear failure plane fall outside extents of foundation.

Two-way shear design at column 1

Depth to reinforcement d_{v2} = 8.375 in Shear perimeter length (22.6.4) I_{xp} = 18.375 in Shear perimeter width (22.6.4) I_{yp} = 18.375 in

Shear perimeter (22.6.4) $b_o = 2 \times (l_{x1} + d_{v2}) + 2 \times (l_{y1} + d_{v2}) = 73.500 \text{ in}$

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$ Surcharge loaded area $A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$

Ultimate bearing pressure at center of shear area

 $q_{up.avg} = 1.281 \text{ ksf}$

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Ultimate shear load $F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{soil} + Q_{up.avg} \times F$

 $A_p = 1.484 \text{ kips}$

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 2.411 \text{ psi}$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y1} / I_{x1} = 1.00$

Column location factor (22.6.5.3) α_s =40

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Concrete shear strength (22.6.5.2) $v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 379.473 \text{ psi}$

 $\phi_{V} = 0.75$

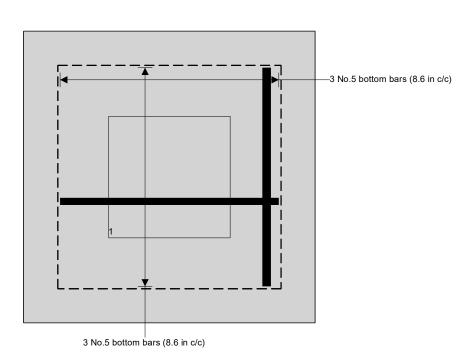
 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 psi)} = 414.753 psi$

 $v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

Shear strength reduction factor

Nominal shear stress capacity (Eq. 22.6.1.2)


 $v_n = v_{cp} = 252.982 \text{ psi}$

Design shear stress capacity (8.5.1.1(d))

 $\phi v_n = \phi_v \times v_n =$ **189.737** psi

 $v_{ug} / \phi v_n = 0.013$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

19 - GRID H FOOTING

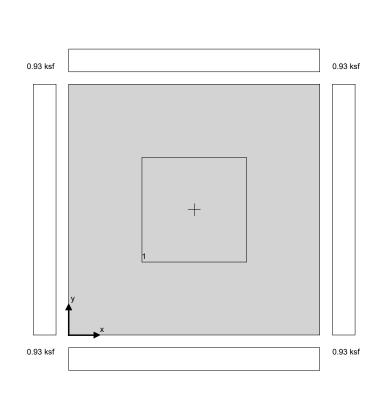
Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.7			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.93	1.5	0.620	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.3	34.9	0.009	Pass
Moment, positive, y-direction	kip_ft	0.3	32.3	0.010	Pass
Shear, two-way, Col 1	psi	2.411	189.737	0.013	Pass
Min.area of reinf, bot., x-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	8.6		Pass
Min.area of reinf, bot., y-direction	in ²	0.518	0.930		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	8.6		Pass

Pad footing details


Footing area $A = L_x \times L_y = 4 \text{ ft}^2$

Depth of footing h = 12 inDepth of soil over footing $h_{\text{soil}} = 12 \text{ in}$

Density of concrete $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no.1 details

Soil properties

Gross allowable bearing pressure $\begin{array}{ll} q_{allow_Gross} = \textbf{1.5 ksf} \\ \text{Density of soil} & \gamma_{soil} = \textbf{120.0 lb/ft}^3 \\ \text{Angle of internal friction} & \phi_b = \textbf{30.0 deg} \\ \text{Design base friction angle} & \delta_{bb} = \textbf{30.0 deg} \\ \text{Coefficient of base friction} & \tan(\delta_{bb}) = \textbf{0.577} \\ \end{array}$

Footing loads

Self weight $F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$ Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = 120 \text{ psf}$

Column no.1 loads

Dead load in z $F_{Dz1} = 1.0$ kips Live load in z $F_{Lz1} = 1.7$ kips

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.345)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.620)

Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 3.7 \text{ kips}$

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1}$

 x_1) = **3.7** kip_ft

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma_D \times (F_{Dz2} \times y_2) + \gamma_D \times (F_{Dz2}$

 y_1) = **3.7** kip_ft

Uplift verification

Vertical force $F_{dz} = 3.72 \text{ kips}$

PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \mathbf{0} \text{ in}$ Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \mathbf{0} \text{ in}$

Pad base pressures

$$\begin{split} q_1 &= F_{dz} \times (1 - 6 \times e_{dx} \, / \, L_x - 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{0.93} \; ksf \\ q_2 &= F_{dz} \times (1 - 6 \times e_{dx} \, / \, L_x + 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{0.93} \; ksf \\ q_3 &= F_{dz} \times (1 + 6 \times e_{dx} \, / \, L_x - 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{0.93} \; ksf \\ q_4 &= F_{dz} \times (1 + 6 \times e_{dx} \, / \, L_x + 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{0.93} \; ksf \end{split}$$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{0.93} \text{ ksf}$ Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{0.93} \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.620$

PASS - Allowable bearing capacity exceeds design base pressure

19 - GRID H FOOTING

Footing design in accordance with ACI318-19

Tedds calculation version 3.3.02

Material details

 $\begin{array}{lll} \text{Compressive strength of concrete} & \text{f'_c = 4000 psi} \\ \text{Yield strength of reinforcement} & \text{f_y = 60000 psi} \\ \text{Compression-controlled strain limit (21.2.2)} & \epsilon_{ty} = 0.00200 \\ \text{Cover to top of footing} & c_{\text{nom_t}} = 3 \text{ in} \\ \text{Cover to side of footing} & c_{\text{nom_s}} = 3 \text{ in} \\ \end{array}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing $c_{nom_b} = 3$ in Concrete type Normal weight

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.004)

1.2D + 1.6L + 0.5Lr (0.013)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

Ultimate force in z-axis $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 5.1 \text{ kips}$

Moments on footing

Ultimate moment in x-axis, about x is 0 $M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_3) + \gamma_D \times (F_{Dz2} \times x_3) + \gamma_D \times$

 x_1) = **5.1** kip_ft

Ultimate moment in y-axis, about y is 0 $M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma$

 y_1) = **5.1** kip_ft

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = \mathbf{0}$ in Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = \mathbf{0}$ in

Pad base pressures

 $\begin{aligned} q_{u1} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \\ q_{u2} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \\ q_{u3} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \\ q_{u4} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.281 ksf} \end{aligned}$

Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{1.281 ksf}$ Maximum ultimate base pressure $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{1.281 ksf}$

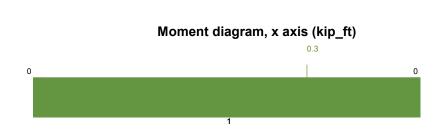
Shear diagram, x axis (kips)

Project OSU Azalea House

By MAA

Sheet No.

5


Client Rowell Brokaw

Revised

Date

Date

Moment design, x direction, positive moment

Ultimate bending moment $M_{u.x.max} = 0.326 \text{ kip}_{ft}$

Tension reinforcement provided 3 No.5 bottom bars (8.6 in c/c)

Area of tension reinforcement provided $A_{sx,bot,prov} = 0.93 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s,min} = 0.0018 \times L_y \times h = 0.518 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.688$ in

Depth of compression block $a = A_{sx.bot.prov} \times f_y / (0.85 \times f_c \times L_y) = 0.684$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.804$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d / c - 0.003 = 0.02940$

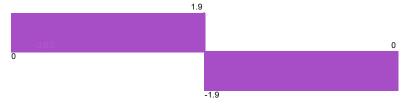
Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 38.807 \text{ kip}_ft$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 34.926 \text{ kip_ft}$


 $M_{u.x.max} / \phi M_n = 0.009$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

One-way shear design does not apply. Shear failure plane fall outside extents of foundation.

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	6
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, y direction, positive moment

Ultimate bending moment $M_{u.y.max} = 0.326 \text{ kip } ft$

Tension reinforcement provided 3 No.5 bottom bars (8.6 in c/c)

Area of tension reinforcement provided $A_{sy.bot.prov} = 0.93 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s,min} = 0.0018 \times L_x \times h = 0.518 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in

Depth of compression block $a = A_{\text{sy.bot.prov}} \times f_y / (0.85 \times f'_c \times L_x) = \textbf{0.684} \text{ in}$

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.804$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d / c - 0.003 = 0.02707$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sy,bot,prov} \times f_y \times (d - a / 2) = 35.901 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 32.311 \text{ kip_ft}$

 $M_{u.y.max} / \phi M_n = 0.010$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

One-way shear design does not apply. Shear failure plane fall outside extents of foundation.

Two-way shear design at column 1

Depth to reinforcement d_{v2} = **8.375** in Shear perimeter length (22.6.4) l_{xp} = **18.375** in Shear perimeter width (22.6.4) l_{yp} = **18.375** in

Shear perimeter (22.6.4) $b_0 = 2 \times (l_{x1} + d_{y2}) + 2 \times (l_{y1} + d_{y2}) = 73.500$ in

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$ Surcharge loaded area $A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$

Ultimate bearing pressure at center of shear area

q_{up.avg} = **1.281** ksf

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/13/2024	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Ultimate shear load $F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{soil} + \gamma_D \times A_{sur} \times F_{soil} + q_{up.avg} \times F_{soil} + q_{up.avg}$

 $A_p = 1.484 \text{ kips}$

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 2.411 \text{ psi}$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y1} / I_{x1} = 1.00$

Column location factor (22.6.5.3) α_s =40

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Concrete shear strength (22.6.5.2) $v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 379.473 \text{ psi}$

 $\phi_{V} = 0.75$

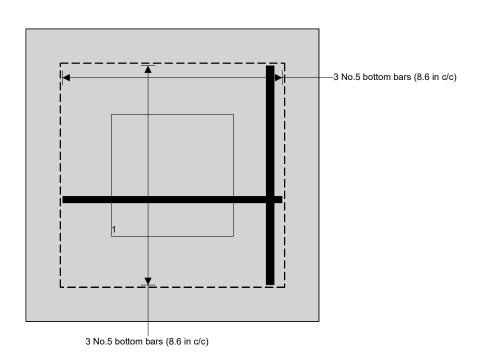
 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 psi)} = 414.753 psi$

 $v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

Shear strength reduction factor

Nominal shear stress capacity (Eq. 22.6.1.2)


6.1.2) $v_n = v_{cp} = 252.982 \text{ psi}$

Design shear stress capacity (8.5.1.1(d))

 $\phi v_n = \phi_v \times v_n =$ **189.737** psi

 $v_{ug} / \phi v_n = 0.013$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

20 - GRID C FOOTING

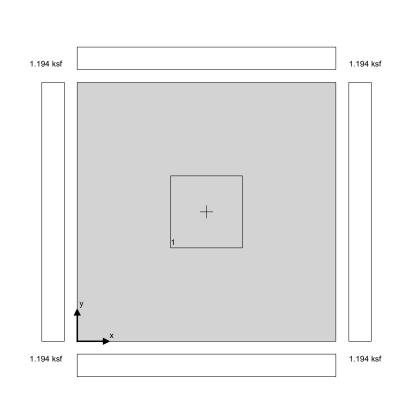
Footing analysis in accordance with ACI318-19

Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	10.8			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.194	1.5	0.796	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	2.5	46.8	0.052	Pass
Moment, positive, y-direction	kip_ft	2.5	43.3	0.057	Pass
Shear, one-way, x-direction	kips	1.7	18.8	0.092	Pass
Shear, one-way, y-direction	kips	1.7	17.9	0.096	Pass
Shear, two-way, Col 1	psi	14.907	189.737	0.079	Pass
Min.area of reinf, bot., x-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	9.7		Pass
Min.area of reinf, bot., y-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	9.7		Pass

Pad footing details


Footing area $A = L_x \times L_y = 9 \text{ ft}^2$

Depth of footing h = 12 in Depth of soil over footing $h_{soil} = 12$ in

Density of concrete γ_{conc} = 150.0 lb/ft³

Project OSU Azalea House Location Corvallis, OR	By MAA Date 2/12/2024	Sheet No.
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no.1 details

Length of column $I_{x1} = 10.00$ in Width of column $I_{y1} = 10.00$ in position in x-axis $x_1 = 18.00$ in position in y-axis $y_1 = 18.00$ in

Soil properties

Gross allowable bearing pressure $\begin{array}{ll} q_{allow_Gross} = \textbf{1.5 ksf} \\ \text{Density of soil} & \gamma_{soil} = \textbf{120.0 lb/ft}^3 \\ \text{Angle of internal friction} & \phi_b = \textbf{30.0 deg} \\ \text{Design base friction angle} & \delta_{bb} = \textbf{30.0 deg} \\ \text{Coefficient of base friction} & \tan(\delta_{bb}) = \textbf{0.577} \\ \end{array}$

Footing loads

Self weight $F_{\text{swt}} = h \times \gamma_{\text{conc}} = \textbf{150} \text{ psf}$ Soil weight $F_{\text{soil}} = h_{\text{soil}} \times \gamma_{\text{soil}} = \textbf{120} \text{ psf}$

Column no.1 loads

Dead load in z $F_{Dz1} = 1.9 \text{ kips}$ Live load in z $F_{Lz1} = 6.4 \text{ kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.322)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.796)

Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 10.8 \text{ kips}$

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{2}) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{2}) + \gamma_{D} \times (F_{Dz1} \times x_{2$

 x_1) = **16.1** kip_ft

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma_D \times (F_{Dz2} \times y_2) + \gamma_D \times (F_{Dz2}$

 y_1) = **16.1** kip_ft

Uplift verification

Vertical force $F_{dz} = 10.75 \text{ kips}$

PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \mathbf{0} \text{ in}$ Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \mathbf{0} \text{ in}$

Pad base pressures

$$\begin{split} q_1 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.194 ksf} \\ q_2 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.194 ksf} \\ q_3 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.194 ksf} \\ q_4 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.194 ksf} \end{split}$$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{1.194} \text{ ksf}$ Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{1.194} \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.796$

PASS - Allowable bearing capacity exceeds design base pressure

20 - GRID C FOOTING

Footing design in accordance with ACI318-19

Tedds calculation version 3.3.02

Material details

 $\begin{array}{lll} \text{Compressive strength of concrete} & \text{f'_c = 4000 psi} \\ \text{Yield strength of reinforcement} & \text{f_y = 60000 psi} \\ \text{Compression-controlled strain limit (21.2.2)} & \epsilon_{ty} = 0.00200 \\ \text{Cover to top of footing} & c_{nom_t} = 3 \text{ in} \\ \text{Cover to side of footing} & c_{nom_s} = 3 \text{ in} \\ \end{array}$

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing $c_{nom_b} = 3$ in Concrete type Normal weight

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.021)

1.2D + 1.6L + 0.5Lr (0.096)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

Ultimate force in z-axis $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 15.5 \text{ kips}$

Moments on footing

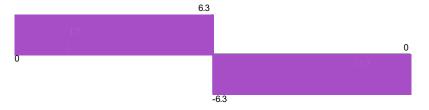
Ultimate moment in x-axis, about x is 0 $M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_3) + \gamma_D \times (F_{Dz2} \times x_3) + \gamma_D \times$

 x_1) = 23.2 kip_ft

 $\text{Ultimate moment in y-axis, about y is 0} \qquad \qquad M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) \ + \ \gamma_D \times (F_{Dz1} \times y_1) \ + \ \gamma_L \times (F_{Lz1} \times y_2) \ + \ \gamma_D \times (F_{Dz1} \times y_2) \ + \ \gamma_D \times (F_{Dz1} \times y_3) \ + \ \gamma_D \times (F_{Dz1} \times y_3) \ + \ \gamma_D \times (F_{Dz1} \times y_3) \ + \ \gamma_D \times (F_{Dz2} \times y_3) \ + \ \gamma_$

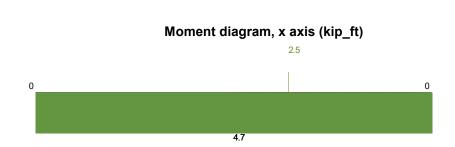
 y_1) = 23.2 kip_ft

Eccentricity of base reaction


Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = \mathbf{0}$ in Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = \mathbf{0}$ in

Pad base pressures

 $\begin{aligned} q_{u1} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.718 ksf} \\ q_{u2} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.718 ksf} \\ q_{u3} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.718 ksf} \\ q_{u4} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{1.718 ksf} \end{aligned}$


Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{1.718 ksf}$ Maximum ultimate base pressure $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{1.718 ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	5
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, x direction, positive moment

Ultimate bending moment $M_{u.x.max} = 2.454 \text{ kip}_{ft}$

Tension reinforcement provided 4 No.5 bottom bars (9.7 in c/c)

Area of tension reinforcement provided $A_{sx,bot,prov} = 1.24 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_y \times h = 0.778 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x,bot} / 2 = 8.688$ in

Depth of compression block $a = A_{sx.bot.prov} \times f_y / (0.85 \times f_c \times L_y) = 0.608$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.715$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d/c - 0.003 = 0.03345$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 51.978 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\varepsilon_t - \varepsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 46.78 \text{ kip_ft}$

 $M_{u.x.max} / \phi M_n = 0.052$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force $V_{ux} = 1.72 \text{ kips}$

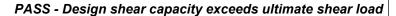
Depth to reinforcement $d_v = h - c_{nom_b} - \phi_{x,bot} / 2 = 8.688$ in

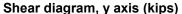
Size effect factor (22.5.5.1.3) $\lambda_s =$

Ratio of longitudinal reinforcement $\rho_{W} = A_{sx.bot.prov} / (L_{y} \times d_{v}) = 0.00396$

Shear strength reduction factor $\phi_V = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_y, 6 \times \lambda \times d_y, 6 \times$


1 psi) \times L_v \times d_v) = **25.045** kips


Design shear capacity $\phi V_n = \phi_v \times V_n = 18.784 \text{ kips}$

 $V_{u.x} / \phi V_n = 0.092$

Ī	Project OSU Azalea House	By MAA	Sheet No.
	Location Corvallis, OR	Date 2/12/2024	6
	Client Rowell Brokaw	Revised	Job No.
		Date	223346

Moment diagram, y axis (kip_ft)

Moment design, y direction, positive moment

Ultimate bending moment $M_{u.y.max} = 2.454 \text{ kip ft}$

Tension reinforcement provided 4 No.5 bottom bars (9.7 in c/c)

Area of tension reinforcement provided $A_{sy.bot.prov} = 1.24 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018$

 $A_{s.min} = 0.0018 \times L_x \times h = 0.778 \text{ in}^2$

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062 \text{ in}$ Depth of compression block $a = A_{sy.bot.prov} \times f_y / (0.85 \times f'_c \times L_x) = 0.608 \text{ in}$

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.715$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d \ / \ c - 0.003 = \textbf{0.03082}$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

PASS - Area of reinforcement provided exceeds minimum

Nominal moment capacity $M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 48.103 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\varepsilon_t - \varepsilon_{ty}) / (0.003), 0.65), 0.9) = \textbf{0.900}$

Design moment capacity $\phi M_n = \phi_f \times M_n = 43.293 \text{ kip_ft}$

 $M_{u.y.max} / \phi M_n = 0.057$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

Ultimate shear force $V_{u.y} = 1.72 \text{ kips}$

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Depth to reinforcement $d_v = h - c_{nom \ b} - \phi_{x,bot} - \phi_{y,bot} / 2 = 8.062$ in

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Ratio of longitudinal reinforcement $\rho_{W} = A_{sy.bot.prov} / (L_{x} \times d_{v}) = 0.00427$

Shear strength reduction factor $\phi_V = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times d_v, 6$

1 psi) \times L_x \times d_v) = 23.829 kips

Design shear capacity $\phi V_n = \phi_v \times V_n = 17.872 \text{ kips}$

 $V_{u.y} / \phi V_n = 0.096$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement d_{v2} = **8.375** in Shear perimeter length (22.6.4) I_{xp} = **18.375** in Shear perimeter width (22.6.4) I_{yp} = **18.375** in

Shear perimeter (22.6.4) $b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500 \text{ in}$

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$ Surcharge loaded area $A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$

Ultimate bearing pressure at center of shear area

 $q_{up.avq} = 1.718 \text{ ksf}$

Ultimate shear load $F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{up} \times F_{u$

 $A_p = 9.176 \text{ kips}$

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 14.907 \text{ psi}$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y1} / I_{x1} = 1.00$

Column location factor (22.6.5.3) α_s =40 Size effect factor (22.5.5.1.3) λ_s = 1

Concrete shear strength (22.6.5.2) $v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 379.473 \text{ psi}$

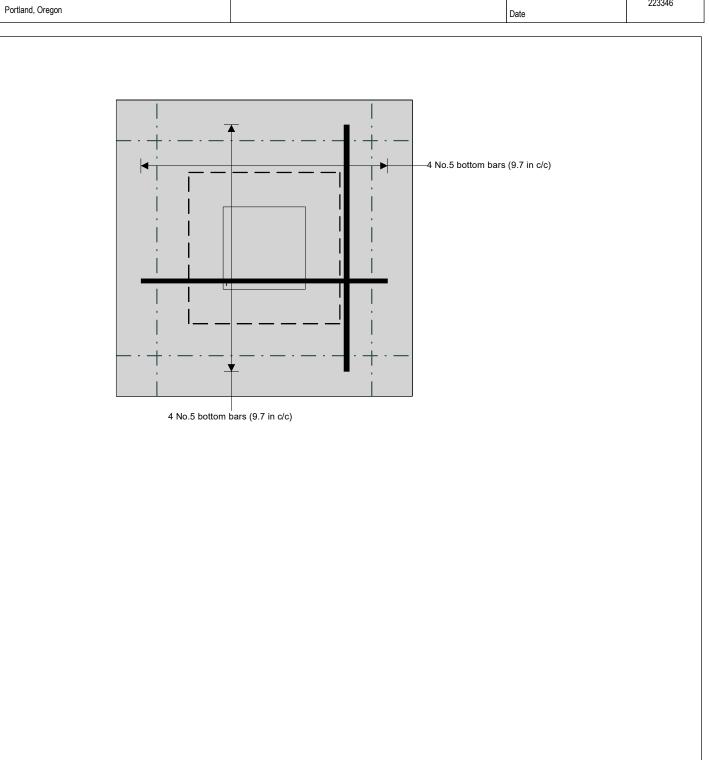
 v_{cpb} = $(\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})}$ = **414.753** psi

 $v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

Shear strength reduction factor $\phi_v = 0.75$

Nominal shear stress capacity (Eq. 22.6.1.2) $v_n = v_{cp} = 252.982$ psi


Design shear stress capacity (8.5.1.1(d)) $\phi v_n = \phi_v \times v_n = 189.737$ psi

 $v_{ug} / \phi v_n = 0.079$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

21 - ENTRY CANOPY FOOTING

Footing analysis in accordance with ACI318-19

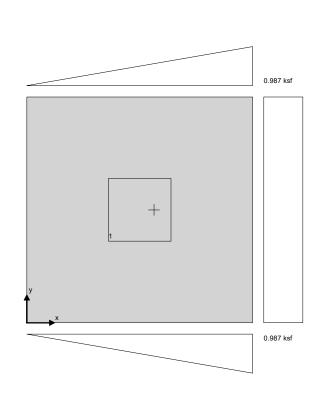
Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.2			Pass
Overturning stability, x	kip_ft	2.49	-4.76	1.91	Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	0.987	1.5	0.658	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	0.6	46.8	0.013	Pass
Moment, positive, y-direction	kip_ft	0.3	43.3	0.008	Pass
Shear, one-way, x-direction	kips	0.4	18.8	0.024	Pass
Shear, one-way, y-direction	kips	0.2	17.9	0.013	Pass
Shear, two-way, Col 1	psi	1.928	189.737	0.010	Pass
Min.area of reinf, bot., x-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	9.7		Pass
Min.area of reinf, bot., y-direction	in ²	0.778	1.240		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	9.7		Pass

Pad footing details

Length of footing $L_x = 3 \text{ ft}$ Width of footing $L_y = 3 \text{ ft}$


Footing area $A = L_x \times L_y = 9 \text{ ft}^2$

Depth of footing h = 12 in Depth of soil over footing $h_{soil} = 12$ in

Density of concrete $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no.1 details

 $\begin{array}{lll} \text{Length of column} & & I_{x1} = \textbf{10.00 in} \\ \text{Width of column} & & I_{y1} = \textbf{10.00 in} \\ \text{position in x-axis} & & x_1 = \textbf{18.00 in} \\ \text{position in y-axis} & & y_1 = \textbf{18.00 in} \\ \end{array}$

Soil properties

Gross allowable bearing pressure $\begin{array}{ll} q_{allow_Gross} = \textbf{1.5 ksf} \\ \text{Density of soil} & \gamma_{soil} = \textbf{120.0 lb/ft}^3 \\ \text{Angle of internal friction} & \phi_b = \textbf{30.0 deg} \\ \text{Design base friction angle} & \delta_{bb} = \textbf{30.0 deg} \\ \text{Coefficient of base friction} & \tan(\delta_{bb}) = \textbf{0.577} \end{array}$

Self weight $F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$ Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = 120 \text{ psf}$

Column no.1 loads

 $\begin{array}{lll} \text{Dead load in z} & \text{F}_{Dz1} = \textbf{0.5 kips} \\ \text{Live load in z} & \text{F}_{Lz1} = \textbf{0.8 kips} \\ \text{Dead load moment in x} & \text{M}_{Dx1} = \textbf{0.2 kip}_{ft} \\ \text{Live load moment in x} & \text{M}_{Lx1} = \textbf{0.4 kip}_{ft} \\ \text{Seismic load moment in x} & \text{M}_{Ex1} = \textbf{3.2 kip}_{ft} \end{array}$

Footing analysis for soil and stability

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Load combinations per ASCE 7-16

1.0D (0.247)

1.0D + 1.0L (0.359)

 $(1.0 + 0.14 \times S_{DS})D + 0.7E (0.658)$

Combination 10 results: $(1.0 + 0.14 \times S_{DS})D + 0.7E$

Forces on footing

Force in z-axis $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} = 3.2 \text{ kips}$

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1} + M_{Dx1}) + \gamma_{E} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D}$

 $(M_{Ex1}) = 7.3 \text{ kip ft}$

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) = 4.8 \text{ kip_ft}$

Uplift verification

Vertical force $F_{dz} = 3.174 \text{ kips}$

PASS - Footing is not subject to uplift

Stability against overturning in x direction, moment about x is L_x

Overturning moment $M_{OTxL} = \gamma_D \times (M_{Dx1}) + \gamma_E \times (M_{Ex1}) = 2.49 \text{ kip_ft}$

Resisting moment $M_{RxL} = -1 \times (\gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2)) + \gamma_D \times (F_{Dz1} \times (x_1 - L_x)) =$

-4.76 kip_ft

Factor of safety $abs(M_{RxL} / M_{OTxL}) = 1.910$

PASS - Overturning moment safety factor exceeds the minimum of 1.50

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 9.426$ in Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0$ in

Length of bearing in x-axis $L'_{xd} = min(L_x, 3 \times (L_x / 2 - abs(e_{dx}))) = 25.721$ in

Pad base pressures

 $q_1 = 0 \text{ ksf}$ $q_2 = 0 \text{ ksf}$

 $q_3 = 2 \times F_{dz} / (3 \times L_y \times (L_x / 2 - e_{dx})) = 0.987 \text{ ksf}$

 $q_4 = 2 \times F_{dz} / (3 \times L_y \times (L_x / 2 - e_{dx})) = 0.987 \text{ ksf}$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \mathbf{0} \text{ ksf}$

Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = 0.987 \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.658$

PASS - Allowable bearing capacity exceeds design base pressure

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

21 - ENTRY CANOPY FOOTING

Footing design in accordance with ACI318-19

Tedds calculation version 3.3.02

Material details

Compressive strength of concrete f'c = **4000** psi Yield strength of reinforcement $f_y = 60000 \text{ psi}$ Compression-controlled strain limit (21.2.2) $\epsilon_{tv} = 0.00200$ Cover to top of footing $c_{nom t} = 3 in$ Cover to side of footing $c_{nom_s} = 3 in$ Cover to bottom of footing $c_{nom b} = 3 in$ Normal weight Concrete type Concrete modification factor $\lambda = 1.00$

Column type Concrete

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.005)

1.2D + 1.6L + 0.5Lr (0.013)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

 $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 4.7 \text{ kips}$ Ultimate force in z-axis

Moments on footing

Ultimate moment in x-axis, about x is 0 $M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1 + M_{Dx1}) + \gamma_L \times (F_{Dz1} \times x$

 $(F_{Lz1} \times x_1 + M_{Lx1}) = 7.9 \text{ kip ft}$

Ultimate moment in y-axis, about y is 0 $M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma_D \times (F_{Dz2} \times y_2)$

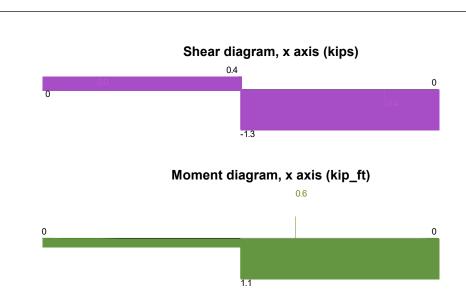
 y_1) = **7.0** kip_ft

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 2.278$ in Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0$ in

Pad base pressures

 $q_{u1} = 0.321 \text{ ksf}$ $q_{u2} = 0.321 \text{ ksf}$


 $q_{u3} = F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = 0.714 \text{ ksf}$

 $q_{u4} = F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = 0.714 \text{ ksf}$

Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 0.321 \text{ ksf}$ Maximum ultimate base pressure $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 0.714 \text{ ksf}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	5
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, x direction, positive moment

Ultimate bending moment $M_{u.x.max} = 0.603 \text{ kip_ft}$

Tension reinforcement provided 4 No.5 bottom bars (9.7 in c/c)

Area of tension reinforcement provided $A_{sx,bot,prov} = 1.24 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s,min} = 0.0018 \times L_v \times h = 0.778 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom b} - \phi_{x.bot} / 2 = 8.688$ in

Depth of compression block $a = A_{sx.bot.prov} \times f_v / (0.85 \times f_c \times L_v) = 0.608$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.715$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d/c - 0.003 = 0.03345$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 51.978 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 46.78 \text{ kip_ft}$

 $M_{u.x.max} / \phi M_n = 0.013$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force $V_{u.x} = 0.448$ kips

Depth to reinforcement $d_v = h - c_{nom b} - \phi_{x.bot} / 2 = 8.688$ in

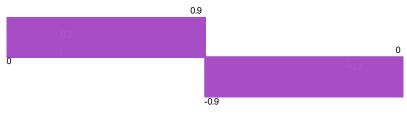
Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Ratio of longitudinal reinforcement $\rho_{w} = A_{sx,bot,prov} / (L_{y} \times d_{v}) = 0.00396$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	6
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Shear strength reduction factor $\phi_v = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, 6 \times \lambda \times d_v, 6 \times$


1 psi) \times L_y \times d_y) = **25.045** kips

Design shear capacity $\phi V_n = \phi_v \times V_n = 18.784 \text{ kips}$

 $V_{u.x} / \phi V_n = 0.024$

PASS - Design shear capacity exceeds ultimate shear load

Shear diagram, y axis (kips)

Moment diagram, y axis (kip_ft)

0.3

Moment design, y direction, positive moment

Ultimate bending moment Mu.y.max = **0.34** kip_ft

Tension reinforcement provided 4 No.5 bottom bars (9.7 in c/c)

Area of tension reinforcement provided $A_{sy,bot,prov} = 1.24 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_x \times h = 0.778 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in

Depth of compression block $a = A_{sy.bot.prov} \times f_y / (0.85 \times f_c \times L_x) = 0.608$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.715$ in

Strain in tensile reinforcement $\varepsilon_t = 0.003 \times d / c - 0.003 = 0.03082$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 48.103 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\varepsilon_t - \varepsilon_{ty}) / (0.003), 0.65), 0.9) = \textbf{0.900}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Design moment capacity $\phi M_n = \phi_f \times M_n = 43.293 \text{ kip_ft}$

 $M_{u.y.max} / \phi M_n = 0.008$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

Ultimate shear force $V_{u,y} = 0.239 \text{ kips}$

Depth to reinforcement $d_v = h - c_{nom \ b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Ratio of longitudinal reinforcement $\rho_{w} = A_{sy,bot,prov} / (L_{x} \times d_{v}) = 0.00427$

Shear strength reduction factor $\phi_v = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_y, 6 \times \lambda \times d_y, 6 \times$

1 psi) \times L_x \times d_v) = **23.829** kips

Design shear capacity $\phi V_n = \phi_v \times V_n = 17.872$ kips

 $V_{u,v} / \phi V_n = 0.013$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement d_{v2} = **8.375** in Shear perimeter length (22.6.4) l_{xp} = **18.375** in Shear perimeter width (22.6.4) l_{yp} = **18.375** in

Shear perimeter (22.6.4) $b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500 \text{ in}$

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$ Surcharge loaded area $A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$

Ultimate bearing pressure at center of shear area

 $q_{up.avg} = 0.517 \text{ ksf}$

Ultimate shear load $F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{up} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{up} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{up} + \gamma_D \times F_{up} +$

 $A_p = 1.187 \text{ kips}$

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_0 \times d_{v2}), 0 \text{ psi}) = 1.928 \text{ psi}$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y1} / I_{x1} = 1.00$

Column location factor (22.6.5.3) α_s =40 Size effect factor (22.5.5.1.3) λ_s = 1

Concrete shear strength (22.6.5.2) $v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 379.473 \text{ psi}$

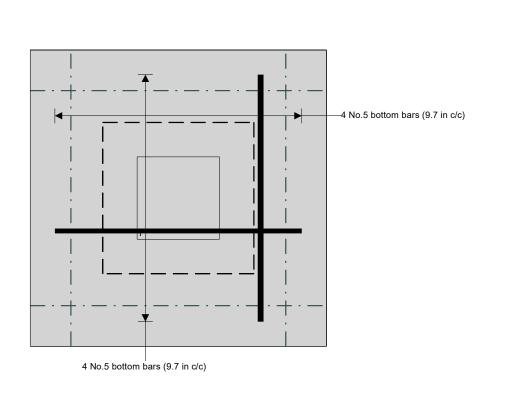
 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 psi)} = 414.753 psi$

 $v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

Shear strength reduction factor $\phi_V = 0.75$

Nominal shear stress capacity (Eq. 22.6.1.2) $v_n = v_{cp} = 252.982$ psi


Design shear stress capacity (8.5.1.1(d)) $\phi v_n = \phi_v \times v_n = 189.737$ psi

 $v_{uq} / \phi v_n = 0.010$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

22 - EXISTING GRID 8 FOOTING

Footing analysis in accordance with ACI318-19

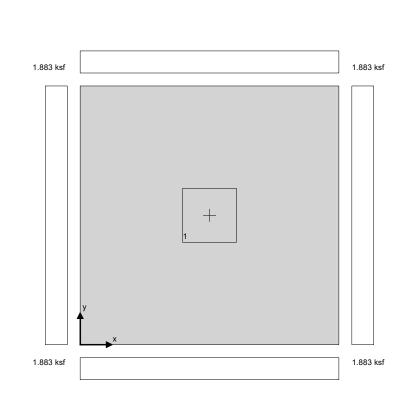
Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	30.1			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.883	2.5	0.753	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	12.2	58.6	0.209	Pass
Moment, positive, y-direction	kip_ft	12.2	54.2	0.226	Pass
Shear, one-way, x-direction	kips	8.9	24.5	0.363	Pass
Shear, one-way, y-direction	kips	8.9	23.3	0.381	Pass
Shear, two-way, Col 1	psi	53.965	189.737	0.284	Pass
Min.area of reinf, bot., x-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.3		Pass
Min.area of reinf, bot., y-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.3		Pass

Pad footing details

 $L_{x} = 4 \text{ ft}$ Width of footing $L_{y} = 4 \text{ ft}$


Footing area $A = L_x \times L_y = 16 \text{ ft}^2$

Depth of footing h = 12 in Depth of soil over footing $h_{soil} = 12$ in

Density of concrete γ_{conc} = 150.0 lb/ft³

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no.1 details

 $\begin{array}{lll} \mbox{Length of column} & I_{x1} = \mbox{10.00 in} \\ \mbox{Width of column} & I_{y1} = \mbox{10.00 in} \\ \mbox{position in x-axis} & x_1 = \mbox{24.00 in} \\ \mbox{position in y-axis} & y_1 = \mbox{24.00 in} \\ \end{array}$

Soil properties

Gross allowable bearing pressure $\begin{array}{ll} q_{allow_Gross} = \textbf{2.5 ksf} \\ \text{Density of soil} & \gamma_{soil} = \textbf{120.0 lb/ft}^3 \\ \text{Angle of internal friction} & \phi_b = \textbf{30.0 deg} \\ \text{Design base friction angle} & \delta_{bb} = \textbf{30.0 deg} \\ \text{Coefficient of base friction} & \tan(\delta_{bb}) = \textbf{0.577} \\ \end{array}$

Footing loads

Self weight $F_{swt} = h \times \gamma_{conc} = \textbf{150 psf}$ Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = \textbf{120 psf}$

Column no.1 loads

Dead load in z $F_{Dz1} = 5.6 \text{ kips}$ Live load in z $F_{Lz1} = 20.2 \text{ kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.248)

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/12/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.753)

Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 30.1 \text{ kips}$

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{2}) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{2}) + \gamma_{D} \times (F_{Dz1} \times x_{2$

 x_1) = **60.2** kip_ft

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma_D \times (F_{Dz2} \times y_2) + \gamma_D \times (F_{Dz2}$

 y_1) = **60.2** kip_ft

Uplift verification

Vertical force $F_{dz} = 30.12 \text{ kips}$

PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \mathbf{0} \text{ in}$ Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \mathbf{0} \text{ in}$

Pad base pressures

$$\begin{split} q_1 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.882} \text{ ksf} \\ q_2 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.882} \text{ ksf} \\ q_3 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.882} \text{ ksf} \\ q_4 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.882} \text{ ksf} \end{split}$$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{1.882} \text{ ksf}$ Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{1.882} \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity $q_{allow} = q_{allow_Gross} = 2.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.753$

PASS - Allowable bearing capacity exceeds design base pressure

22 - EXISTING GRID 8 FOOTING

Footing design in accordance with ACI318-19

Tedds calculation version 3.3.02

Material details

 $\begin{array}{lll} \text{Compressive strength of concrete} & \text{f'_c = 4000 psi} \\ \text{Yield strength of reinforcement} & \text{f_y = 60000 psi} \\ \text{Compression-controlled strain limit (21.2.2)} & \epsilon_{ty} = 0.00200 \\ \text{Cover to top of footing} & c_{\text{nom_t}} = 3 \text{ in} \\ \text{Cover to side of footing} & c_{\text{nom_s}} = 3 \text{ in} \\ \end{array}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing $c_{nom_b} = 3$ in Concrete type Normal weight

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.077)

1.2D + 1.6L + 0.5Lr (0.381)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

Ultimate force in z-axis $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 44.2 \text{ kips}$

Moments on footing

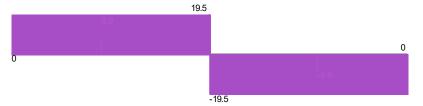
Ultimate moment in x-axis, about x is 0 $M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_3) + \gamma_D \times (F_{Dz2} \times x_3) + \gamma_D \times$

 x_1) = **88.4** kip_ft

 $\text{Ultimate moment in y-axis, about y is 0} \qquad \qquad M_{uy} = \gamma_D \times \left(A \times \left(F_{swt} + F_{soil}\right) \times L_y \ / \ 2\right) + \gamma_D \times \left(F_{Dz1} \times y_1\right) + \gamma_L \times \left(F_{Lz1} \times y_1\right) + \gamma_D \times \left(F_{Dz1} \times y_1\right) + \gamma_D \times \left(F_$

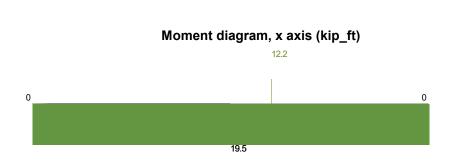
 y_1) = **88.4** kip_ft

Eccentricity of base reaction


Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = \mathbf{0}$ in Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = \mathbf{0}$ in

Pad base pressures

 $\begin{aligned} q_{u1} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{2.764 ksf} \\ q_{u2} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{2.764 ksf} \\ q_{u3} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{2.764 ksf} \\ q_{u4} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{2.764 ksf} \end{aligned}$


Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{2.764 ksf}$ Maximum ultimate base pressure $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{2.764 ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, x direction, positive moment

Ultimate bending moment $M_{u.x.max} = 12.234 \text{ kip}_{ft}$

Tension reinforcement provided 5 No.5 bottom bars (10.3 in c/c)

Area of tension reinforcement provided $A_{sx.bot.prov} = 1.55 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s,min} = 0.0018 \times L_v \times h = 1.037 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.688$ in

Depth of compression block $a = A_{sx,bot,prov} \times f_y / (0.85 \times f_c \times L_y) = 0.570$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.670$ in

Strain in tensile reinforcement $\varepsilon_t = 0.003 \times d / c - 0.003 = 0.03588$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 65.12 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\varepsilon_t - \varepsilon_{ty}) / (0.003), 0.65), 0.9) = \mathbf{0.900}$

Design moment capacity $\phi M_n = \phi_f \times M_n = 58.608 \text{ kip_ft}$

 $M_{u.x.max} / \phi M_n = 0.209$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force $V_{u.x} = 8.896 \text{ kips}$

Depth to reinforcement $d_v = h - c_{nom b} - \phi_{x,bot} / 2 = 8.688$ in

Size effect factor (22.5.5.1.3) $\lambda_s =$

Ratio of longitudinal reinforcement $\rho_{w} = A_{sx.bot.prov} / (L_{y} \times d_{v}) = \textbf{0.00372}$

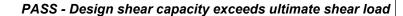
Shear strength reduction factor $\phi_v = 0.75$

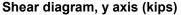
Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_y \times d_v, \ 6 \times \lambda \times d_v,$

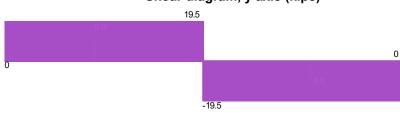
1 psi) \times L_y \times d_v) = **32.683** kips

Design shear capacity $\phi V_n = \phi_v \times V_n = 24.512 \text{ kips}$

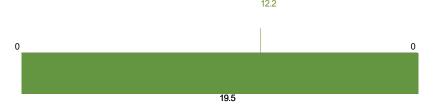
 $V_{u.x} / \phi V_n = 0.363$


 Project OSU Azalea House
 By MAA
 Sheet No.


 Location Corvallis, OR
 Date 2/12/2024
 6


 Client Rowell Brokaw
 Revised
 Job No.

 223346
 Date


Portland, Oregon

Moment diagram, y axis (kip_ft)

Moment design, y direction, positive moment

Ultimate bending moment $M_{u.y.max} = 12.234 \text{ kip_ft}$

Tension reinforcement provided 5 No.5 bottom bars (10.3 in c/c)

Area of tension reinforcement provided $A_{sy,bot,prov} = 1.55 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_x \times h = 1.037 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062$ in

Depth of compression block $a = A_{sy.bot.prov} \times f_y / (0.85 \times f_c \times L_x) = 0.570$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.670$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d/c - 0.003 = 0.03308$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 60.276 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\varepsilon_t - \varepsilon_{ty}) / (0.003), 0.65), 0.9) = \mathbf{0.900}$

Design moment capacity $\phi M_n = \phi_f \times M_n = 54.249 \text{ kip_ft}$

 $M_{u.y.max} / \phi M_n = 0.226$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

Ultimate shear force $V_{u,y} = 8.896$ kips

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	7
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Depth to reinforcement $d_v = h - c_{nom b} - \phi_{x,bot} - \phi_{y,bot} / 2 = 8.062$ in

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Ratio of longitudinal reinforcement $\rho_{W} = A_{sy,bot,prov} / (L_{x} \times d_{v}) = \textbf{0.00401}$

Shear strength reduction factor $\phi_V = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times d_$

1 psi) \times L_x \times d_v) = **31.096** kips

Design shear capacity $\phi V_n = \phi_v \times V_n = 23.322 \text{ kips}$

 $V_{u.y} / \phi V_n = 0.381$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement d_{v2} = **8.375** in Shear perimeter length (22.6.4) I_{xp} = **18.375** in Shear perimeter width (22.6.4) I_{yp} = **18.375** in

Shear perimeter (22.6.4) $b_o = 2 \times (l_{x1} + d_{v2}) + 2 \times (l_{y1} + d_{v2}) = 73.500 \text{ in}$

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$ Surcharge loaded area $A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$

Ultimate bearing pressure at center of shear area

q_{up.avg} = **2.764** ksf

 $\text{Ultimate shear load} \qquad \qquad \mathsf{F}_{\mathsf{up}} = \gamma_\mathsf{D} \times \mathsf{F}_{\mathsf{Dz}1} + \gamma_\mathsf{L} \times \mathsf{F}_{\mathsf{Lz}1} + \gamma_\mathsf{D} \times \mathsf{A}_\mathsf{p} \times \mathsf{F}_{\mathsf{swt}} + \gamma_\mathsf{D} \times \mathsf{A}_{\mathsf{sur}} \times \mathsf{F}_{\mathsf{soil}} - \mathsf{q}_{\mathsf{up.avg}} \times \mathsf{A}_\mathsf{p} \times \mathsf{F}_{\mathsf{lz}1} + \gamma_\mathsf{D} \times \mathsf{A}_\mathsf{p} \times \mathsf{F}_{\mathsf{lz}2} + \gamma_\mathsf{D} \times \mathsf{A}_\mathsf{p} \times \mathsf{P}_{\mathsf{lz}2} + \gamma_\mathsf{D} \times \mathsf{P}_{\mathsf{lz}$

 A_p = **33.219** kips

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_0 \times d_{v2}), 0 \text{ psi}) = 53.965 \text{ psi}$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y1} / I_{x1} = 1.00$

Column location factor (22.6.5.3) α_s =40 Size effect factor (22.5.5.1.3) λ_s = 1

Concrete shear strength (22.6.5.2) $v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 379.473 \text{ psi}$

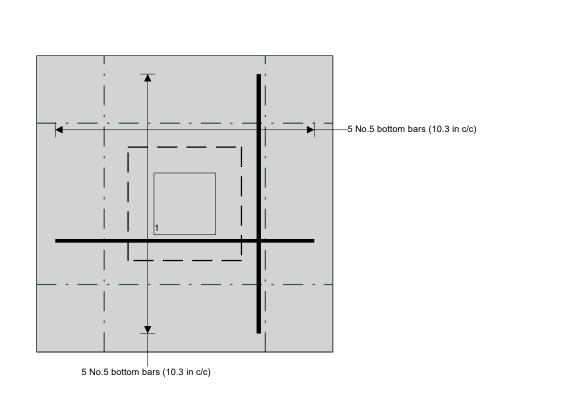
 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 414.753 \text{ psi}$

 $v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

Shear strength reduction factor $\phi_v = 0.75$

Nominal shear stress capacity (Eq. 22.6.1.2) $v_n = v_{cp} = 252.982$ psi


Design shear stress capacity (8.5.1.1(d)) $\phi v_n = \phi_v \times v_n = 189.737$ psi

 $v_{ug} / \phi v_n = 0.284$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/12/2024	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	1
Client Rowell Brokaw	Revised	Job No.
	Date	223346

23 - EXISTING GRID E FOOTING

Footing analysis in accordance with ACI318-19

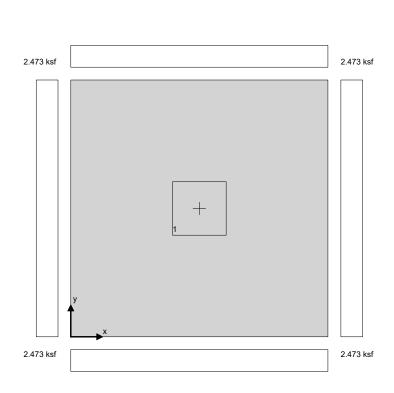
Tedds calculation version 3.3.02

Summary results

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	39.6			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	2.473	2.5	0.989	Pass
Description	Unit	Provided	Required	Utilization	Result
Moment, positive, x-direction	kip_ft	16.7	58.6	0.285	Pass
Moment, positive, y-direction	kip_ft	16.7	54.2	0.308	Pass
Shear, one-way, x-direction	kips	12.1	23.3	0.521	Pass
Shear, one-way, y-direction	kips	12.1	23.3	0.521	Pass
Shear, two-way, Col 1	psi	73.719	189.737	0.389	Pass
Min.area of reinf, bot., x-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.3		Pass
Min.area of reinf, bot., y-direction	in ²	1.037	1.550		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.3		Pass

Pad footing details

Length of footing $L_x = 4 \text{ ft}$ Width of footing $L_y = 4 \text{ ft}$


Footing area $A = L_x \times L_y = 16 \text{ ft}^2$

Depth of footing h = 12 in Depth of soil over footing $h_{soil} = 12$ in

Density of concrete γ_{conc} = 150.0 lb/ft³

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/13/2024	2
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Column no.1 details

 $\begin{array}{lll} \text{Length of column} & & I_{x1} = \textbf{10.00 in} \\ \text{Width of column} & & I_{y1} = \textbf{10.00 in} \\ \text{position in x-axis} & & x_1 = \textbf{24.00 in} \\ \text{position in y-axis} & & y_1 = \textbf{24.00 in} \\ \end{array}$

Soil properties

Gross allowable bearing pressure $q_{allow_Gross} = \textbf{2.5 ksf}$ Density of soil $\gamma_{soil} = \textbf{120.0 lb/ft}^3$ Angle of internal friction $\phi_b = \textbf{30.0 deg}$ Design base friction angle $\delta_{bb} = \textbf{30.0 deg}$ Coefficient of base friction $\tan(\delta_{bb}) = \textbf{0.577}$

Footing loads

Self weight $F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$ Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = 120 \text{ psf}$

Column no.1 loads

Dead load in z $F_{Dz1} = 7.7$ kips Live load in z $F_{Lz1} = 27.5$ kips

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.301)

Project OSU Azalea House	Ву МАА	Sheet No.
Location Corvallis, OR	Date 2/13/2024	3
Client Rowell Brokaw	Revised	Job No.
	Date	223346

1.0D + 1.0L (0.989)

Combination 2 results: 1.0D + 1.0L

Forces on footing

Force in z-axis $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 39.6 \text{ kips}$

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil}) \times L_{x} / 2) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{2}) + \gamma_{D} \times (F_{Dz1} \times x_{1}) + \gamma_{L} \times (F_{Lz1} \times x_{2}) + \gamma_{D} \times (F_{Dz1} \times x_{2$

 x_1) = **79.1** kip_ft

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y_2) + \gamma_D \times (F_{Dz2} \times y_2) + \gamma_D \times (F_{Dz2}$

 y_1) = **79.1** kip_ft

Uplift verification

Vertical force $F_{dz} = 39.56 \text{ kips}$

PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \mathbf{0} \text{ in}$ Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \mathbf{0} \text{ in}$

Pad base pressures

$$\begin{split} q_1 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{2.472 ksf} \\ q_2 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{2.472 ksf} \\ q_3 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{2.472 ksf} \\ q_4 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{2.472 ksf} \end{split}$$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{2.472 ksf}$ Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{2.472 ksf}$

Allowable bearing capacity

Allowable bearing capacity $q_{allow} = q_{allow_Gross} = 2.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.989$

PASS - Allowable bearing capacity exceeds design base pressure

23 - EXISTING GRID E FOOTING

Footing design in accordance with ACI318-19

Tedds calculation version 3.3.02

Material details

 $\begin{array}{lll} \text{Compressive strength of concrete} & \text{f'_c = 4000 psi} \\ \text{Yield strength of reinforcement} & \text{f_y = 60000 psi} \\ \text{Compression-controlled strain limit (21.2.2)} & \epsilon_{ty} = 0.00200 \\ \text{Cover to top of footing} & c_{\text{nom_t}} = 3 \text{ in} \\ \text{Cover to side of footing} & c_{\text{nom_s}} = 3 \text{ in} \\ \end{array}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	4
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Cover to bottom of footing $c_{nom_b} = 3$ in Normal weight

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.101)

1.2D + 1.6L + 0.5Lr (0.521)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

Ultimate force in z-axis $F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = 58.5 \text{ kips}$

Moments on footing

Ultimate moment in x-axis, about x is 0 $M_{ux} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2) + \gamma_D \times (F_{Dz1} \times x_1) + \gamma_L \times (F_{Lz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_2) + \gamma_D \times (F_{Dz1} \times x_3) + \gamma_D \times (F_{Dz2} \times x_3) + \gamma_D \times$

 x_1) = **116.9** kip_ft

 $\text{Ultimate moment in y-axis, about y is 0} \qquad \qquad M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_2) + \gamma_D \times (F_{Dz1} \times y$

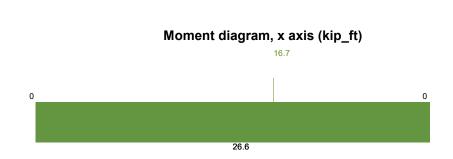
 y_1) = **116.9** kip_ft

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = \mathbf{0}$ in Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = \mathbf{0}$ in

Pad base pressures

 $\begin{aligned} q_{u1} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{3.654 ksf} \\ q_{u2} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{3.654 ksf} \\ q_{u3} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{3.654 ksf} \\ q_{u4} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{3.654 ksf} \end{aligned}$


Minimum ultimate base pressure $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{3.654 ksf}$ Maximum ultimate base pressure $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{3.654 ksf}$

Shear diagram, x axis (kips)

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	5
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment design, x direction, positive moment

Ultimate bending moment M_{u.x.max} = 16.699 kip_ft

Tension reinforcement provided 5 No.5 bottom bars (10.3 in c/c)

Area of tension reinforcement provided $A_{sx.bot.prov} = 1.55 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s,min} = 0.0018 \times L_y \times h = 1.037 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} / 2 = 8.688$ in

Depth of compression block $a = A_{sx.bot.prov} \times f_y / (0.85 \times f_c \times L_y) = 0.570$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.670$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d/c - 0.003 = 0.03588$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = \textbf{65.12 kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = 0.900$

Design moment capacity $\phi M_n = \phi_f \times M_n = 58.608 \text{ kip_ft}$

 $M_{u.x.max}$ / ϕM_n = 0.285

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force $V_{u.x} = 12.142 \text{ kips}$

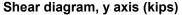
Depth to reinforcement $d_v = h - c_{nom b} - \phi_{x,bot} / 2 = 8.688$ in

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

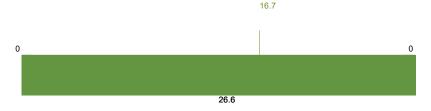
Ratio of longitudinal reinforcement $\rho_{W} = A_{\text{sx.bot.prov}} / (L_{y} \times d_{v}) = 0.00372$

Shear strength reduction factor $\phi_V = 0.75$

1 psi) \times L_y \times d_v) = **32.683** kips


Design shear capacity $\phi V_n = \phi_v \times V_n = 24.512 \text{ kips}$

 $V_{u.x} / \phi V_n = 0.495$


Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	6
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Moment diagram, y axis (kip_ft)

Moment design, y direction, positive moment

Ultimate bending moment $M_{u,y,max} = 16.699 \text{ kip}_ft$

Tension reinforcement provided 5 No.5 bottom bars (10.3 in c/c)

Area of tension reinforcement provided $A_{\text{sv,bot,prov}} = 1.55 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_x \times h = 1.037 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.062 in$

Depth of compression block $a = A_{sy,bot,prov} \times f_y / (0.85 \times f_c \times L_x) = 0.570$ in

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 0.670$ in

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d / c - 0.003 = 0.03308$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 60.276 \text{ kip_ft}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\varepsilon_t - \varepsilon_{ty}) / (0.003), 0.65), 0.9) = \textbf{0.900}$

Design moment capacity $\phi M_n = \phi_f \times M_n = 54.249 \text{ kip } \text{ ft}$

 $M_{u.y.max} / \phi M_n = 0.308$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

Ultimate shear force $V_{u,y} = 12.142 \text{ kips}$

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	/
Client Rowell Brokaw	Revised	Job No.
	Date	223346

Depth to reinforcement $d_v = h - c_{nom b} - \phi_{x,bot} - \phi_{y,bot} / 2 = 8.062$ in

Size effect factor (22.5.5.1.3) $\lambda_s = 1$

Ratio of longitudinal reinforcement $\rho_{w} = A_{sy.bot.prov} / (L_{x} \times d_{v}) = 0.00401$

Shear strength reduction factor $\phi_V = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 5 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} \times L_x \times d_v, 6 \times \lambda \times d_v, 6$

1 psi) \times L_x \times d_v) = **31.096** kips

Design shear capacity $\phi V_n = \phi_v \times V_n = 23.322 \text{ kips}$

 $V_{u.y} / \phi V_n = 0.521$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement d_{v2} = **8.375** in Shear perimeter length (22.6.4) I_{xp} = **18.375** in Shear perimeter width (22.6.4) I_{yp} = **18.375** in

Shear perimeter (22.6.4) $b_0 = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 73.500$ in

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 337.641 \text{ in}^2$ Surcharge loaded area $A_{sur} = A_p - I_{x1} \times I_{y1} = 237.641 \text{ in}^2$

Ultimate bearing pressure at center of shear area

 $q_{up.avg} = 3.654 \text{ ksf}$

Ultimate shear load $F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times F_{up} \times F_{u$

 $A_p = 45.379 \text{ kips}$

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 73.719 \text{ psi}$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y1} / I_{x1} = 1.00$

Column location factor (22.6.5.3) α_s =40 Size effect factor (22.5.5.1.3) λ_s = 1

Concrete shear strength (22.6.5.2) $v_{cpa} = (2 + 4 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 379.473 \text{ psi}$

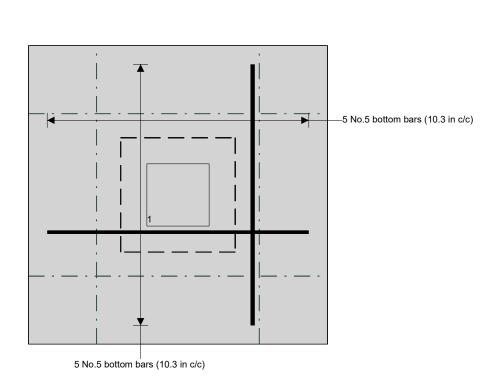
 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 414.753 \text{ psi}$

 $v_{cpc} = 4 \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

Shear strength reduction factor $\phi_v = 0.75$

Nominal shear stress capacity (Eq. 22.6.1.2) $v_n = v_{cp} = 252.982$ psi


Design shear stress capacity (8.5.1.1(d)) $\phi v_n = \phi_v \times v_n = 189.737$ psi

 $v_{ug} / \phi v_n = 0.389$

PASS - Design shear stress capacity exceeds ultimate shear stress load

Project OSU Azalea House	By MAA	Sheet No.
Location Corvallis, OR	Date 2/13/2024	8
Client Rowell Brokaw	Revised	Job No.
	Date	223346

