Grummel Engineering, l.l.c.

79 SW Oak Street Portland, OR 97204 Phone: (503) 244-7014 Fax: (503) 246-2011 www.grummelengineering.com

August 24th, 2017

Michael Wegecsanyi Canadian Solar Inc. 3000 Oak Rd., Suite 400 Walnut Creek, CA 94597 michael.wegecsanyi@canadiansolar.com

RE: OSU Sports Complex Solar Feasibility Study Corvallis, OR Project Number: 217195

Dear Michael,

The following is a feasibility study of five existing structures for support of roof mounted solar arrays. In this study we reviewed historical documents, visited the site where more information was needed, and analyzed roof members for support of additional vertical load. All five roofs are constructed of light framed materials. Therefore the additional load of 5 psf solar requires that the roof members be analyzed for current code vertical load combinations of snow and dead load. This requirement is stipulated in Chapter 34 of the IBC 2012 code, which states that any addition that increases vertical loads to a member by more than 5% be analyzed for current code forces and/or upgraded. Below is a summary of our findings. Appendices A to E show the analysis used in our report for each building.

1) Gill Coliseum

- a. <u>Existing Structure</u>: The existing structure was constructed in 1948 and is registered as a historical building. The main structure is a combination of steel and concrete with masonry walls. The roof consists of 220 foot clear spanning trusses at 20 feet on center. Purlins are steel W10x21 members at 8 feet on center. The roof deck is 2x6 tongue and groove decking with a metal standing seam overlay.
- b. <u>Vertical Support Recommendations</u>: The roof trusses and purlins are adequate for support of a solar array. Solar attachments should either be spaced at small intervals of 24" on center, perpendicular to decking, or aligned with purlins at 8 feet on center to prevent local failure of the decking.
- c. <u>Lateral Considerations</u>: Given the mass of the bleacher and wall assemblies, the expected additional weight of a solar array would not increase global lateral forces by more than 10%. Thus there are no limitations to the size of the solar array.
- d. <u>Architectural Considerations</u>: Because this building is a historically designated building, any change to the exterior, including solar panels, may require a land use review.

2) Performance Sports Center (Basketball Practice Facility Expansion)

a. <u>Existing Structure</u>: We reviewed existing plans for the 2013 expansion which is the northernmost and largest building in this complex. It is a 2-story structure with an upper mezzanine. The lower levels are steel beams with metal pan deck and concrete. The roof consists of several long spanning bent steel beams,

approximately 83 feet in length spaced at 20 feet on center. Purlin beams are W10x22 members at 10 feet on center. 2" metal pan deck runs over the purlins.

- b. <u>Vertical Support Recommendations</u>: The steel girder beams and purlin beams are adequate for support of solar loads. The metal deck is also adequate for support of solar attachment, provided attachment points are no more than 48" on center, perpendicular to the deck ribs. For spacing greater than 48" on center we recommend locating posts directly over the W10x22 members at 10 feet on center.
- c. <u>Lateral Considerations</u>: The addition of solar over the entire roof area does not increase the overall seismic mass by more than 10%. Thus we see no restriction on the size of the array.

3) <u>Reser Stadium</u>

- a. Existing Structure: Reser stadium was constructed in two phases, 2005 and 2008. The north side which includes the canopy was part of the 2005 construction. The canopy is constructed from four pairs of steel cantilevering trusses that span back to main supporting columns, and four 30 foot square concrete towers. They cantilever 95 feet off the main support columns with a 45 foot backspan to the towers. The pairs themselves are 60 feet apart, 90 feet apart, and 60 feet apart. The overall width is 330 feet. The roof is higher at the cantilevering section and steps down several feet between pairs. At the high canopy, steel beams span the 30 feet and 90 feet. The spacing of both the roof beams and trusses are 11'-8" maximum. The roof deck is 3" x 18 gauge Type N decking.
- b. Vertical Support Recommendations: Through analysis, the steel beams and secondary trusses were found to be adequate for support of additional solar loading. A quick check was made of the main supporting truss and found that it could also carry addition solar loads. If distributed evenly the roof deck is also adequate for support of solar loads. However, for attachment purposes, and to minimize penetrations, it may be simpler for racking to span between supports 11'-8' on center.
- c. <u>Lateral Considerations</u>: Globally the additional solar mass will not increase the seismic forces of the stadium by more than 10%. Therefore seismic analysis of the main structure is not required. However, locally the additional solar mass will increase seismic forces by more than 10%. This will mainly affect the bracing between cantilevered trusses and their attachments. Further study will be required to model these members. Given the robustness of the structure we anticipate that lateral elements will be found to be adequate for additional lateral forces.

4) Truax Practice Facility

- a. **Existing Structure**: Truax Indoor Practice Facility was constructed in 2004. The structure consists of a single level metal building. The walls of the building are 8" grouted CMU with a clear story window system. A horizontal tube transfers out of plane wall forces into the metal building frames. Metal building frames span 200 feet at a spacing of 30 feet on center. 10 inch x 12 gauge purlins spaced at 5 feet on center span between frames. The roof consists of light gage metal roofing, gauge undetermined. Existing metal building drawings could not be retrieved. Field measurements were made of the roof structure.
- b. <u>Vertical Support Recommendations</u>: The existing purlins were capable of supporting solar loads for all bays. The existing metal building frames were found to be overstressed when supporting full solar loads. We recommend strengthening the column to beam connection with a stiffener element since this was the area of

maximum flexure and overstress. For attachment to the metal roofing we recommend a spacing of 24" on center or a racking system that spans 5 feet to each purlin.

c. <u>Lateral Considerations</u>: The added solar weight increased the seismic forces on the frames by more than 10% requiring analysis. A model was run for the seismic load case. The frames were found to be adequate to resist additional seismic forces. The vertical load combination of snow and dead load still governed the frame design.

5) <u>Valley Sports</u>

- a. **Existing Structure**: The Valley Football Center was built in two phases between 1989 and 1996. The main structure is roughly 112 feet by 66 feet. The structure is three levels of hollow core plank over steel beams and CMU walls. The main roof structure consists of glu-lam beams spanning 49 feet at 6 feet on center. 3" tongue and groove decking with a plywood overlay and metal roof decking make up the roof system.
- b. <u>Vertical Support Recommendations</u>: The glu-lam beams were capable pf supporting the additional weight of solar loads. The 3' Tongue and groove decking can also support additional solar load. We recommend solar attachments directly to the standing seam roof at 24" or 48" maximum spacing.
- c. <u>Lateral Considerations</u>: Given the mass of the 2nd and 3rd floor, in addition to the grouted CMU walls, the added solar weight is not expected to increase the seismic demand on any component by more than 10%.

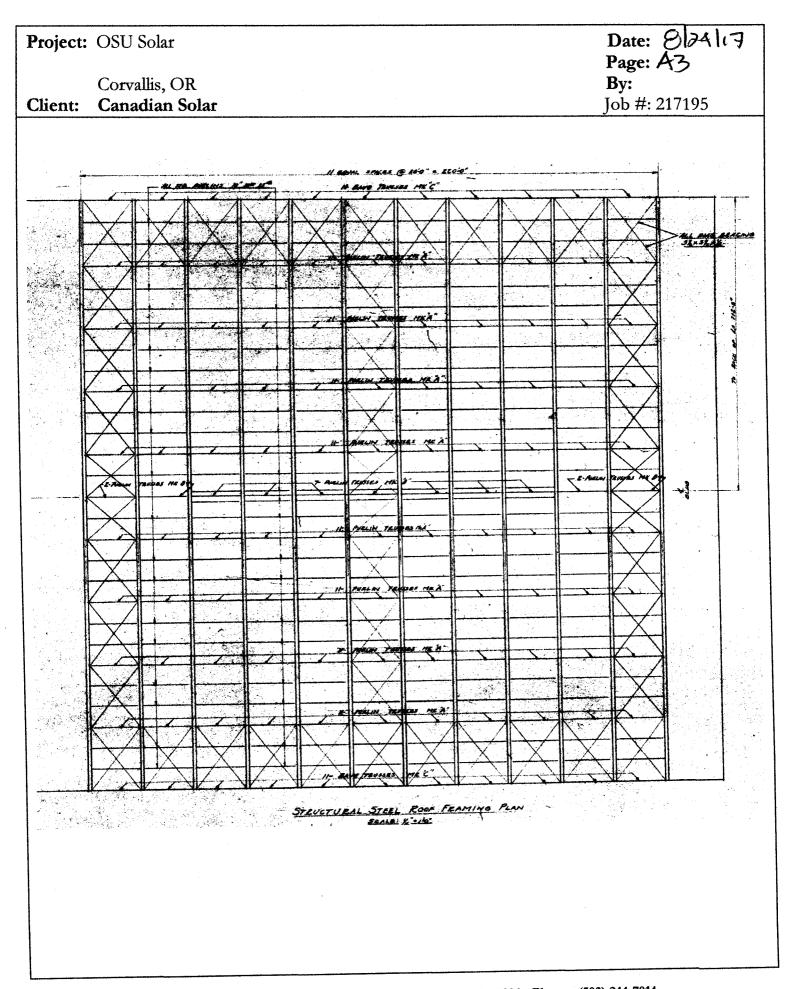
Please call me at 503-244-7014 if you have any questions regarding the information in this review.

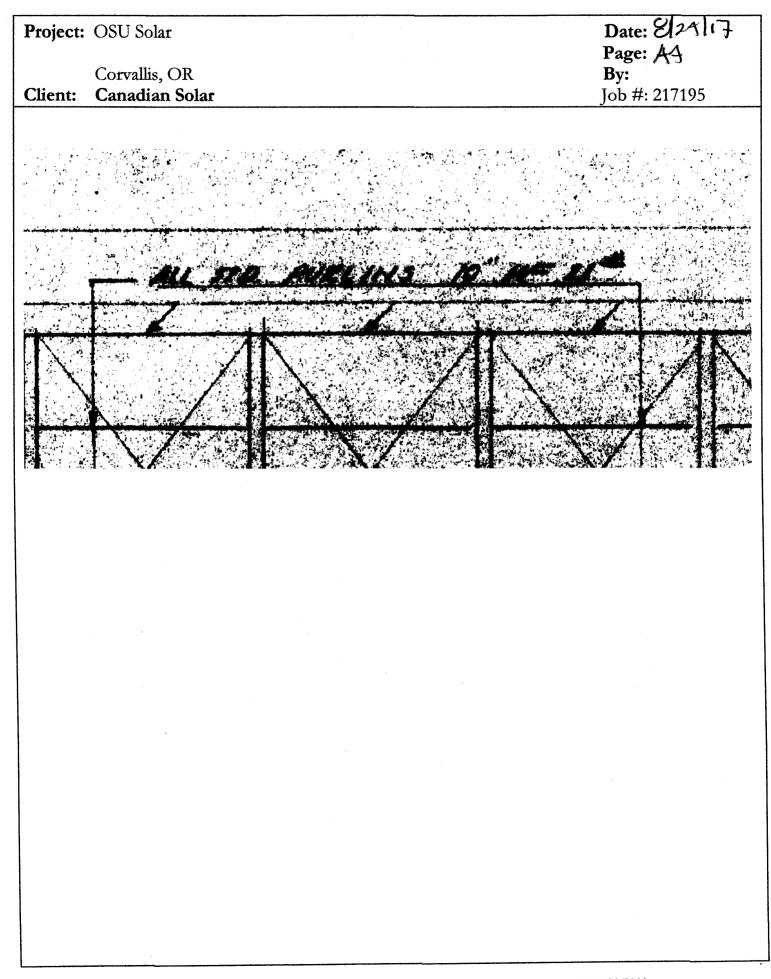
This review is based solely on visual inspection, and no destructive or subsurface testing was done to verify the information provided. The limitation of liability is strictly limited to the fees charged for this review.

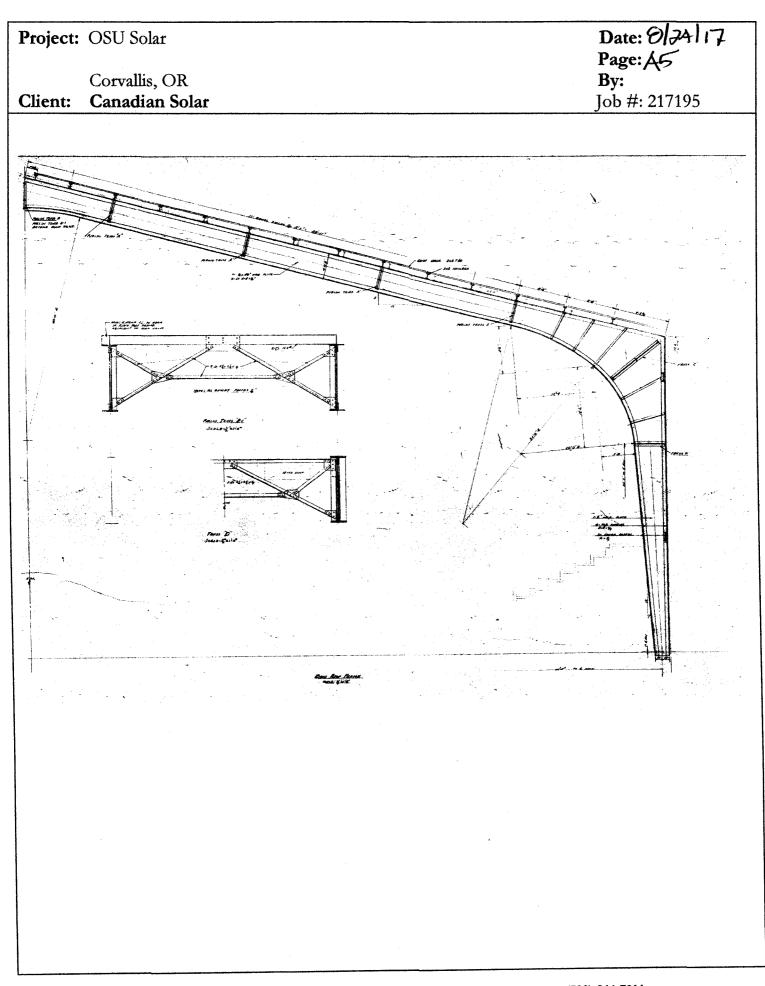
Sincerely,

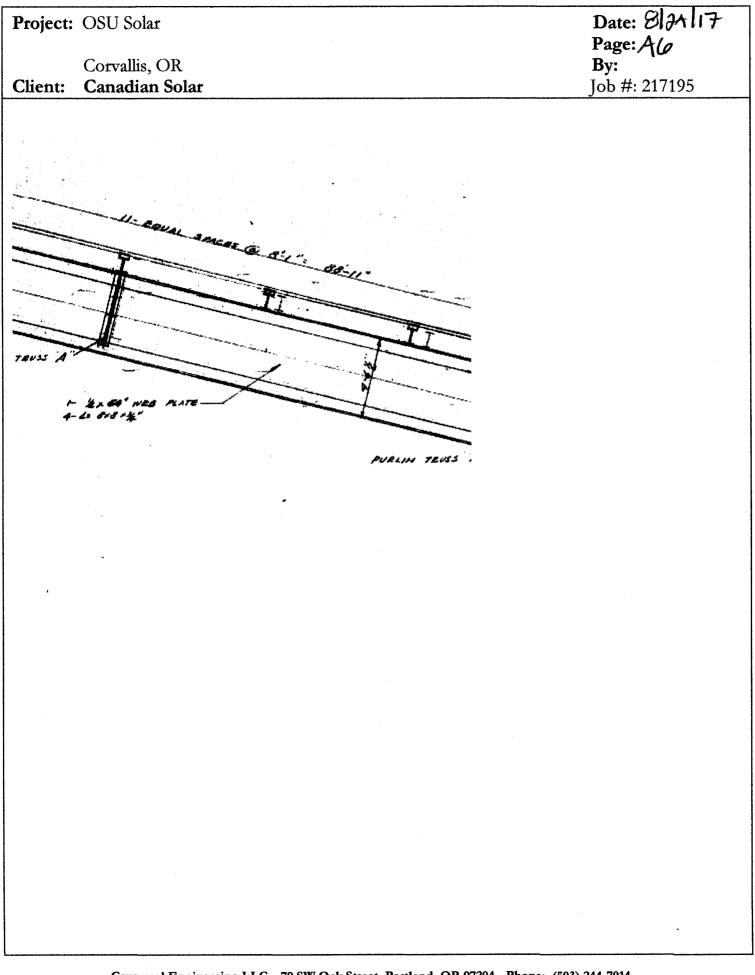
Grummel Engineering, LLC

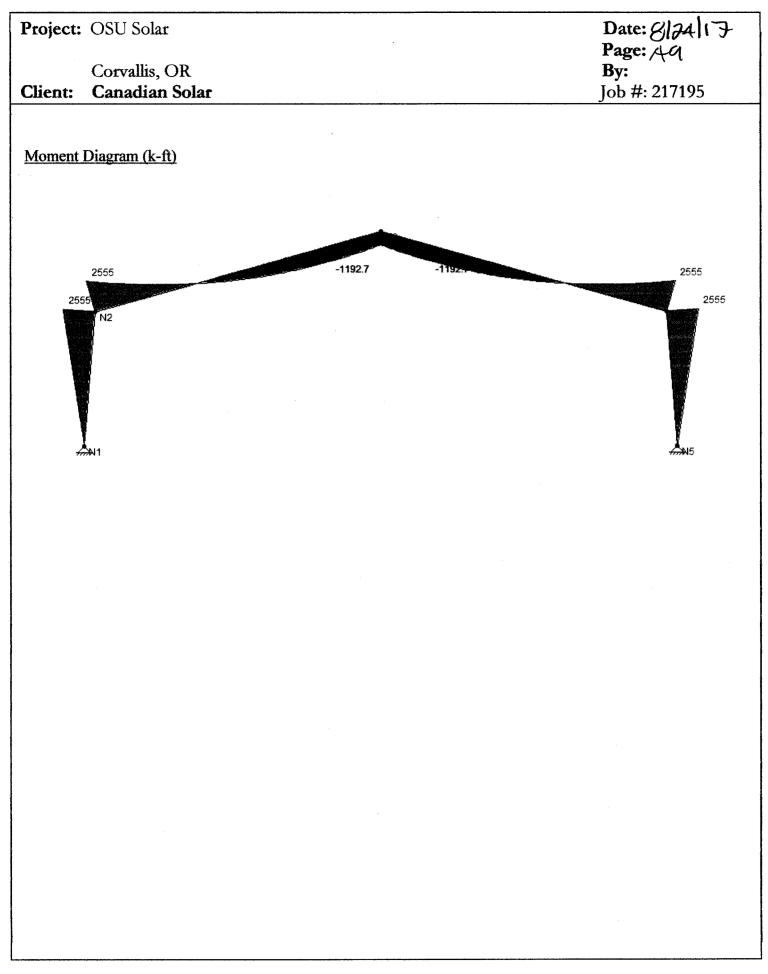
Proj	ject:	OSU	Solar
	,		

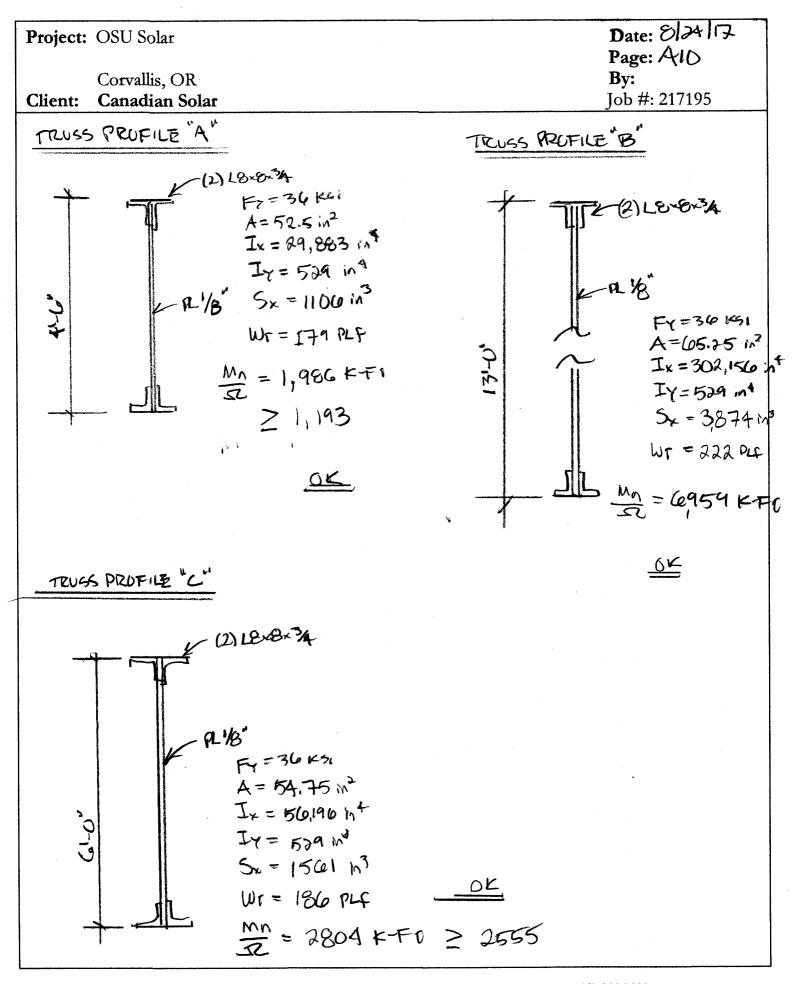

Corvallis, OR Client: Canadian Solar Date: 8 24 17 Page: A 1 By: SIW Job #: 217195


A) GILL COLLUSEUM




GILL



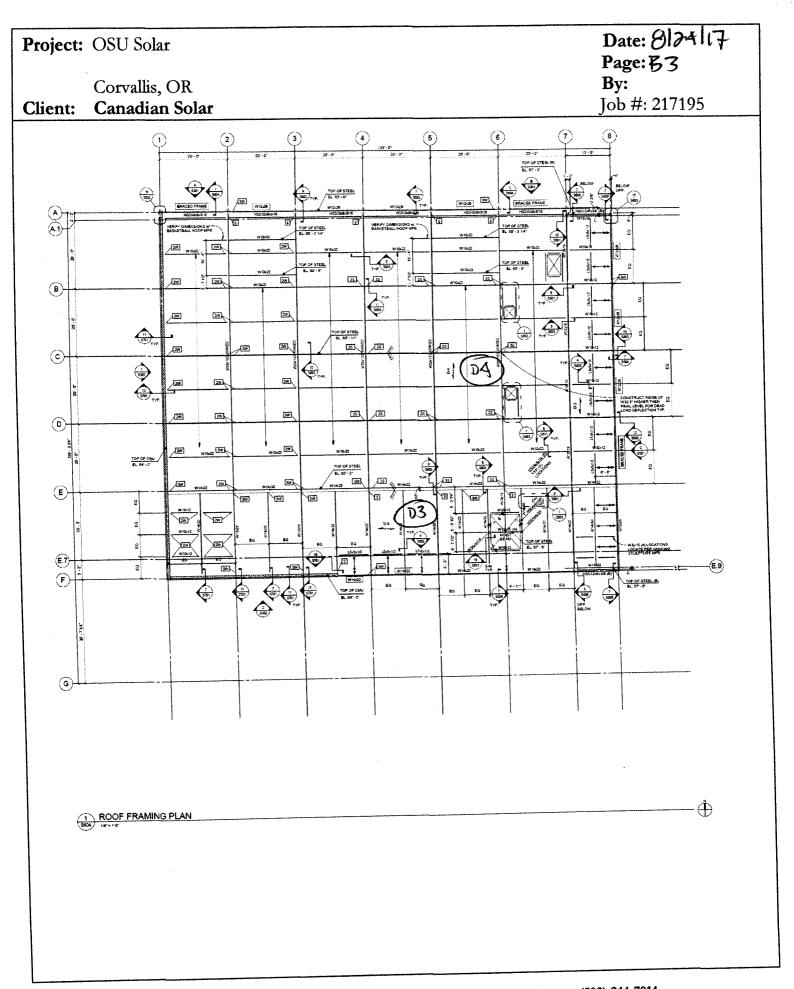


Project: OSU Solar
Corvallis, OR
Client: Canadian Solar
Date:
$$BJA117$$

Page: A7
B7:
Job #: 217195
EXIST WUE REEF MASS SUMMATULE
ROOF DECK 2~60 T&G - 4 psf
PURLING & B10'OC · WIOXAI - 2.60 pst -
ROOF ING - 2 pst
INSUL - 2 pst
DL = 12.60 USE 13pst
DL = 13pst + 5 pst - 18pst
USE SINCE de a7%
SACWLOAD = 25pst
 $g = 43 pst$
TRIB = B FT OC:
W = 344 PLF
SPAN = 20 F1 OC ·
M = W12 = 17.2 KFT
Mn = $S_{X}FT$ = $\frac{B1.5(30)}{1.67}$ (12) = 38.60 K-FT OK

Project: OSU Solar	Date: 8/24/17 Page: A&
Corvallis, OR Client: Canadian Solar	By: Job #: 217195
$\frac{\text{TRUSS DESIGN}}{L = 222 \text{ FT SPAN}}$ $\text{TRIB = 20 \text{ FT}}$	WOL, WOL
$DL_{ROOF} = 13 \text{ psf}$ SELFWT = 185 R.F	T)]]]] (111,81) T)]]]] T)]]]] T)]]] T)]]]
$W_{DL} = 445 PLF$	(4,51) FC
WSL = 500 PLF	4
LUND COMBINATIONS	Barrier
() DL	R_{x} (0,0) (222,0)
@ DL+SL	Ru Ru
ANALTSUS (ASD)	Tey Ry
Rx = 60.3K	
RY = 113 K	
$M_A \approx M_C = M 93 K - F$	(FROM RISA)
MB = 20555 K-FT (1	=ROM E154)

Project:	OSU Solar	Date: 8/24/17 Page: B1
Client:	Corvallis, OR Canadian Solar	By: ゴ てん Job #: 217195


B) SPORTS PERFORMANCE CENTER

PERFORMANCE SPORTS CENTER

Project: OSU Solar

Corvallis, OR Client: Canadian Solar

FLOOR AND ROOF DECK SCHEDULE

DECK DESIGNATION	DECK TYPE	TOPPING THICKNESS	CONCRETE STRENGTH	REINFORCING	NOTES
D-1	3"x18 GA. TYPE W	3"	4000 PSI	8x6-W1.4xW1.4 WWF	-
D-2	3 1/2"x 18 GA. VERSA-DEK LS	3"	4000 PSI	0x6-W1.4xW1.4 WWF	ACOUSTICAL DECKING w/ ADD'L. ISOLATED 3" SLAB w/ WWF
D-3	2"x18 GA. VERSA-DEK S	NONE	-	-	24,5/4 WELD PATTERN w/ 1 1/2" FILLET WELD SIDE LAP CONN. @ 24" o.c.
D-4	2"x18 GA. VERSA-DEK S	NONE	-	-	ACOUSTICAL DECKING 24.5/4 WELD PATTERN w/ 1 1/2" FILLET WELD SIDE LAP CONN. @ 24* o.c.
D-5	1 1/2"x18 GA.TYPE B	NONE	-	-	36/4 WELD PATTERN w/ 1 1/2" FILLET WELD SIDE LAP CONN. @ 24" o.c.
D-6	2"x18 GA.TYPE W	2"	4000 PSI	6x6-W.14xW1.4 WWF	PROVIDE 3/4" DIA.x3 1/2" HEADED STUDS AT COMPOSITE BEAMS

NOTES:

1. REF. GENERAL STRUCTURAL NOTES ON S002 FOR FLOOR AND ROOF DECK ATTACHMENTS.

2. REF. PLAN FOR ADD'L. REINFORCING TYP.

√ Tetal Dek Group®

a unit of CSI

.

VERSA-DEK[®] S ROOF (ASD)

B5

2" high x 6-1/8" pitch x 24-1/2" wide

SECTI	<u>on propi</u>	ERTIES	ty = 40 ksi								
	10	In In	0	•		Rbe		R	bi	l va l	
GAGE	Wd	(DEFLECTION)	Sp	Sn	2"	3"	4"	3"	4"		
22	2.22	0.409	0.289	0.268	712	820	910	1271	1395	2949	
20	2.69	0.497	0.363	0.337	1013	1162	1287	1811	1981	3562	
18	3.56	0.661	0.485	0.462	1688	1923	2121	3020	3289	4676	
16	4.48	0.836	0.617	0.598	2574	2915	3204	4613	5003	5844	
					рітсн 6-	1/8"			1)
								_	-10^{-1}	U' OF	
									10		

			ž.	ener kungen stør ørter i		rh 24-1/2							
A	SD DESIGN				MAXIMU	A SUPERIN	POSED UI	NIFORM AS	D LOADS,	pef			
1		SINGLE SPAN					DOUBLE	SPAN /		TRIPLE SPAN			
Span	Load -						GAG	E /					
	Combinations	22	20	18	16	22	20	18 /	16	22	20	18	16
	D+L (Strength)	62	78	104	132	54*	67*	91*/	118*	64*	80*	109*	141*
8'-6"	D+L (Deflection)	41	50	67	85	54	67	91/	118	64	80	109	141
	L (Deflection)	29	35	47	60	54	67	9/1	118	55	67	89	112
	D+L (Strength)	55	69	92	117	49*	61*	83*	107*	58*	73*	100*	129* 129
9'-0"	D+L (Deflection)	35	42	56	71	49	61	83	107	58	73 56	100	95
	L (Deflection)	25	30	40	50	49	61	83	107	46		75	95 118*
	D+L (Strength)	49	62	82	105	45*	56*	74*	98*	54*	67* 67	92* 92	116
9'-6"	D+L (Deflection)	29	35	47	60	45	56	73	98	54	48	92 64	80
	L (Deflection)	21	25	34	43	45	56	77	98	39	62*	85*	109*
	D+L (Strength)	44	55	74	94	41*	51*	70*	90*	50* 48	59	85" 78	99
10'-0"	D+L (Deflection)	25	30	40	50	41	51	70	90 88	48 34	41	55	69
	L (Deflection)	18	22	29	37	41	51	70	82*	46*	57*	78*	100*
	D+L (Strength)	40	50	67	85	37*	46*	63	82	40	50	67	85
10'-6"	D+L (Deflection)	21	26	34	43	37	46 45	63 60	62 76	29	35	47	60
	L (Deflection)	15	19	25	32	37	45	57*	74*	42*	53*	72*	93*
	D+L (Strength)	36	45	61	77	33*	42	57	74	36	44	58	73
11'-0"	D+L (Deflection)	18	22	29	37	33 32	39	52	66	25	31	41	52
	L (Deflection)	13	16	22	28	32	38*	52*	68*	38*	48*	66*	85*
	D+L (Strength)	33	41	55	70 32	30	38	52	68	31	38	50	64
11'-6"	D+L (Deflection)	15	19 14	25 19	24	28	34	46	58	22	27	36	45
L	L (Deflection)	12	38	50	64	28*	35*	48*	62*	35*	44*	60*	78*
	D+L (Strength)	30 13	16	22	27	28	35	48	62	27	33	44	55
12'-0"	D+L (Deflection) L (Deflection)	10	13	17	21	25	30	40	51	19	24	32	40
ļ	D+L (Strength)	27	34	46	59	25*	32*	44*	57*	32*	40*	55*	72*
12'-6"	D+L (Deflection)	12	14	19	24	25	32	44	57	24	29	38	48
12-0	L (Deflection)	9	11	15	19	22	27	36	45	17	21	28	35
	D+L (Strength)	25	32	42	54	23*	29*	40*	52*	29*	37*	51*	66*
13-0	1	10	12	16	21	23	29	40	52	21	25	34	43 31
	L (Deflection)	8	10	13	17	20	24	32	40	15	19	25 47*	61*
	D+L (Strength)	23	29	39	50	21*	27*	37*	48*	27*	34*	4/* 30	38
13'-6'			11	14	18	21	27	37	48	18 14	22 17	22	28
	L (Deflection)	7	9	12	15	17	21	28	36 44*	25*	32*	43*	56*
	D+L (Strength)	21	27	36	46	20*	25*	34*	44-	16	20	26	33
14'-0'	D+L (Deflection)		9	12	16	20	25	34 25	32	12	15	20	25
1	L (Deflection)	7	8	11	13	16	19 23*	32*	41*	23*	29*	40*	52*
	D+L (Strength)	20	25	33	42	18*	23-	31	39	14	17	23	29
14'-6	D+L (Deflection)		8	11	14	18	17	23	29	11	13	18	23
1	L (Deflection)	6	.7	9	12	14		23	38*	22*	27*	37*	49*
	D+L (Strength)	18	23	31	39	17*	21* 21	29	35	13	16	21	26
15'-0	D+L (Deflection)		7	9	12	17	16	21	26	10	12	16	20
1	L (Deflection)	5	6	9	11	13	10	<u> </u>	1				

D+L (Strength) D+L (Deflection) 8'-6"

Max. superimposed ASD dead + live load (psf) (governed by strength limitation) 62

Max. superimposed ASD dead + live load (psf) (governed by deflection limitation)

Max. superimposed ASD live load (psf) (governed by deflection limitation)

Vertical load span (center to center spacing)

Wd Weight of deck (uncoated), psf

L (Deflection)

Moment of inertia for deflection per foot of deck width (in⁴)/ft 1_D

41

29

- Section modulus for positive bending per foot of deck width, (in3)/ft Sp
- Section modulus for negative bending per foot of deck width, (in3)/ft Sn
- Allowable shear value per foot of deck width, plf Va

Notes: 1. Bending strength based on allowable flexural stress of 24 ksi.

Rbe Allowable exterior web crippling value per foot of deck, plf Rbi Allowable interior web crippling value per foot of deck, plf

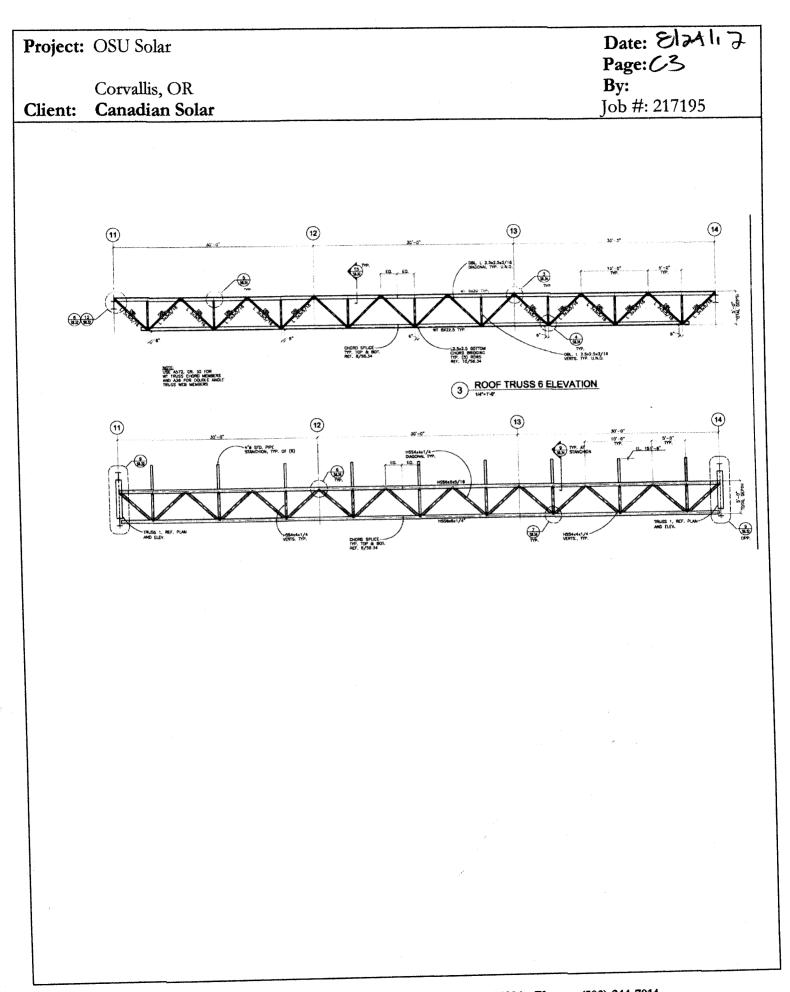
- D Uniform dead load, psf
- L Uniform live load, psf
- 2. Loads marked with asterisk (*) are governed by moment & shear, interior reactions (web crippling) or applied moment & reactions assuming 4" of interior bearing. 3. Denection based on maximum dead + live load deflection of L/240 or 1 in. and on maximum live load deflection of L/360 or 1 in.

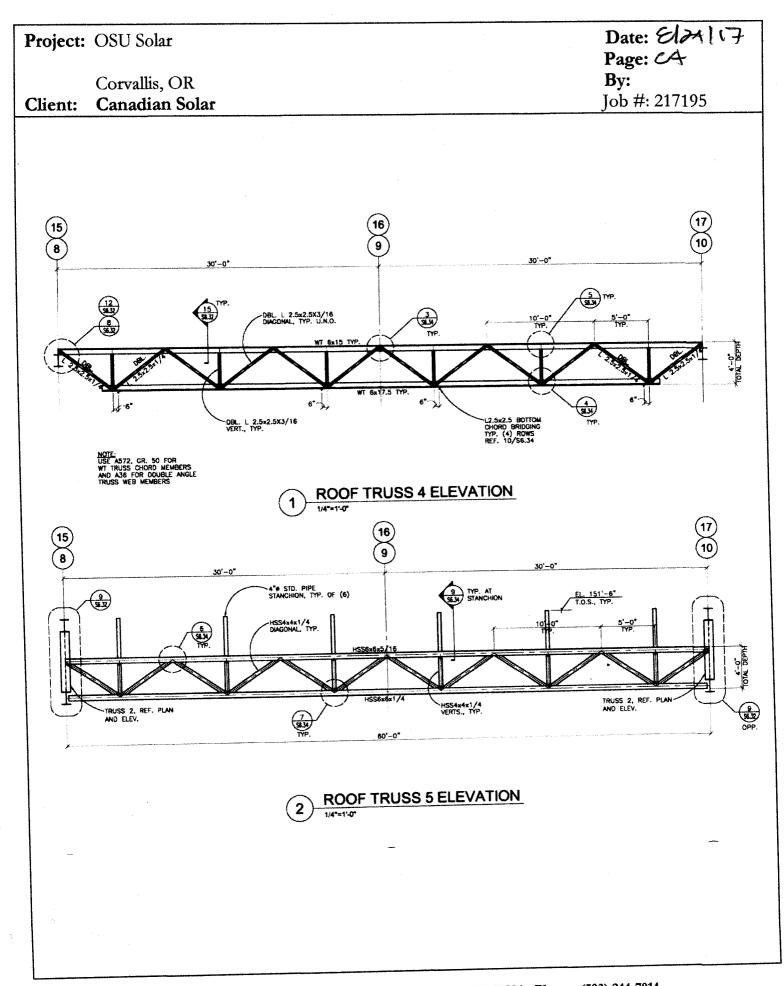
T. All types interferences in the problem of the loads.
 5. Deck length over 45'-0" require inquiry and special accommodations. Please contact the Metal-Dek Group[®] for further information.
 The section properties table is based on 2001 AISI's North American Specification for the Design of Cold-Formed Steel Structural Members (2004 Supplement).
 Acoustical profile is also available.

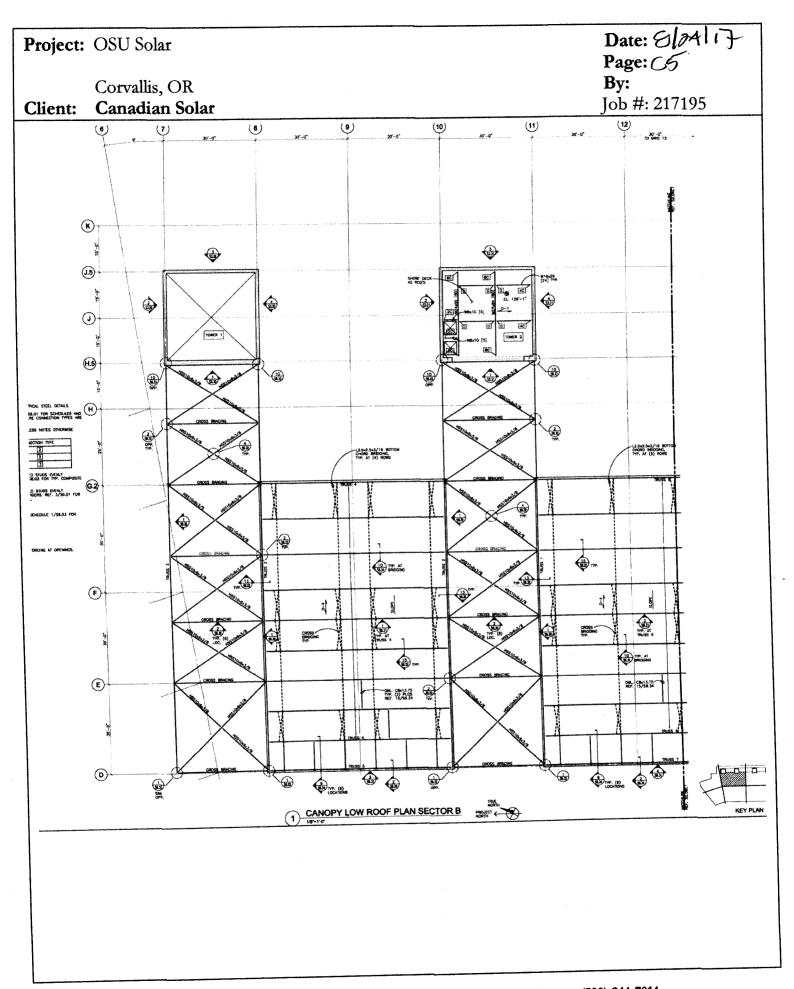
Project: OSU Solar Corvallis, OR Client: Canadian Solar	Date: 8124117 Page: B4 By: Job #: 217195
STEEL RAFTER BEAMS	
EXISTING WID ×22	
DL = 3.5 ps) (DECLE) 2.0 ps) (INSUL) 5.0 ps) (SCLASE) 2.0 ps) (SCLASE) 2.0 ps) (MISCA) 2.5 pst (EAFFIFEDES)-7 WIOX22	@10 Tu
15.0 PS	
5L = 25pst , $TRIB = 101-0'0C$.	
W = 400 PLF	
SPAN = 20FT (LB = 20FT)	
$M = \frac{Wl^2}{8} = 20 \text{ KFC}$	
Mn = 24 K-Fi (TABLE 3-10)	

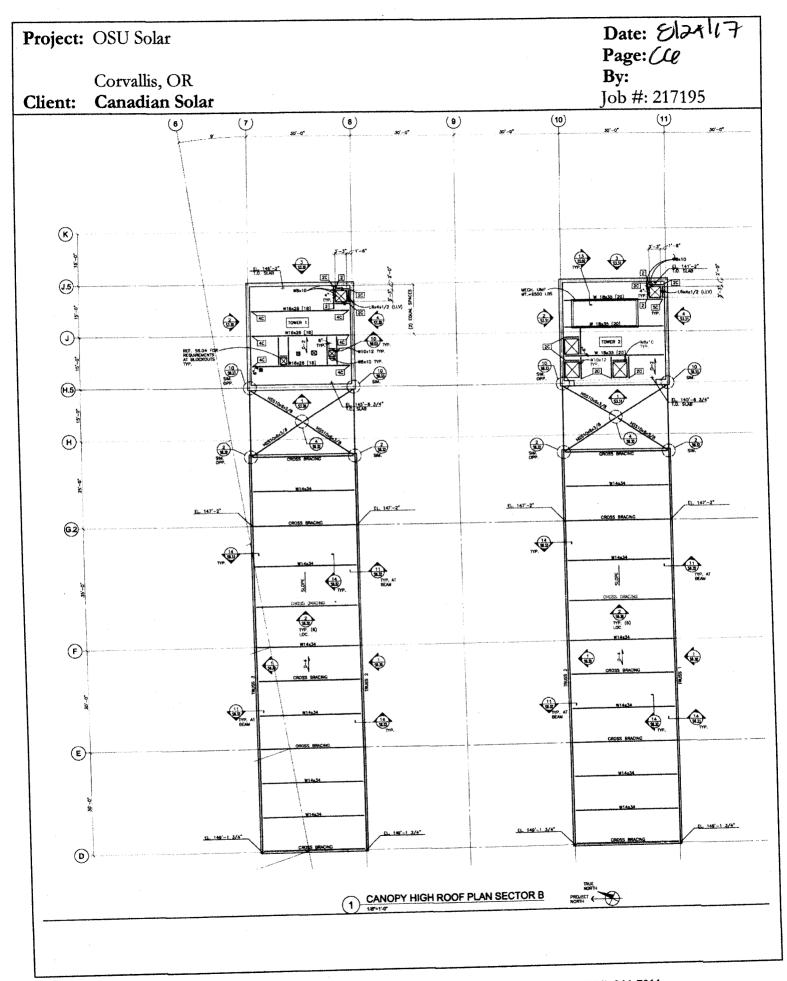
Project: OSU Solar Corvallis, OR	Date: 812117 Page: 87 By:
Client: Canadian Solar	Job #: 217195
GIRDER BEAM [EXISTING W33×130]	
SPAN = 82'-3", (13=10FT)	
TRIB = 20 FT	
DL=15 pst	
SELF = 130 PLS	
5L= 25 PSt	
W = 930 PLF	
M= We2 = 786 K-FT	
$5_{\text{REOD}} = \frac{M \times 12}{50 \times 1.67} = 113 \text{ m}^3$	
W33×130	
Sx = 406, OK ON STRENOTH	
$J_{N} = G710$	
ATOT = A.86 - BRAM IS KINKED, OK NO BRATTLE FINISHED	
$=\frac{1}{202}$	
du L	

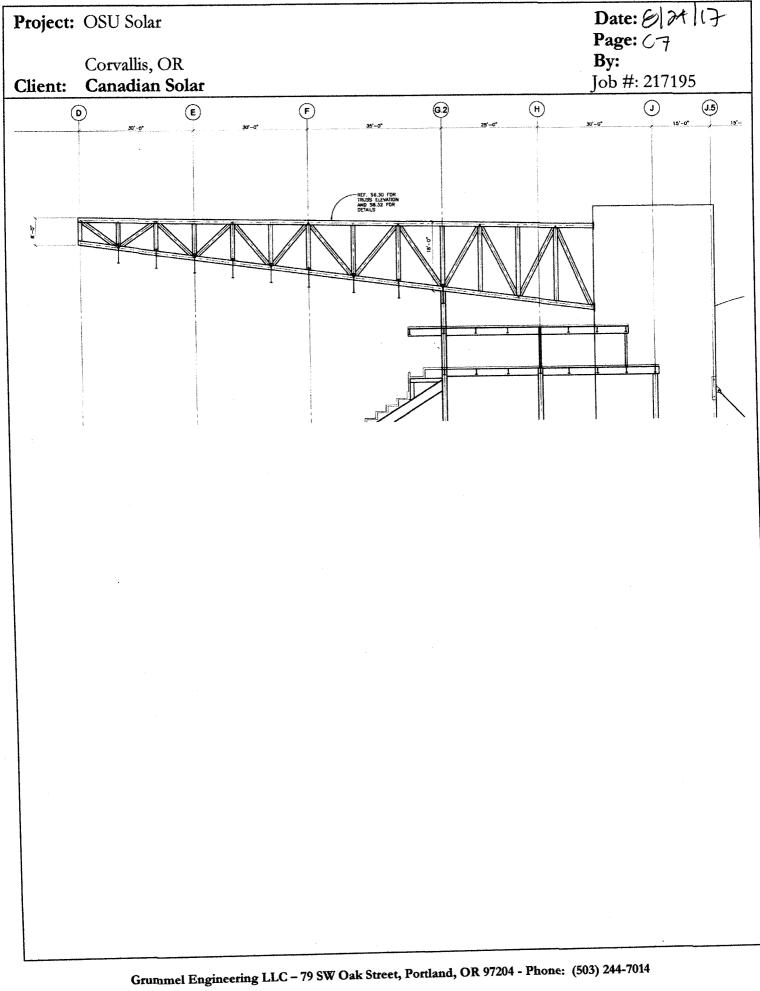
Project:	OSU Solar	Date: 812A1 (7 Page:C1
Client:	Corvallis, OR Canadian Solar	By: 乙乙W Job #: 217195

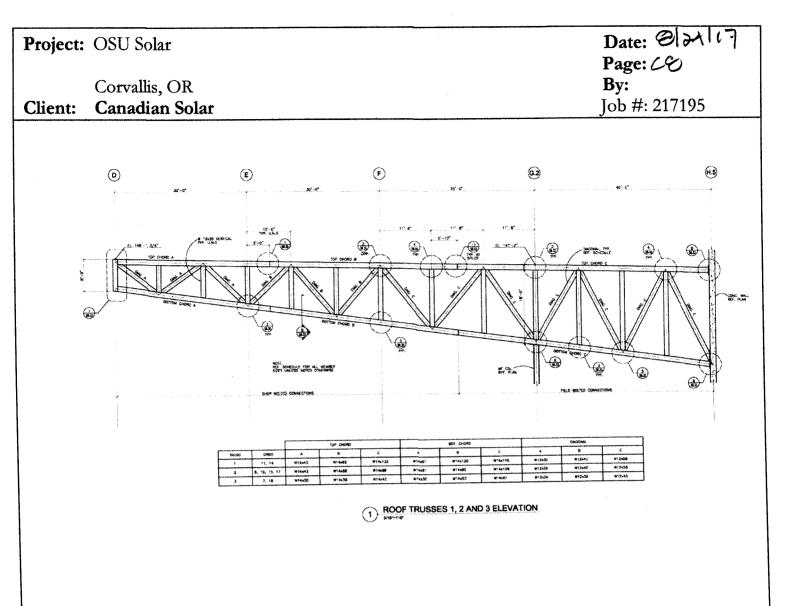

C) RESER STADIUM




02


RESER





		TOP CHORD			BOT. CHORD			
TRUSS	GRIDS	٨	8	с	*	В	с	
1	11, 14	W14x43	W14x82	W14x132	W14x61	W14x120	W14x145	
2	8, 10, 15, 17	W14x43	W14x68	W14x99	W14x61	W14x90	W14x109	
3	7, 18	W14x30	W14x30	W14x43	W14x30	W14x53	W14x61	

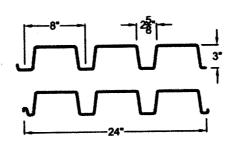
	DIAGONAL							
	A	В	C					
45	W12x30	W12x40	W12x58					
29	W12x26	W12x40	W12x58					
1	W12x26	W12x26	W12x45					

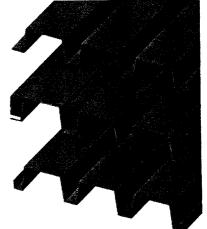
Corvallis, OR Client: Canadian Solar

FLOOR AND ROOF DECK SCHEDULE

DECK DESIGNATION	DECK TYPE	TOPPING THCKNESS	CONCRETE STRENGTH	REINFORCING	NOTES
0-1	3" x 18 GA. TYPE W	3 1/2"	4000 pai	#4 • 16" o.c. EA. WAY	TOPPING THICKNESS VARIES AT SIM. REF. PLANS
D-2	3" x 20 GA. TYPE W	2 1/2	4000 psi	6x6-W1.4xW1.4 WWF	REF. PLANS FOR ADD'L. REINF.
0-3	1 1/2" x 18 GA. TYPE B	2 1/2*	4000 pai	6x6-W2.5xW2.5 WWF	REF. PLANS FOR ADO'L. REINF.
D-4	3" x 18 GA. TYPE N	NONE 4	-	-	
D-5	1 1/2" × 18 GA. TYPE B	NONE	-		

NOTES:


- 1. REF. GENERAL STRUCTURAL NOTES ON SO.I FOR FLOOR DECK ATTACHMENTS.
- 2. PROVIDE VENTED DECK FOR D-1 WHERE WATERPROOFING MEMBRANE IS BEING USED ON TOP OF CONCRETE, REF ARCH,
- 3. TYPE B DECK FOR D-3 TO BE COMPOSITE FLOOR DECK.
- 4. ATTACH ROOF DECK TO SUPPORTS WITH HLTI ENP2 POWDER ACTUATED FASTENERS WITH (7) PINS PER 36" SHEET FOR 1 1/2" DECK AND (4) PINS PER 24" SHEET FOR 3" DECK, FASTEN TO SUPPORTS WITH PINS @ 18" q.C. AT PERIMETER SUPPORTS PARALLEL TO FLUTES, FASTEN SIDE LAPS WITH BUTTON PUNCH @ 8" q.C.
- 5. PROVIDE GOO GALVANIZED COATING WHERE SPACE BELOW DECK IS NOT AN ENCLOSED SPACE.


1 FLOOR AND ROOF DECK SCHEDULE

3 N, NI, NA, NIA

Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0 **ICC ER-3415** FM Global Approved²

Interlocking side lap is not drawn to show actual detail.

SECTION PROPERTIES

	Design thickness in.	₩ psf		Section P	Va	Fy		
Deck type			lo l	Sp	ι <u>,</u>	Sn	Va jbs/ft	ksi
			in ⁴ /ft	in ³ /ft	in ⁴ /ft	in ³ /ft		
N22	0.0295	2.26	0.659	0.382	0.684	0.433	2232	33
N20	0.0358	2.71	0.848	0.501	1.079	0.552	3287	33
N19	0.0418	3.15	1.045	0.597	1.260	0.659	4217	33
N18	0.0474	3.56	1.238	0.688	1.430	0.749	4771	33
N16	0.0598	4.46	1.683	0.893	1.807	0.944	5988	33

ACOUSTICAL INFORMATION

1	Deck		Abs	coefficient Noise Reduction						
Type		125	250	500	1000	2000	4000	Coefficient ¹	4	
	3NA, 3NIA	.18	.39	.88	.93	.58	.39	0.70	I	

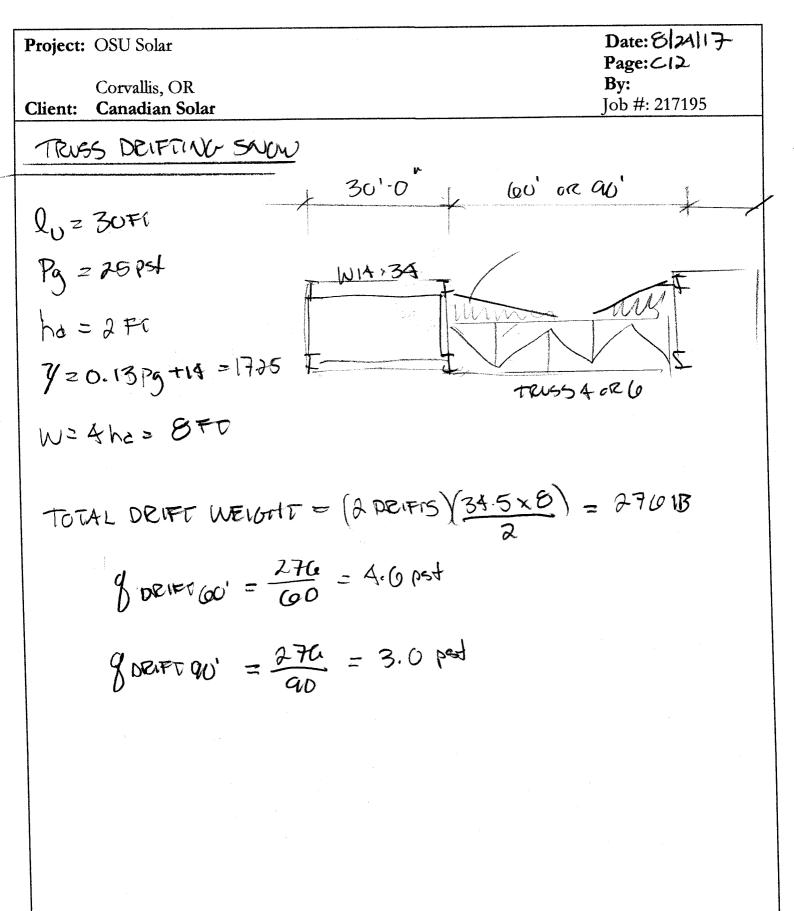
¹ Source: Riverbank Acoustical Laboratories.

Test was conducted with 1.50 pcf fiberglass batts and

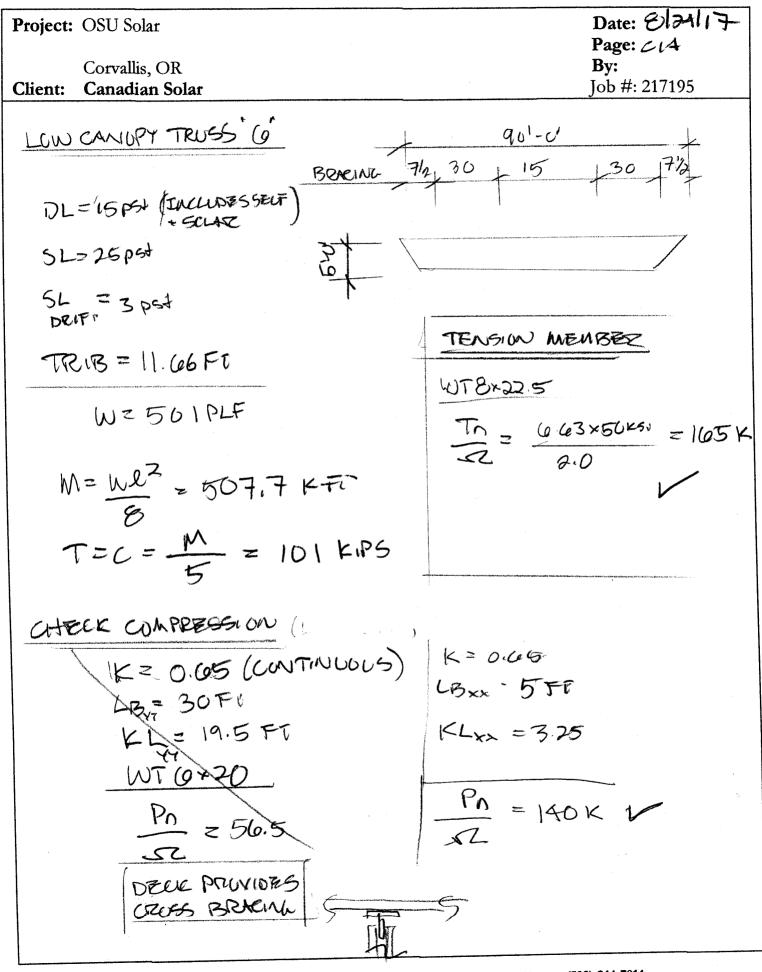
2 inch polyisocyanurate foam insulation for the SDI.

VERTICAL LOADS FOR TYPE 3N

Acoustical deck (Type 3 NA, NIA) is particularly suitable in structures such as auditoriums, schools and theaters where sound control is desirable. Acoustic perforations are located in the vertical webs where the load carrying properties are negligibly affected (less than 5%).


Inert, non-organic glass fiber sound absorbing batts are placed in the rib openings to absorb up to 70% of the sound striking the deck.

Batts are field installed and may require separation.


	Max. Allowable Total (PSF) / Load Causing Deflection of L/240 or 1 inch (PSF) Span (ftin.) ctr to ctr of supports												
No. of	Deck	SDI Const.					<u>Span (rtir</u> 12-0	12-6	13-0	13-6	14-0	14-6	15-0
Spans	Туре	Span	10-0	10-6		11-6			30/20	28/18	26/16	24/14	22/13
	N22	11'-7	50/43	46/37	42/32	38/28	35 / 25	32/22			34/20	31/18	29/1
	N20	13'-2	66 / 5 6	60 / 48	55 / 42	50 / 3 7	46/32	42 /28	39 / 25	36/23	1	37/22	35/2
•	N19	14'-7	79 / 69	71/59	65 / 51	59 / 45	S55/40	50 / 35	47/31	43 / 28	40/25		40/2
	N18	15-11	91/81	82/70	75/61	697 53	63 / 47	58/42	54/37	50/33	46 / 30	43/27	
			118/110	107/95	97 / 83	89/73	82/64	75 / 56	70 / 50	65 / 4 5	60/40	56 / 36	52/ 3
	N16	18'-6			47/92	43/80	39/71	36/62	34 / 55	31/50	29/44	27/40	25/3
	N22	13'-8	56 / 122	51 / 105		55 / 100	50/88	46/78	43/69	40/62	37 / 55	34 / 50	32/4
	N20	15'-6	72 / 152	65 / 131	60 / 114		60 / 105	55/93	51/83	47 /74	44/66	41/60	38/
2	N19	16'-11	86 / 182	78 / 157	71 / 1 37	65/120	X I		58/96	54 / 86	50/77	47/69	44/0
	N18	18'-1	98/ 211	89 / 182	81 / 15 8	74/139	68 / 122	63 / 108			63/100	59 / 90	55/
	N16	20'-4	123/276	112/238	102/207	937181	86 / 159	79/141	73 /125	68/112		00100	
	N22	13'-8	69 / 95	64/82	58 /72	53 / 6 3	49 / 55	45/49	42 / 43	39/ 39	36/ 35		
		15'-6	90/119	81/103	74/90	68/78	63/69	58/61	53 / 54	50/48	46 /43		
	N20		1	97/123	89 / 107	81/94	75/83	69/73	64 / 65	59 / 58	55/52		
3	N19	16'-11	107 / 143	1	1	92/109	85/96	78/84	72/75	67 / 67	63 / 60		
	N18	18'-1	122 / 165	111 / 143	101 / 124		P	99/111	91/98	85/88	79/79		
	N16	20'-4	154 / 216	139/186	127 / 162	116 / 142	107 / 125	007111	1 0.700			-	

Notes: 1. Minimum exterior bearing length required is 1.50 inches. Minimum interior bearing length required is 3.00 inches.

- If these minimum lengths are not provided, web crippling must be checked.
- 2. FM Global approved numbers and spans available on page 21.

Project: OSU Solar Corvallis, OR Client: Canadian Solar	Date: 8/24/17 Page: 6/3 By: Job #: 217195
UPPER CANOPY RAFFIERS EXISTING WIAX3A@11'804 DL = 3.5 pest (DECK) 2.0 pest (MISC) 5.0 pest (GULAR) <u>3.0 pest (GULAR)</u> 13.5 pest SL = 25 pest	
$W = 449$ $SPAN = 30'T' (LB = 30'O'')$ $M = Wl^{2} = 50.5 \text{ K-FO}$ $PROVIDE CROES BRACINCI (LB = 15'U')$ $\frac{Mn}{Z} = 88 \text{ K-FT}$	

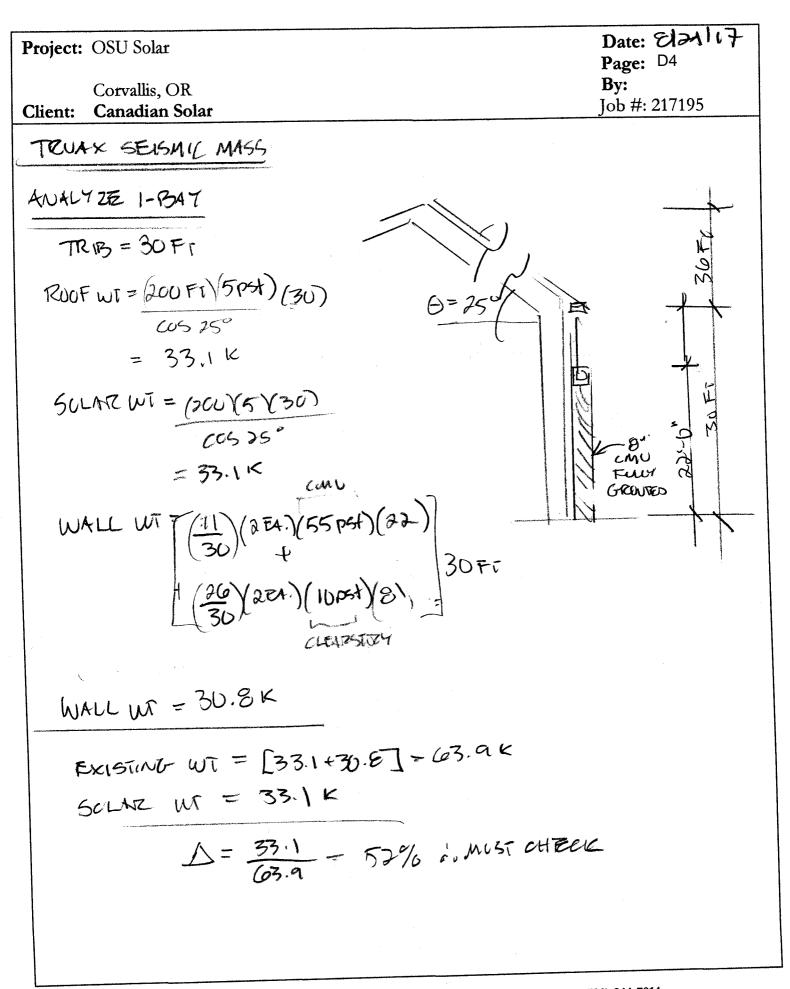
Project: OSU Solar	Date: 6124117 Page: 615
Corvallis, OR Client: Canadian Solar	By: Job #: 217195
CANOPY TRUSS "4"	Le Ceofi k
DL = 15 pst SL = 25 pst	5 20 10 20 6
5L = 5 pst DENTS = 5 pst	
TRIB = 11.66	
W2 501 PLF	
MZW2 = 225.4K-FD	
T=C = 56.4K	
CUMPRESSION MEMBER	TENSION MEMBER
LBED = 4FC	WTOXI7.5
K = 0.005	Th = 5,17,50 - 179,4
WTGX15	$\frac{10}{52} = \frac{5.1700}{2.0} = 129 \text{ K}$
$P_{D} = 78.1 \text{K}$	
JZ	

Project: OSU Solar

Corvallis, OR Client: Canadian Solar

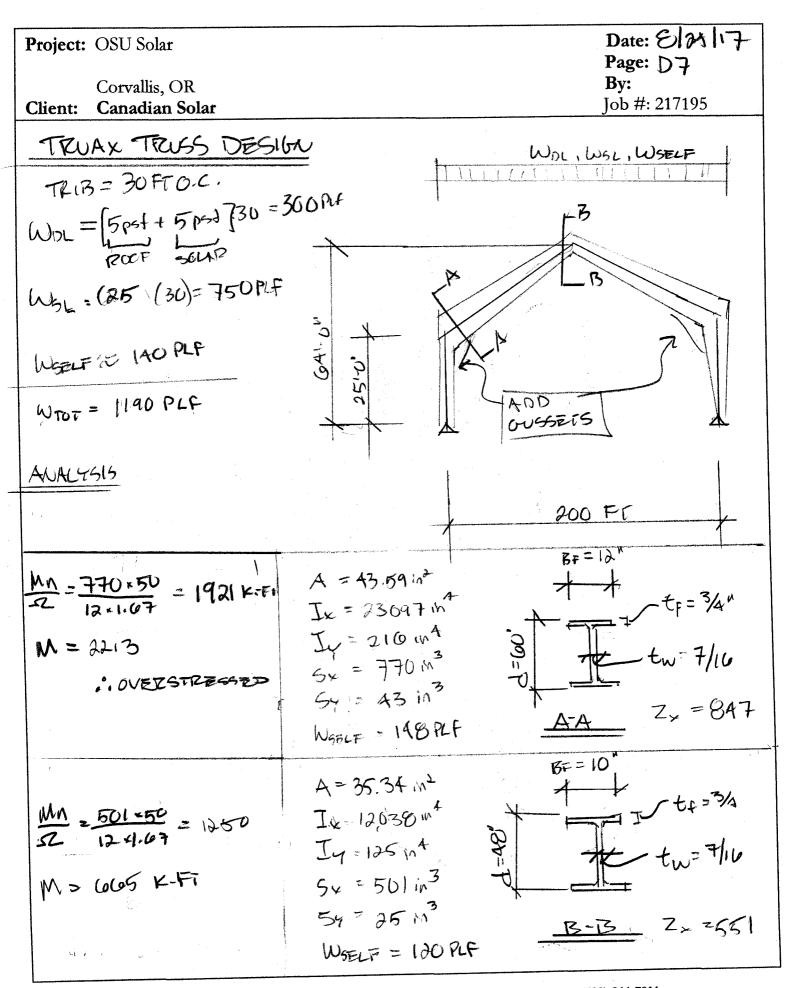
D) TRUAX PRACTICE FACILITY

Note: Existing plans were not available for metal building constructed in 2004. All member sizes are from field measurements.

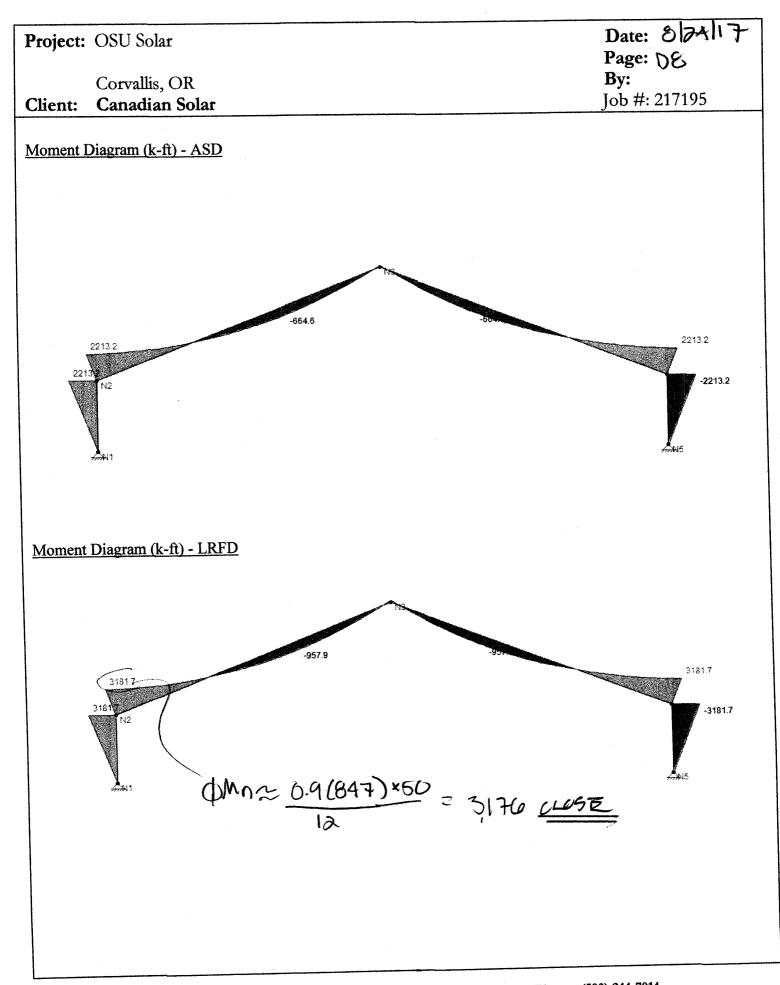


<u>D</u>2

TRUAX

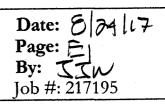


Project: OSU Solar Corvallis, OR	Date: Elalli Page: 1D5 By:
Client: Canadian Solar .	Job #: 217195
SEISMIC FRAME FORCES	
P = 3.25 I = (.0)	
$Q_{E} = C_{S}W$ $C_{S} = \frac{S_{DS}}{(R/T)} = \frac{O_{c}T_{1}}{3.25} = 0.22$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
W = 97 KIPS/BAY [INCLUDES SUL	AEWE. J
QE = 21.4 K	
ASD COMBINATION (P=1.3)	
1.10L + 0.7. Parz	
FQE = 19.5 K	
WIND FORCES.	
120 MPH, EXP. 3"	
ASCE 7-IU CHADTER 28 MFRS	
$g_{WXLL} = 20.7 \text{ psf} (G = 25^{\circ})$	
group = 4.7 pst	
ASD FURCES ASD	
$F_{w} = \left[20.7\left(\frac{30}{2}\right) + 4.7(36)\right]6.6 \times 30$	DFO
FW = B.GK ≤ 19.5 SEISMIC GO- MUST ANAL FRAME	EDAS


Project: OSU Solar Corvallis, OR Client: Canadian Solar	Date: 6 74 17 Page: D6 By: Job #: 217195
TRUAN RURLING	
MEASURED GACE = 0.112 USE 7/64 -> 12 GA. = 0.1094	12 GACE
PROPERTIES WT = 5.6 PLF	2
$I_x = 27.46 m^4$ $S_x = 5.49 m^3$	
FY = 50 KSI (ASSUMED) CAPACITY MO EVS	
$\frac{Mn}{SZ} = \frac{F_{Y}S_{X}}{1.67} = 164 \text{ K-in}$	FT
$\frac{ANALISIS}{ROOFDL} = \begin{bmatrix} 1.1 \text{ ps} - 2 \text{ - PUR} \\ 1.5 \text{ ps} - 3 \text{ - STANDI} \\ 1.5 \text{ rs} - 5 \text{ - STANDI} \\ 1.5 \text{ rs} - 10.90 \text{ rs} \\ -0.9 \text{ rs} - MISC$	TION
SCLAR = 5 Mgt SNOW = 25 pst	L= 30 FT M= WL ² [CONTINUOUS] @MiD 12 12
9-35 pet WZ 175 PLF	M=13.1K-FT <= 13.7 <u>ek</u> END BATS WEXSTREESSED

Grummel Engineering LLC - 79 SW Oak Street, Portland, OR 97204 - Phone: (503) 244-7014

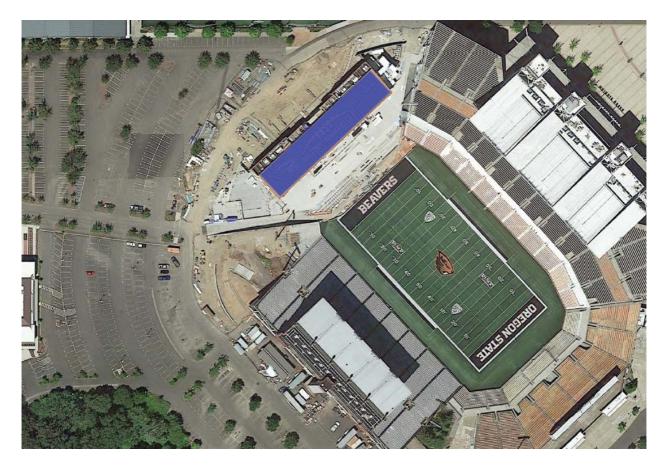
Grummel Engineering LLC - 79 SW Oak Street, Portland, OR 97204 - Phone: (503) 244-7014

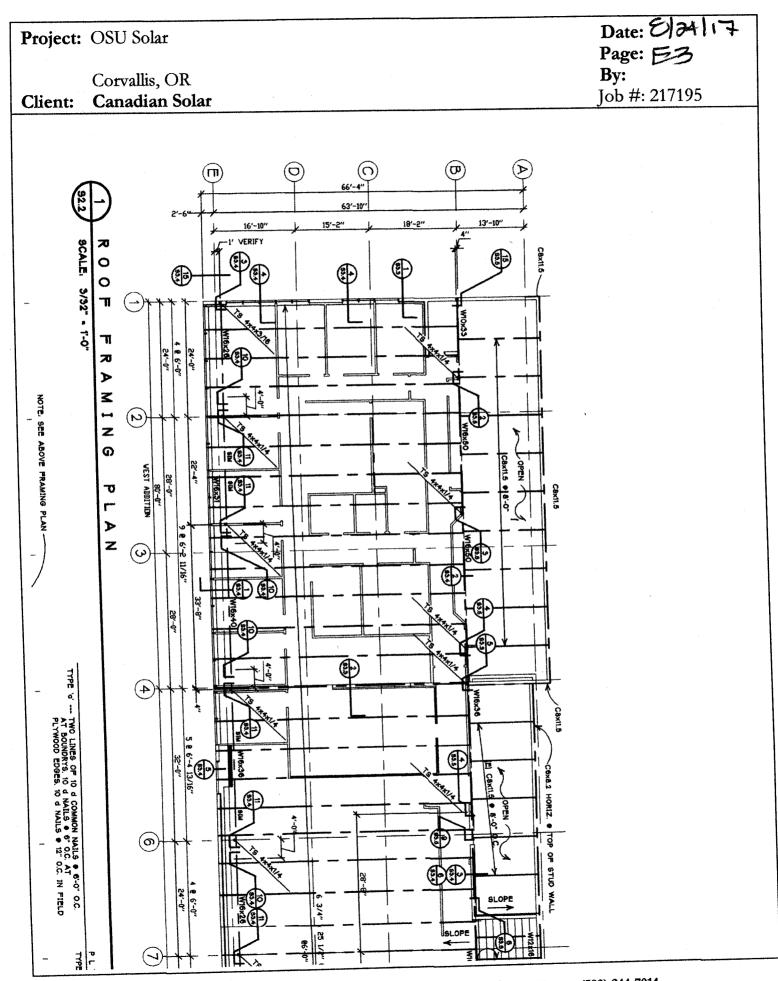

.

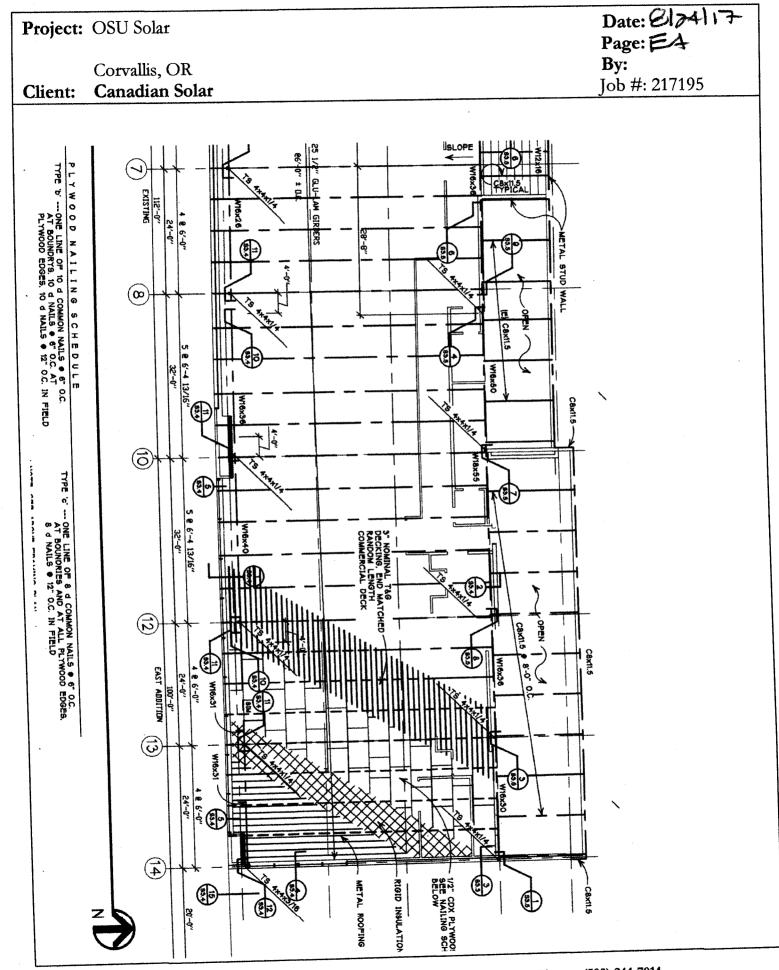
Project: OSU Solar	Date: 812A117 Page: D9
Corvallis, OR	By:
Client: Canadian Solar	Job #: 217195
CALCULATE % SOLAR TO PREVENT OVERS	STRESS
$M_{100\%} = 2213 \times -FU$	
MA = 1921 K-FT	
TOTAL LOAD = 40 pst [+ FIZHME WT.]
$g_{DEGUBED} = \frac{1921}{2213} [40] = 34 P$	St
% SUAR = 0% - UPCRADE FRAME	
1	

Project:	OSU Solar
----------	-----------

Corvallis, OR Client: Canadian Solar




E) VALLEY SPORTS CENTER (FOOTBALL)



VALLEY SPORTS

Grummel Engineering LLC - 79 SW Oak Street, Portland, OR 97204 - Phone: (503) 244-7014

Project: OSU Solar Corvallis, OR Client: Canadian Solar	Date: 6174117 Page: 56 By: Job #: 217195
3"TOG DECKING (NOMINAL)	
SPAN = GFT	
MAGS SUMMATION	
$3^r T \overline{v} \overline{v} = 6.5 pst$	
1/2 PLYCHOOD = 1.25	
METAL RUOF = 1 pst	
PLOID INSULATION = 2. pst	
MISC. = 2PST	
Wor = 12 75 -> USE 13PSt	
SOLAR = 5 pst	
SOLAR = 5pst SNOW = 25pst	
g = (5+13+25) = 43pst	
$M = \frac{W l^2}{10} \left(2 - 5 \rho A N \right)$	
M3155 B-FV	
$\frac{GRECIO}{GRECIO} = \frac{M \times 12}{1200 (1.15 \times 1.15)} = 1.17 \text{ in}^3$ $\frac{1000 (1.15 \times 1.15)}{1000 (1.15 \times 1.15)}$ $\frac{1000 (1.15 \times 1.15)}{1000 (1.15 \times 1.15)}$	
$S_{ACTUAL} = \frac{12^{1} \times 2.5^{2}}{0} = 12.5 \cdot n^{3}$ i. To	U OK

Project: OSU Solar	Date: 8/24/17
Corvallis, OR	Page: EO By:
Client: Canadian Solar	Job #: 217195
GLU-LAM BEANG (63/4×25%)-1.8E	
TRIB = Ge - 0 0 6 -	
DL = 13	
SOLAR = 5	
SELFWI = 36PLF - 6 PSF COFIOS.	
9,0L = 23 pet	
WOL = AA PLF	
5L=25 pst	
WSL = 150 PLP	
WTOT = 294 PLF	
SPAN = 49 FC	
$M = \frac{Wl^2}{8} = 88.2 \text{ K-FC}$	
MALL = FOCYCL State	
$5_x = \frac{4.75 \times 25.5^2}{6} = 731$ in	
$C_{L} = 1.15 (5000)$	
$C_{Y} = (21/Aa)^{T_{0}} (12/255)^{H_{0}} (5.05)(4.75)^{H_{0}} =$	0.83
Fb= 2400 ps;	
MALL= 139, 6 K-FT 288.2 0K	

Project: OSU Solar Corvallis, OR Client: Canadian Solar	Date: ビンルルフ Page: デア By: Job #: 217195	
STEEL BEAMS SUPPORTING RAFTERS		
NORTH SIDE (WIG + 55)	SOUTH SIDE (WIG x40)	
L= 201-0", LB= OFT OC	L= 20'-0", L== COFT OC.	
$TRIB = \frac{64}{2} = 32FT$	$TRIB = \frac{49}{2} + 3.5 = 28 F1$	
DL= 2A per (INCLUDES SCUSE)	DL = 2A	
5h = 25	SL - 25	
W = 32(24+25) + 55 W = 1623	W = 28(24+25) + 40 W = 1412	
$M = \frac{Wl^2}{E} = 159 \text{ K-FO}$	M= We ² = 1380 K-FC	
$\frac{Mn}{S^2} = \frac{98.3 \times 50}{1.07 \times 12} = 245 \text{ K-Fr}$	$\frac{MN}{52} = \frac{G4.7 \times 50}{1.67 \times 12} = 1.61 \text{ V-FU}$	