

Pacwave

Pre-Proposal Conference for Request for Proposals 2021-003847 Subsea Power Cable Manufacture, Delivery, and Installation October 21, 2020

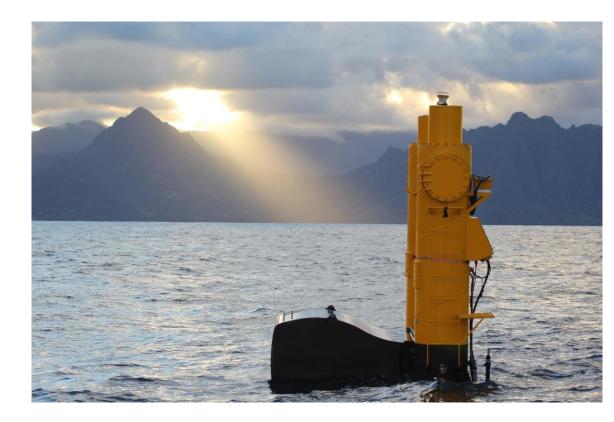
AGENDA

Introduction	Hanna Emerson	OSU Procurement, Contracts & Materials Management
Project Overview	Dan Hellin	PacWave
Documents & Data	Dan Hellin Carl Barrett	3U Technologies
Q&A	Justin Klure	PacWave

PROJECT TEAM

PacWave

- Burke Hales Chief Scientist
- Justin Klure Project Manager
- Dan Hellin Deputy Director
- Diane Baldwin Administrative Manager
- Kim Calvery Research Program Officer


3U Technologies

Project Team

- Carl Barrett
- Larry Mackey

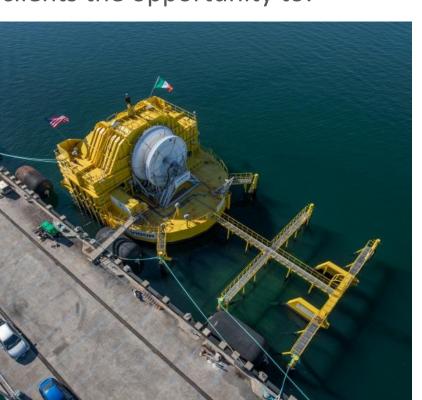
OSU Procurement, Contracts & Materials Management

- Hanna Emerson
- Ben Baggett

Oregon is at the epicenter of the emerging wave energy. Oregon State University (OSU) has been supporting marine energy technology development and research for the past 20 years.

- Global marine energy market is projected to reach nearly \$700 billion by the year 2050, and the World Energy Council estimates that 10 percent of the worldwide electricity demand could be met by harvesting ocean energy
- Oregon has a tremendous wave energy resource
- OSU has the experience and expertise to develop and operate PacWave, and has pulled together a world class development team to build PacWave
- PacWave is supported by U.S. Department of Energy, the State of Oregon, OSU, and a number of public and private organizations
- There is strong support in Oregon for testing activities associated with the marine energy industry

Why Wave Energy? Why Oregon?



What is PacWave?

A globally recognized, open ocean, wave energy test facility based at OSU.

Project Primary Purpose - To provide wave energy converter (WEC) clients the opportunity to:

- Optimize WECs and arrays to increase their energy capture
- Improve their survivability and reliability, and decrease their levelized cost of energy
- Refine deployment, recovery, operations, and maintenance procedures
- Collect interconnection and grid synchronization data
- Gather information about potential environmental effects, and economic and social benefits

Pac

~9.5 to 12.5 miles (15 to 20 km)

• Cable lengths:

• Location:

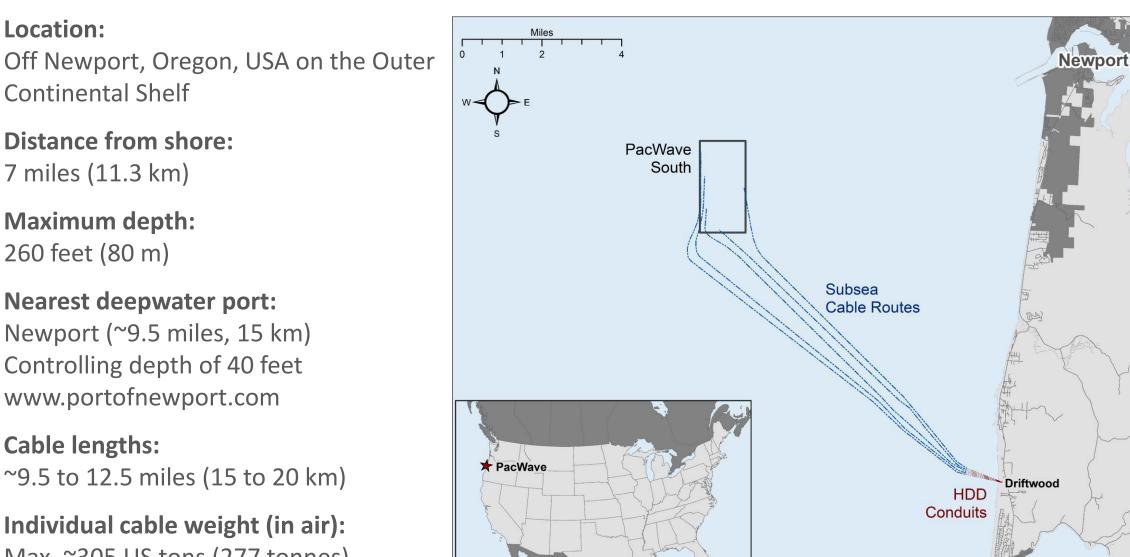
Continental Shelf

7 miles (11.3 km)

• Maximum depth:

260 feet (80 m)

Distance from shore:


• Nearest deepwater port:

Newport (~9.5 miles, 15 km)

Controlling depth of 40 feet

www.portofnewport.com

• Individual cable weight (in air): Max. ~305 US tons (277 tonnes)

Waldport

RFP Scope of Work includes:

- Detailed cable design
- Cable manufacturing
- Supply and factory termination of cable dry mate connectors
- Shipping to site
- Shore landing of cables via back haul into pre-installed conduits
- Mechanical termination in pre-installed, underground vault
- Cable lay to site
- Deployment of offshore connector and quadrant assembly
- Bury cable along route
- Cable testing

Scope of Work

- Five independent power and data cables
- AC power transmission per circuit
 - > 1 MW maximum at 12kV 3 phase AC
 - > 5 MW maximum at 30kV 3 phase AC
- IEC Voltage Rating 18/30(36) kV
- Optical fiber connectivity
 - Dry mate connector 12 single mode fiber connectors per berth circuit
 - Cable 24 each total Large Effective Area Fiber (LEAF), Single Mode (SM) fibers
 - Two each (minimum) fiber tubes per cable

• Design life – 25 years continuous operation at rated power and operating voltage

Cable Specifications

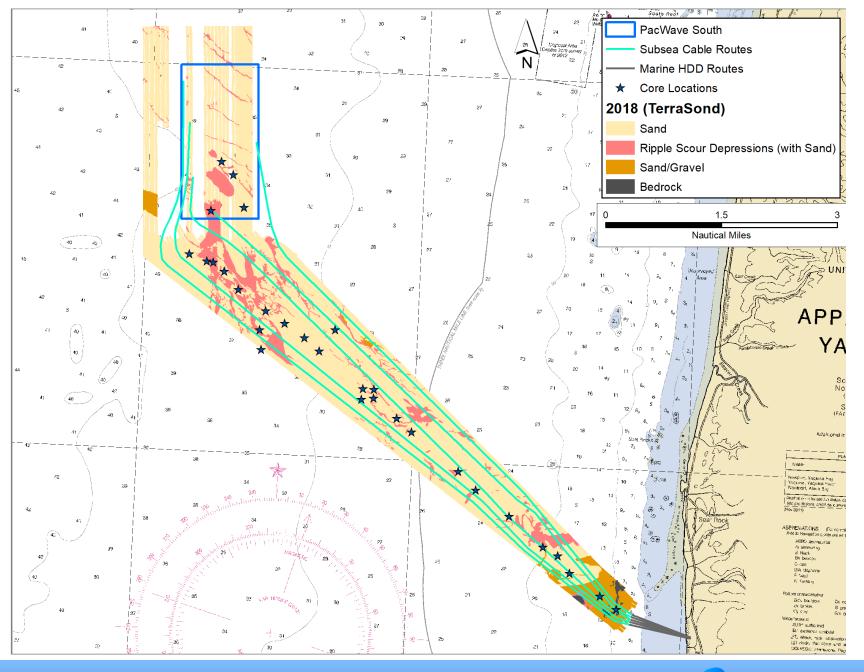
Offshore Dry Mate Connectors

Each cable outfitted with subsea power and fiber optic, dry mate connector systems allowing short duration, at sea connection/disconnection (<6 hours preferred).</p>

Semi-dynamic Offshore End

- Dynamic durability of the offshore end of the subsea cables is a key criterion due to repeated mate and de-mate operations.
- Suitable for a minimum of 10 mate/de-mate cycles under significant sea conditions.
- NOTE: the semi-dynamic end of the cable with the dry mate connector will NOT serve as the umbilical/dynamic riser connection to the WEC. The umbilical will be supplied by the testing client.

Shore Landing Pull In

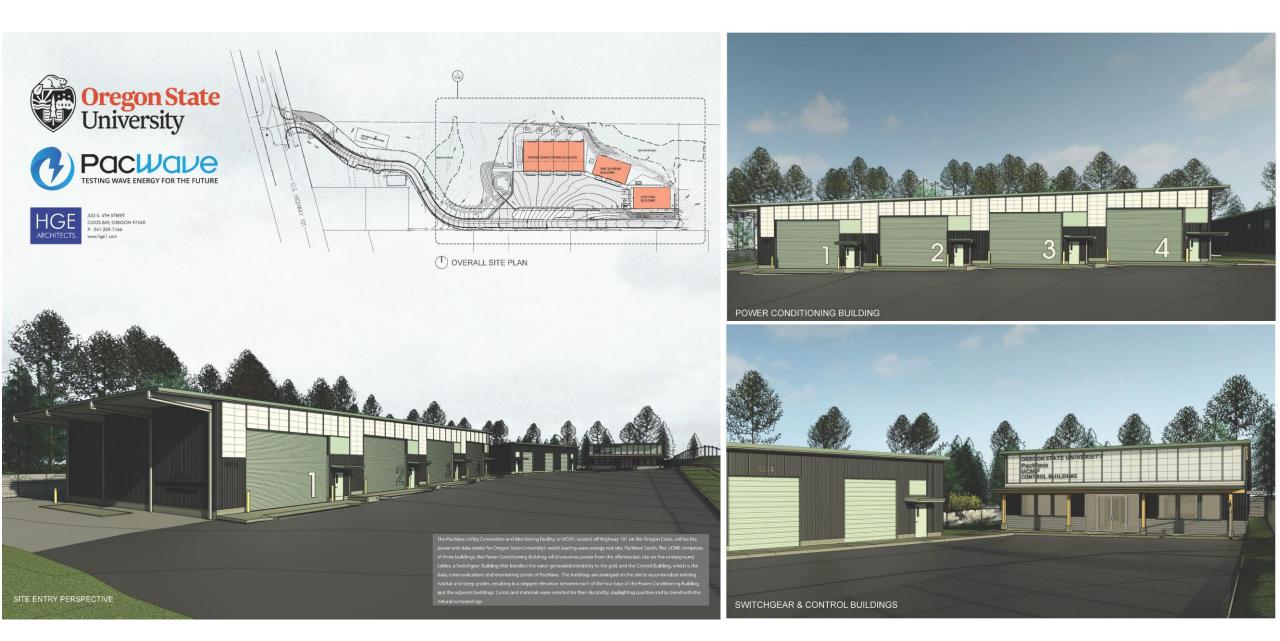

- > Installation in the shore landing conduit is a critical requirement.
- Shore landing conduits will consist of 5,300 ft (1.6 km) of steel pipe with a clear ID of 6.46 inches.
- Pull in of subsea cables through these conduits is a significant issue requires cables with high strength to weight, low friction outer covering and compact pulling termination.

Other Key Elements

Burial Depth:

- Target depth of 1 meter
- Up to 3 meters possible over much of the route
- Nearshore areas may limit burial and require additional armoring due to exposed hard bottom

Geophysical & Geotechnical Data


Nearshore & Terrestrial Infrastructure

Shore Landing

Utility Connection & Monitoring Facility

Estimated Overall Project Schedule

October 15, 2020 October 21, 2020 October 30, 2020 November 5, 2020 December 2, 2020 December 10, 2020 December 18, 2020 December 29, 2020 January 15, 2021 February – September 2021

Spring/Summer 2022

September 1, 2022

Issue RFP

Pre-Proposal Conference

Question Deadline

Final Addendum Issued

Proposals Due

Notification of Finalists

Interviews

Notice of Intent to Award

Contract Execution

HDD Conduit & Vault Installation
- not part of this Scope of Work

Subsea Cable System Install

Completion of Final, Post-installation Testing

Overall Project Schedule

Scope of Work Documents:

- DOC-1004-10300 36 KV SUBSEA POWER TRANSMISSION CABLE SPECIFICATION REV G 201013
- DOC-1008-10300 36 KV SUBSEA POWER FIBER CONNECTOR SPECIFICATION REV C 200922
- DOC-1029-10300 PACWAVE 36 KV SUBSEA CABLE INSTALLATION SPECIFICATION REV D 201013

Appendices to the Scope of Work Documents and Data:

Cable System Diagram

• DWG-1001-10300, PACWAVE EXPORT CABLE DIAGRAM, REV D, 190829

Cable System Short Circuit Analysis

• PacWave Short Circuit Memorandum 20200914

Dry Mate Connector Pinout

• DWG-1027-10300, 36 KV SUBMARINE POWER CONNECTOR PIN OUT - REV A – 200916

Marine Survey

- PacWave Marine Geophysical Geotechnical Survey Report 03142019
- PacWave Marine Geophysical and Geotechnical Survey 2018 [ZIPPED DATA]
- PacWave Marine Geophysical Survey Report 10302014
- PacWave Nearshore Geophysical Survey Report 12282018
- PacWave Marine Geotechnical Survey 2019 [FOLDER]
- PacWave Nearshore Bathymetry [FOLDER]

Documents & Data

Sea Conditions

- PacWave_Resource_Assessment_2020
- PacWave_Resource_Assessment_Data [ZIPPED DATA]

Shore Landing HDD Conduit Pull in Analysis

- DOC-1063-10300, SHORELANDING CONDUIT CABLE PULL REPORT, REV O 190823
- DWG-1022-10300, CABLE PULL CALC NO ERROR, REV A 190823
- DWG-1024-10300, CABLE PULL CALC HORIZONTAL BEND ERROR, REV A 190823

Submarine Cable Route Engineering

- DOC-1017-10300 PACWAVE SITE ROUTE RPL REV E 190826
- DOC-1070-10300 PACWAVE SUBSEA CABLE ROUTE ENG REV B 190903
- PacWave Survey and Route Back Scatter
- PacWave Survey and Route Bathy
- PacWave Survey and Route

Documents & Data

PacWave

- Burke Hales Chief Scientist
- Justin Klure Project Manager
- Dan Hellin Deputy Director
- Diane Broad Administrative Manager
- Kim Calvery Research Program Officer

3U Technologies

- Carl Barrett
- Larry Mackey

OSU Procurement, Contracts & Materials Management

- Hanna Emerson
- Ben Baggett

All questions should be sent to: constructioncontracts@oregonstate.edu Please include RFP Title in the subject line

Follow up information will be posted at: https://bid.oregonstate.edu/opportunity/view/23783

