

Geotechnical Survey Report

Technical Services for Terrestrial HDD Route Geotechnical Survey Seal Rock, Oregon

January 13, 2020 Terracon Project No. 82195049

Prepared for:

Oregon State University Corvallis, Oregon

Prepared by:

Terracon Consultants, Inc. Portland, Oregon

Environmental 🛑 Facilities 🛑 Geotechnical 🛑 Materials

January 13, 2020

Oregon State University 644 SW 13th Street Corvallis, Oregon 97333

Attn:Mr. Ben Baggett – Construction Contracts AdministrationP:(541) 737 5546E:Benjamin.baggett@oregonstate.edu

Re: Geotechnical Survey Report Technical Services for Terrestrial HDD Route Geotechnical Survey 5400 NW Pacific Coast Highway Seal Rock, Oregon Terracon Project No. 82195049

Dear Mr. Baggett:

We have completed the Geotechnical Survey services for the above referenced project. This study was performed in general accordance with Terracon Proposal No. P82195049 Revision 1 dated August 20, 2019 and signed agreement with Oregon State University dated October 7, 2019. This report presents the findings of the subsurface exploration and results of the laboratory testing for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Brice W. Plouse, PE Geotechnical Group Leader

Facilities

Environmental

Kristopher T. Hauck, P.E. Principal | Office Manager

Geotechnical

Materials

 Terracon Consultants, Inc.
 700 N 55th Avenue
 Portland, Oregon 97213

 P (503) 659 3281
 F (503) 659 1287
 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	
GEOTECHNICAL CHARACTERIZATION	3
DRILLING DATA	
INADVERTENT DRILL FLUID RETURN ANALYSIS	
THERMAL RESISTIVITY OF SOIL AND GROUT	
CORROSIVITY	
GENERAL COMMENTS	

Note: This report was originally delivered in a web-based format. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES PHOTOGRAPHY LOG SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

Geotechnical Survey Report

Technical Services for Terrestrial HDD Route Geotechnical Survey 5400 NW Pacific Coast Highway Seal Rock, Oregon Terracon Project No. 82195049 January 13, 2020

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering testing services performed for the proposed PacWave Terrestrial Horizontal Directional Drilling project to be located at 5400 NW Pacific Coast Highway in Seal Rock, Oregon. The purpose of these services is to provide drilling and laboratory information relative to the construction of Horizontal Direction Drilling (HDD) techniques.

The geotechnical engineering Scope of Services for this project included the advancement of one exploration to a depth of approximately 300 feet below existing site grades.

Maps showing the site and exploration locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the exploration logs or as separate graphs in the **Exploration Results** section.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available topographic maps.

Item	Description
	The project is located at 5400 NW Pacific Coast Highway in Seal Rock, Oregon.
Parcel Information	The project will include installation of a Utility Connection and Monitoring Facility and terrestrial and offshore Horizontal Directional Drilling to run power and data cables.
	See Site Location and Exploration Plans.
Existing Improvements	The exploration was conducted at the Driftwood Beach State Recreation Site. The core location is within an asphaltic concrete parking lot.
Existing Topography (from Google Earth Pro aerial imagery)	Graded relatively flat with a slight slope to the west.

We also collected photographs at the time of our field exploration program. Representative photos are provided in our **Photography Log**.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description	
Information Provided	We were previously provided with the Oregon State University RFP #199778 – Technical Services for Terrestrial Horizontal Directional Drilling Route Geotechnical Survey document, Appendix A of RFP #199778 – Driftwood Beach State Recreation Site Geophysical Exploration Report and Addendum No. 1 to the RFP document. During this RFP revision we were provided with Oregon State University RFP #2020-000300 – Technical Services for Terrestrial Horizontal Directional Drilling Route Geotechnical Survey document and RFP #2020-000300 Appendix A – Technical Services for Terrestrial Seismic	
	Survey and Evaluation Data Report: Results of Geophysical Exploration.	
Project Description	The PacWave South project will be the nation's first, pre-permitted, grid connected facility for testing utility-scale wave energy converters. The project will include an offshore wave energy test site located approximately 6 nautical miles offshore of Newport, Oregon. At the test site, various types of wave energy converters will be deployed and will be connected to the local, onshore power utility grid via four subsea and underground power cables, plus a fifth, auxiliary cable	
Proposed Structure	To utilize the created energy from waves, subsea power cable installation at the "Shore Landing Site" will require Horizontal Directional Drilling (HDD) to route cables through underground conduits. The "Shore Landing HDD Routes" will run from the parking lot of Driftwood Beach State Recreation Site ("Driftwood") in Seal Rock, Oregon, under the beach bluff, beach and surf zone, to approximately 30-feet water depth offshore. The total drill path length is approximately 5,000 feet. An additional "Terrestrial HDD Route" will be drilled from the south side of the Driftwood parking lot approximately 2,400 feet to the southeast to an OSU-owned property on NW Wenger Lane on the east side of Highway 101. This property will be the site of the PacWave utility connection and monitoring facility ("UCMF"). This Terrestrial HDD Route will route cables from the UCMF buildings to the Shore Landing Site at Driftwood. It is the area under Driftwood and the Terrestrial HDD Route that are the focus of this Request for Proposals ("RFP").	
Estimated Start of Construction	Summer 2020	

Technical Services for Terrestrial HDD Route Geotechnical Survey
Seal Rock, Oregue
GeoReport.
GeoReport.

GEOTECHNICAL CHARACTERIZATION

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization forms the basis of our geotechnical understanding and provides model layer numbers to correspond to the boring log. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the Exploration **Results** section of this report.

Model Layer	Layer Name	General Description
1	Beach, Bar and Dune Sand (Qbs)	Holocene – Beach sand and gravel, bar sand and active dune sand; includes coastal stabilized dunes, very loose to medium dense, brown, poorly graded, fine-grained
2	Coastal Terrace Deposits (Qtc)	Pleistocene – Thick- to thin-bedded, planar or crossbedded, fine- and medium-grained, marine and nonmarine sand; locally contains cobble and pebble lenses, fossil wood, and carbonaceous silt beds; upper surface of terrace deposits covered locally by stabilized dune sands (older dune deposits are iron stained and contain relict soil zones), tan to brown, very dense
3	Alsea Formation (Tal)	Lower to upper Oligocene – Massive to thick-bedded fossiliferous tuffaceous marine siltstone with zones of laminated bedding and very fine-grained sandstone (sandstone not encountered in exploration); gray to black and blue to gray, extremely weak to weak, slightly fractured to sound

 General Description is a combination of field observed qualities and information from Snavely, P.D., MacLeod, N.S., Wagner, H.C., and Rau, W.W., 1976, Geologic map of the Waldport and Tidewater Quadrangles, Lincoln, Lane, and Benton Counties, Oregon: Reston, Va., U.S. Geological Survey Miscellaneous Investigations Map I-886, scale 1:62,500.

Geology

Based on the provided RFP document, the local, shallow geology for the area can be described as Coast Terrace deposits (Qtc) with Yaquina Formation sandstone (Tyq). Mudstone (Tn) layers are expected both below and intermixed with the surface layers.

Based on the Geologic Map of the Waldport and Tidewater Quadrangles, Lincoln, Lane, and Benton Counties, Oregon by Snavely P.D., MacLeod N.S., Wagner H.C., and Rau W.W. 1976, the site is mapped as Coastal Terrace Deposits (Qtc). The material is described as thick- to thinbedded, planar or crossbedded, fine- and medium-grained, marine and nonmarine sand; locally contains cobble and pebble lenses, fossil wood, and carbonaceous silt beds; upper surface of terrace deposits covered locally by stabilized dune sands. The geology mapped to the east of the site is the Alsea Formation, which we interpret to have been encountered at 55 feet below ground surface at the exploration location. Based on our exploration findings, the conditions encountered in the boring are consistent with the reviewed publications.

The sequence of tuffaceous siltstone and fine-grained sandstone that forms the lower part of the Oligocene sequence of coastal Oregon is known as the Alsea Formation. The Alsea Formation occurs in the upper part of a Tertiary sequence of marine sedimentary and volcanic rocks more than 6,000 meter thick that crops out in the central part of the Oregon Coast Range. The Alsea Formation is overlain conformably by a predominantly sandstone sequence, the Yaquina Formation of late Oligocene and early Miocene age. The Alsea Formation typically consists of fossiliferous massive to medium-bedded tuffaceous siltstone and very fine grained sandstone. The sandstone commonly contains fine mica, carbonaceous material, and pumice fragments. General description is referenced to *Snavely, P.D., MacLeod, N.S., Rau, W.W., Addicott W.O., and Pearl J.E., 1975, Alsea Formation – An Oligocene Marine Sedimentary Sequence in the Oregon Coast Range: Contributions to Stratigraphy.* We believe that the current bore path of the terrestrial horizontal directional drilling will be in the Alsea formation stratigraphy.

Based on the Geologic *Map of the Ocean Floor Off Oregon and the Adjacent Continental Margin* by *Peterson C.P. Kulm L.D., and Gray J.J., 1986, GMS-42,* the geology of the offshore location, where the subsea cables and wave energy converters will be located, is mapped as Siltstone (QTpm) of the Pleistocene-late Miocene era. The map describes the area as poorly indurated siltstone and minor sandstone. This basinal deposit also blankets upper slope accretionary complex rocks. It was noted that a syncline that runs north to south is mapped about two miles west of the test site.

Seismic Hazards

Seismic hazards resulting from earthquake motions can include slope stability, liquefaction, and surface rupture due to faulting or lateral spreading. Liquefaction is the phenomenon wherein soil strength is dramatically reduced when subjected to vibration or shaking.

We reviewed the Statewide Geohazards Viewer (HazVu) published by the Oregon Department of Geology and Mineral Studies (DOGAMI) and available online at <u>https://gis.dogami.oregon.gov/hazvu/</u>. The viewer categorizes the expected earthquake shaking from light, moderate, strong, very strong, severe and violent; and the landslide susceptibility from low, moderate, high, and very high.

Earthquake Liquefaction Hazard: Moderate Expected Earthquake Shaking: Severe Landslide Susceptibility (due to earthquake): Moderate to High

Faults

The United States Geological Survey (USGS) Quaternary Fault and Fold Database of the United States published a report containing descriptions of nearby faults.

Waldport Faults (Class A) No. 886

Information	Description
Length	14 km
Strike (degrees)	N13°E
Sense of Movement	Reverse, left lateral, normal
Dip Direction	E; W
Slip-rate Category	Less than 0.2 mm/yr.
Most recent prehistoric deformation	Late Quaternary (<130 ka)
Distance from Fault	1 mile east of site

The Waldport faults are three north-northeast-striking faults that offset marine-terrace sediments and wave-cut platforms in the vicinity of Alsea Bay along the central Oregon coast. The Waldport faults offset the approximately 125 ka Yachats marine terrace 15–20 m which imply low vertical displacement rates in the late Quaternary.

Unnamed Offshore Faults (Class A) No. 785

Information	Description
Length	280 km
Strike (degrees)	N11°W
Sense of Movement	Left lateral, right lateral, normal, reverse
Dip Direction	Unknown
Slip-rate Category	Between 1.0 and 5.0 mm/yr
Most recent prehistoric deformation	Latest quaternary (<15 ka)
Distance from Fault	1.33 miles west of site

This group of faults offset accretionary wedge sediments that underlie the continental shelf and slope in the forearc of the Cascadia subduction zone ; some faults also offset the overlying sedimentary section and the underlying oceanic basalts of the subducting Juan de Fuca Plate.

Information	Description
Length	70 km
Strike (degrees)	N13°W
Sense of Movement	Anticline
Dip Direction	65-70°E

Stonewall Anticline (Class A) No. 786

Geotechnical Survey Report

Technical Services for Terrestrial HDD Route Geotechnical Survey
Seal Rock, Oregeore
GeoReport
January 13, 2020
Terracon Project No. 82195049

Information	Description
Slip-rate Category	Between 1.0 and 5.0 mm/yr
Most recent prehistoric deformation	Latest quaternary (<15 ka)
Distance from Fault	12 miles west of site

The north-northwest-striking, west-verging, doubly plunging Stonewall anticline fold deforms sediments underlying the continental slope and shelf in the forearc of the Cascadia subduction zone. The fold is located on the continental shelf, in an area underlain by a rigid basement of Siletz River Volcanics (Siletzia terrane); folds in this region have longer wavelengths than the closely spaced folds and faults in the accretionary wedge underlying the continental slope. The Stonewall anticline folds Miocene through Pleistocene sediment, and warps a late Pleistocene sea-level lowstand wave-cut platform and an antecedent drowned stream channel of the Yaquina River. An age range of 11–14.5 ka was assumed for the latter features, so the youngest deformation occurred in the latest Quaternary.

Based on our review of the available fault information, the depth to bedrock, and the site's proximity to the nearest known faults, it is our opinion that the risk of surface rupture due to ground faulting is low.

Groundwater Conditions

The core was observed while drilling and after completion for the presence and level of groundwater. The water levels observed in the core is provided on the logs in **Exploration Results** and are summarized below.

Exploration Number	Approximate Ground Surface Elevation (feet) ¹	Approximate Elevation of Groundwater while Drilling (feet) ¹
Core #1	52	22
1. Based on elevations obtained from Google Earth and depth to the observed groundwater during explorations.		

Note the assumed ground surface elevation is presented on the boring logs.

Based on tidal changes we anticipate groundwater level fluctuations will occur regularly. Additional seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the core was performed could impact groundwater as well. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

DRILLING DATA

As part of our field work we compiled multiple drilling statistics, including drillers comments to assist in design of the Horizontal Directional Drilling (HDD).

We utilized a Diedrich D-90 track drill rig between October 18, 2019 and October 24, 2019 to complete the 300-foot exploration. Below is a summary of our pertinent drilling information. The Diedrich D-90 information pack and drillers resume can be found in the **Supporting Information** section of this report, and a description of the drilling techniques and location of the explorations can be founding the **Exploration and Testing Procedures** section.

Торіс	Information
Depth of Overburden	55 feet
Total Coring Footage	245 feet
Total Drilling Depth	300 feet
Static Water Level during Drilling Activities	30 ft
Type & Weight of Bit	3 7/8 inch outside diameter, staggered tooth bit; approximately 3 pounds
Drilling Fluid	EZ Mud Liquid Polymer; biodegradable

Date	Depth (feet)	Driller Notes
October 18, 2019	0 to 20	Overburden; heaving sands;
October 19, 2019	20 to 55; overburden 55 to 80; bedrock	Heaving sands below free water level of 30 feet below ground surface; switched drilling head to rotary and set mud pan; began coring with diamond core bit
October 20, 2019	80 to 140	Switched to staggered tooth, open face discharge bit for better recovery; difficult core retrieval at 80 and 100 feet; water loss from supply volume consistent (likely caused by loose sands above bedrock)
October 21, 2019	140 to 215	1,000 gallons of water used during drilling activities

Geotechnical Survey Report

Terracon GeoReport. Technical Services for Terrestrial HDD Route Geotechnical Survey Seal Rock, Orego January 13, 2020 - Terracon Project No. 82195049

Date	Depth (feet)	Driller Notes
October 22, 2019	215 to 285	450 gallons of water used during drilling activities
October 23, 2019	285 to 300	450 gallons of water used during drilling activities
October 24, 2019	N/A	Drive line on transmission broke while trying to remove augers; after communications with PacWave elected to abandon augers in place

Depth (ft)	String Rotation Rate (rpm)	Drilling Torque (ft-lb)	Rate of Penetration (ft/min.)	Supply Volume (ft ³)	Flow Rate (ft ³ /sec.)	Circulation Pressure (psi)	Return Volume (ft ³)
0 to 20	N/A	N/A	2.00	N/A	N/A	N/A	N/A
20 to 55	N/A	N/A	5.00	N/A	N/A	N/A	N/A
55 to 65	1,300	1,650	0.17	33.4	0.03	200	29.0
65 to 70	1,300	1,650	0.15	33.4	0.03	200	29.0
70 to 125	1,300	1,650	0.17	60.2	0.03	200	54.5
125 to 140	1,300	1,650	0.17	60.2	0.03	200	50.9
140 to 145	1,300	1,650	0.25	60.2	0.03	200	50.9
145 to 190	1,300	1,650	0.17	60.2	0.03	200	50.9
190 to 205	1,800	1,650	0.17	60.2	0.03	200	55.6
205 to 210	1,800	1,650	0.25	60.2	0.03	200	55.6
210 to 260	1,800	1,650	0.17	60.2	0.05	500	55.6
260 to 270	1,800	1,650	0.25	60.2	0.03	500	55.6
270 to 280	1,800	1,650	0.17	60.2	0.03	500	55.6
280 to 300	1,800	1,650	0.25	60.2	0.03	500	55.6

1. All return drilling fluid noted having grey color.

Additional exploration information can be found on the exploration log in the **Exploration Results** section.

INADVERTENT DRILL FLUID RETURN ANALYSIS

We understand a major concern with Horizontal Direction Drilling (HDD) activities is the possibility of the annular pressure of the drilling fluid exceeding the limiting (confining) pressure of the soil formation. We conducted multiple laboratory tests to evaluate the soil parameters required to assist in developing the limiting pressure of the alignment. We understand the annular pressure will be developed during the HDD design stage. Strength parameters, such as cohesion, internal friction angle and shear modulus can be evaluated from the direct shear results in the Exploration Results section.

We understand it is generally assumed that the risk of inadvertent return is greater during pilot hole drilling than reaming, given that the drill fluid may only flow toward the Horizontal Direction Drilling (HDD) entry since the connection with the open sea drilling exit has not yet been established. We anticipate the majority of the bore paths offshore will be located in bedrock, with onshore paths encountering mostly soil.

THERMAL RESISTIVITY OF SOIL AND GROUT

The installation of cables underground requires engineering analysis to ensure the required electrical current is maintained. Items such as cable depth and the materials surrounding the cables impact efficiency of power transfer and may require forms of remediation. To assist in this design, we were asked to conduct laboratory thermal resistivity test of the overburden soils and selected bedrock samples. Results of the minimum and maximum thermal resistivity values of each tested sample are expressed below, while the full dry-out curves can be found in the **Exploration Results** section.

Thermal Resistivity Test Results Summary							
Exploration	Sample Depth (feet)	Soil Description	Dry Density (pcf)	Optimum/Maximum Moisture Content (%)	Thermal Resistivity ³ @ 0% Moisture	Thermal Resistivity ³ @ Opt./Max. Moisture	
Core #1	0 to 5	Dune Sand ¹	92.4	13.2	566	95	
Core #1	0 to 5	Terrace Sand ¹	79.7	25.8	326	84	
Core #1	100 to 105	Siltstone ²	110.6	18.1	164	91	

Geotechnical Survey Report

Technical Services for Terrestrial HDD Route Geotechnical Survey
Seal Rock, Oregue
GeoRepoi
GeoRepoi

Thermal Resistivity Test Results Summary							
Exploration	Sample Depth (feet)	Soil Description	Dry Density (pcf)	Optimum/Maximum Moisture Content (%)	Thermal Resistivity ³ @ 0% Moisture	Thermal Resistivity ³ @ Opt./Max. Moisture	
Core #1 220 to 225 Siltstone ² 107.3 17.6 205 84							
 Recompacted sample. Results collected from sample compacted in known volume. In-situ sample. Results collected from intact core sample. Thermal resistivity is measured in (%C*am)/unit. 							

3. Thermal resistivity is measured in (°C*cm)/watt.

Additionally, we understand typical Horizontal Directional Drilling (HDD) will require installation of a thermal grout between the casings and cable duct. The purpose of the grout is to aid in heat dissipation during cable operation. The grout will be installed by means of tremie tubes once the casing and duct are in place. We understand the thermal resistivity of thermal grout is largely dependent on the density of the material. If there is a concern with the thermal grouts properties Terracon is available to aid in establishing a quality control (QC) testing program for the project.

CORROSIVITY

The table below lists the results of laboratory soluble sulfate, soluble chloride, electrical resistivity, and pH testing. The values may be used to estimate potential corrosive characteristics of the onsite soils with respect to contact with the various underground materials which will be used for project construction.

Corrosivity Test Results Summary							
Exploration	Sample Depth (feet)	Soil Description	Soluble Sulfate (%)	Soluble Chloride (%)	Electrical Resistivity (Ω-cm)	рН	
Core #1	10 to 11½	Dune Sand	28	53	17,460	8.24	
Core #1	25 to 261⁄2	Terrace Sand	70	53	17,945	8.21	
Core #1 40 to 41 ¹ / ₂		Terrace Sand	10	82	9,700	8.01	
Core #1 100 to 105 Siltstone Not tested Not tested 220 ¹				8.20			
Core #1	200 to 205	Siltstone	Not tested	Not tested	240 ¹	8.34	
1. Tested with ocean water.							

Results of soluble sulfate testing indicate samples of the on-site soils tested possess negligible sulfate concentrations when classified in accordance with Table 4.3.1 of the ACI Design Manual.

Concrete should be designed in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 4.

A corrosion expert should be contacted regarding steel's susceptibility to corrosion of the encountered soils.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Number of Explorations	Type of Exploration	Exploration Depth (feet)	Location Latitude and Longitude
1	Core	300	44° 27' 35.48" N
		300	124° 04' 30.75" W

Exploration Layout and Elevations: Oregon State University (OSU) provided the exploration layout and coordinates as per RFP #199778 dated July 2, 2019. The exploration location was located using a handheld GPS and site characteristics, and the approximate elevation was obtained by interpolation from the aerial photographs using Google Earth Pro. If elevations and a more precise exploration layout are desired, we recommend explorations be surveyed following completion of fieldwork.

Subsurface Exploration Procedures: We advanced the core exploration with a Terraconoperated Diedrich D90 track-mounted, hydraulic rotary core drill rig using hollow stem auger system for setting casing through overburden and soils. Soil samples were obtained at 5-foot intervals. Soil sampling was performed using split-barrel sampling procedures. In the split barrel sampling procedure, a standard 2-inch outer diameter split barrel sampling spoon is driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration was recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer. In addition, we observed and recorded groundwater levels during drilling and sampling.

Upon encountering bedrock, we utilized a HQ3 wireline coring system to obtain core samples. Bedrock coring was conducted to the total planned exploration depth defined above. Water, along with drill mud and polymer, was used as a drilling fluid for bedrock coring and the spent water was containerized and disposed of off-site.

All explorations were supervised and logged by a field geologist to record field test data, classify soils, and to collect the samples from the explorations. Our exploration team prepared field boring logs as part of standard drilling operations including sampling depths, penetration distances, and other relevant sampling information. Field logs include visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs, prepared from field logs, represent the geotechnical engineer's interpretation, and include modifications based on observations and laboratory tests.

Property Disturbance: Due to fluctuating tides, causing heaving sands we abandoned approximately 55 feet of hollow-stem auger at the core location. We backfilled the augers and core exploration with grout after completion. The surface at the core location was returned to the previous condition with colored concrete. Our services do not include repair of the site beyond backfilling the core location.

Best Management Practices (BMP) such as straw wattles and catch basin socks were utilized to filter and retain drilling fluid and mud run off. Excess auger cuttings, drilling fluids and muds were collected, contained and disposed of off-site.

Laboratory Testing

The project engineer reviewed field data and assigned various laboratory tests to better understand the engineering properties of various soil and rock strata. Procedural standards noted below are for reference to methodology in general. In some cases, local practices and professional judgement require method variations. Standards noted below include reference to other related standards. Such references are not necessarily applicable to describe the specific test performed.

- ASTM D6032 17 Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core
- ASTM D7263 09 Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens
- ASTM D5607 16 Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force
- ASTM D7012 14e1 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens; Method C: Uniaxial Compressive Strength of Intact Rock Core Specimens.
- ASTM D5873 14 Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method
- ASTM D2216 19 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D5334 14 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure
- ASTM D4318 17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D4972 19 Standard Test Methods for pH of Soils
- IEEE Std 81 201 EEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of Ground Systems; Resistivity only

Geotechnical Survey Report

llerracon Technical Services for Terrestrial HDD Route Geotechnical Survey Seal Rock, Orego **GeoReport** January 13, 2020
Terracon Project No. 82195049

The laboratory testing program often included examination of soil samples by an engineer. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System (USCS).

When bedrock samples were obtained, rock classification was conducted using ASTM D5079, ASTM D6032 and locally accepted practices for engineering purposes; petrographic analysis (if performed) may reveal other rock types. Rock core samples typically provide an improved specimen for this classification. Boring log rock classification was determined using the Description of Rock Properties.

Photo 1 Sample 1 .25 ft. to 1.75 ft. 10/18/2019

Photo 2 Sample 2 2.5 feet to 4.0 feet 10/18/2019

Photo 3 Sample 3 5 feet to 6.5 feet 10/18/2019

Photo 4 Sample 4 7.5 feet to 9.0 feet 10/18/2019

Photo 5 Sample 5 10 feet to 11.5' feet 10/18/2019

Photo 6 Sample 6 15 feet to 16.5 feet 10/18/2019

Photo 7 Sample 7 20 feet to 21.5 feet 10/18/2019

Photo 8 Sample 8 25' feet to 26.5 feet 10/19/2019

Photo 9 Sample 9 30 feet to 31.5 feet 10/19/2019

Photo 10 Sample 10 35 feet to 36.5 feet 10/19/2019

Photo 11 Sample 11 40 feet to 41.5 feet 10/19/2019

Photo 12 Sample 12 45 feet to 46.5 feet 10/19/2019

Photo 13 Sample 13 50 feet to 51.5 feet 10/19/2019

Photo 14 Sample 14 55 feet to 56.5 feet 10/19/19

Photo 15 Sample 15 55 feet to 57 feet 10/19/2019

Photo 16 Sample 15 57 feet to 60 feet 10/19/2019

Photo 17 Sample 16 60 feet to 65 feet 10/19/2019

Photo 18 Sample 17 65 feet to 70 feet 10/19/2019

Photo 19 Sample 18 70 feet to 75 feet 10/20/2019

Photo 20 Sample 19 75 feet to 80 feet 10/20/2019

Photo 21 Sample 20 80 feet to 85 feet 10/20/2019

Photo 22 Sample 21 85 feet to 90 feet 10/20/2019

Photo 23 Sample 22 90 feet to 95 feet 10/20/2019

Photo 24 Sample 23 95 feet to 100 feet 10/20/2019

Photo 25 Sample 24 100 feet to 105 feet 10/20/2019

Photo 26 Sample 25 105 feet to 110 feet 10/20/2019

Photo 27 Sample 26' 110 feet to 115 feet 10/20/2019

Photo 28 Sample 27 115 feet to 120 feet 10/20/2019

Photo 29 Sample 28 120 feet to 125 feet 10/20/2019

Photo 30 Sample 29 125 feet to 130 feet 10/21/2019

Photo 31 Sample 30 130 feet to 135 feet 10/21/2019

Photo 32 Sample 31 135 feet to 140 feet 10/21/2019

Photo 33 Sample 32 140 feet to 145 feet 10/21/2019

Photo 34 Sample 33 145 feet to 150 feet 10/21/2019

Photo 35 Sample 34 150 feet to 155 feet 10/21/2019

Photo 36 Sample 35 155 feet to 160 feet 10/21/2019

Photo 37 Sample 36 160 feet to 165 feet 10/21/2019

Photo 38 Sample 37 165 feet to 170 feet 10/21/2019

Photo 39 Sample 38 170 feet to 175 feet 10/21/2019

Photo 40 Sample 39 175 feet to 180 feet 10/21/2019

Photo 41 Sample 40 180 feet to 182 feet 10/21/2019

Photo 42 Sample 40 182 feet to 187 feet 10/21/2019

Photo 43 Sample 41 187 feet to 190 feet 10/21/2019

Photo 44 Sample 42 190 feet to 195 feet 10/22/2019

Photo 45 Sample 43 195 feet to 200 feet 10/22/2019

Photo 46 Sample 44 200 feet to 205 feet 10/22/2019

Photo 47 Sample 45 205 feet to 210 feet 10/22/2019

Photo 48 Sample 46 210 feet to 215 feet 10/22/2019

Photo 49 Sample 47 215 feet to 220 feet 10/22/2019

Photo 50 Sample 48 220 feet to 225 feet 10/22/2019

Photo 51 Sample 49 225 feet to 230 feet 10/22/2019

Photo 52 Sample 50 230 feet to 235 feet 10/22/2019

Photo 53 Sample 51 235 feet to 240 feet 10/22/2019

Photo 54 Sample 52 240 feet to 245 feet 10/22/2019

Photo 55 Sample 53 245 feet to 250 feet 10/22/2019

Photo 56 Sample 54 250' feet to 255 feet 10/22/2019

Photo 57 Sample 55 255 feet to 260 feet 10/22/2019

Photo 58 Sample 56 260 feet to 265 feet 10/23/2019

Photo 59 Sample 57 265 feet to 270 feet 10/23/2019

Photo 60 Sample 58 270 to 275 feet 10/23/2019

Photo 61 Sample 59 275 feet to 280 feet 10/23/2019

Photo 62 Sample 60 280 feet to 285 feet 10/23/2019

Photo 63 Sample 61 285 feet to 288 feet 10/23/2019

Photo 64 Sample 62 288 feet to 290 feet 10/23/2019

Photo 65 Sample 63 290 feet to 295 feet 10/23/2019

Photo 66 Sample 64 295 feet to 300 feet 10/23/2019

SITE LOCATION AND EXPLORATION PLANS

Contents:

Site Location Plan Exploration Plan

Note: All attachments are one page unless noted above.

SITE LOCATION

Terrestrial HDD Route Geotechnical Survey Seal Rock, OR January 13, 2020 Terracon Project No. 82195049

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

TOPOGRAPHIC MAP IMAGE COURTESY OF THE U.S. GEOLOGICAL SURVEY QUADRANGLES INCLUDE: WALDPORT, OR (1/1/1984).

EXPLORATION PLAN

Terrestrial HDD Route Geotechnical Survey Seal Rock, OR January 13, 2020 Terracon Project No. 82195049

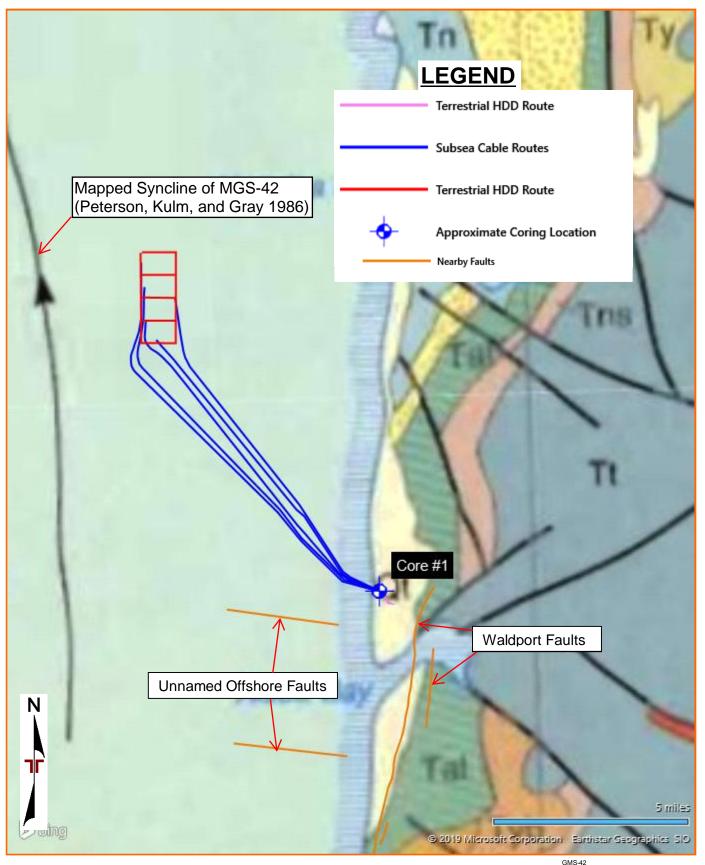


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Geologic Map of the Ocean Floor Off Oregon and the Adjacent Continental Margin By Carolyn P. Peterson, LaVerne D. Kulm, and Jerry J. Gray

EXPLORATION RESULTS

Contents:

Exploration Logs (Core #1) Atterberg Limits Grain Size Distribution Unconfined Compressive Strength (6 pages) Direct Shear (13 pages) Moisture Density Relationship Relative Density Results Corrosivity Thermal Resistivity (4 pages)

Note: All attachments are one page unless noted above.

				во		G NO. Co	ore	#1					Page 1 of 6		
	PROJECT: Terrestrial Horizontal Directiona Route Geotechnical Survey		al Drilling	CLIENT: O	rego orva	n Sta Ilis, C	ite l DR	Jniv	ersity						
	S	ITE:		5400 NW Pacific Coast Highway Seal Rock, OR											
	MODEL LAYER	GRAPHIC LOG		CATION See Exploration Plan ude: 44.4642° Longitude: -124.0802°		ace Elev.: 52 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS		# of Core Pieces	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)
				<u>FILL - ASPHALT</u> , 3-inches thick <u>POORLY GRADED SAND (SP)</u> , trace silt a brown, loose		ELEVATION (Ft.) 52 ned,		-	\times	18	5-4-5 N=9			4	
/19			· • •	medium dense			5-	-	imes	17 15	4-4-5 N=9 8-4-6 N=10			5	
GDT 12/31	1		•	very loose, no gravel present			10-		\times	18	3-2-1 N=3			5	
EMPLATE.				loose					\mid	18	4-3-2 N=5)		7	
82195049 TECHNICAL SERVICE.GPJ TERRACON_DATATEMPLATE.GDT 12/31/19							15		\times	17	4-4-3 N=7			5	
/ICE.GPJ TERF			20.0 20.3	LEAN CLAY (CL), gray to black, medium s POORLY GRADED SAND (SP), fine graine very loose		32 32 n,	20-	-	X	17	4-3-2 N=5			5 24	
CHNICAL SERV							25		\times	9	2-1-1 N=2			23	
L 82195049 TE			30.0	POORLY GRADED SAND WITH SILT (SP- grained, light tan, dense	<u>SM)</u> , trace gravel, f	22 îine	30-		\times	15	7-17-2 N=44			23	
T LOG-NO WELL				very dense			35-	-	\times	15	16-29-4 N=72			22	
KI. GEO SMAR	2						40-	-	\times	16	41-30-4 N=73			23	
RIGINAL KEPU			45.0	POORLY GRADED SAND (SP), trace silt, v	very dense	7	45	-	\times	17	24-44-4 N=84			22	
ATED FROM U		Sti	ratifica	ation lines are approximate. In-situ, the transition may	be gradual.		50-		mer Ty	/pe: A	utomatic				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO	H ov sa Abar E:	verburd amples ndonme xplorati	tem a len so ent M on wa	ugering 6-inch OD for setting casing through ils and HQ3 wireline coring obtain core	See Exploration and Test lescription of field and li lesed and additional data See Supporting Informal ymbols and abbreviatio	aboratory procedur a (If any). tion for explanation	es	of hollo	heav	em aug vere in	nds and tidal c jer was groute terpolated fror	d in plac	ce.	-	eet
NG LOG			WA ⁻	TER LEVEL OBSERVATIONS				Boring S	Starteo	d: 10-1	8-2019	Boring	Completed	1: 10-23-2	2019
HIS BORII	<u> </u>	_ ///	nile (drilling	700 NE :	55th Ave	- F	Drill Rig				Driller:	Terracon -	Lodi	
Ē	Portland, OR					[!	Project No.: 82195049								

		BORI	NG LOO	G NO. Co	ore	#1				Page	e 2 of (6	
F	PROJ	ECT: Terrestrial Horizontal Directional D Route Geotechnical Survey	Drilling	CLIENT: O	regoi orval	n Stat lis, O	te U R	niversity	y				
٤	SITE:	5400 NW Pacific Coast Highway Seal Rock, OR				·							
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 44.4642° Longitude: -124.0802°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	of Core Pieces	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	
M	Ü			ace Elev.: 52 (Ft.) ELEVATION (Ft.)		0BS 0BS			E	#	30	72	
2		POORLY GRADED SAND (SP), trace silt, very	dense (continu	ied)	-				N=62				
	× × × ×	55.0 SILTSTONE, gray to black, fine-grained, extrem SILTSTONE, gray to black, fine-gray to black,	mely fractured,	3	55-	-			50/5"		28		
81/18/2	× × × × × ×	laminated bedding, unweathered, extremely we slightly fractured	eak		-	-			D = 0%	0 4	-		
-AlE.GUI	× × × × × × × × × ×	sound			60- -	-		60 RQ	D = 86%	7			
JAI A I EMILI	× × × × × × × × × ×	slightly fractured			65-	-			D = 00 /0		-		
KKACON	× × × × × × × ×					-	60 RQD =	D = 91%	9				
82199049 IECHNICAL SERVICE.GFJ IEKRACON_DAIAIEMPLAIE.GDI 1231/19	× × × × × × × × × × × × × × × × × × ×	gray, sound			70- - - -	-		60 RQ	D = 98%	6			
I ECHNICAL SE	× × × × × × × × × × × × × × × × × × ×				75	-	60 RQD = 99%	D = 99%	5				
	× × × × × × × ×	moderately fractured, medium bedding, very w through fracture planes, increase in rigidity, str	/eak, greater de ructure more de	efinition efined	-08 - -	-		19 RG	QD = 0%	7			
LOG-NO WELL	× × × × × × × × × × × × × × × × × × ×	 aminated bedding, poor recovery a a			85- - -			25 RQ	D = 75%	16	<u>22</u> 18	<u>98</u> 108	
	× × × × × × × × × ×	slightly fractured			90-	-							
- KEPOKI.	× × × × × × × ×	sound			- 95-	_		60 RQ	D = 80%	9			
	× × × × × × × × × ×				-	-		60 RQE	D = 100%	4			
	× × × × × ×	slightly fractured			100						-		
PAKAI	St	ratification lines are approximate. In-situ, the transition may be g	radual.			Hamm	er Typ	e: Automati	C				
ALIUIF SE	Hollow s	tem augering 6-inch OD for setting casing through descr len soils and HQ3 wireline coring obtain core used	iption of field and I and additional data		es	Notes:							
	andonm Explorati	See S	Supporting Informa ols and abbreviation	tion for explanation ons.	of								
	7	WATER LEVEL OBSERVATIONS			E	Boring S	tarted:	10-18-2019	Borir	g Completed	: 10-23-	2019	
		hile drilling				Drill Rig:	D-90	Track	Drille	er: Terracon -	Lodi		
Ĩ				55th Ave nd, OR									

BORING LOG NO. Core #1	
------------------------	--

CLIENT: Oregon State University **PROJECT:** Terrestrial Horizontal Directional Drilling Corvallis, OR **Route Geotechnical Survey** SITE: 5400 NW Pacific Coast Highway Seal Rock, OR LOCATION See Exploration Plan WATER LEVEL OBSERVATIONS MODEL LAYER **GRAPHIC LOG** SAMPLE TYPE # of Core Pieces WATER CONTENT (%) DRY UNIT WEIGHT (pcf) RECOVERY (In. FIELD TEST RESULTS DEPTH (Ft.) Latitude: 44.4642° Longitude: -124.0802° Surface Elev .: 52 (Ft.) **ELEVATION (Ft.)** DEPTH SILTSTONE, gray to black, fine-grained, extremely fractured, laminated bedding, unweathered, extremely weak (continued) 48 RQD = 85% 13 105 60 RQD = 79% 15 110-60 RQD = 82% 8 115 7 60 RQD = 81% 120 102 60 RQD = 85% 9 22 125 blue to gray, sound, laminated bedding, weak rock, brittle 60 RQD = 100% 1 130 medium bedding 60 RQD = 100% 1 135 moderately fractured 60 23 RQD = 82% 140 sound, laminated bedding, increase in hardness 100 60 RQD = 95% 5 21 145 slightly fractured 60 RQD = 93% 8 150 Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a Hollow stem augering 6-inch OD for setting casing through description of field and laboratory procedures overburden soils and HQ3 wireline coring obtain core samples used and additional data (If any) Supporting Information for explanation of See Abandonment Method: symbols and abbreviations. Exploration was backfilled with grout and capped with concrete at the completion of drilling activities. WATER LEVEL OBSERVATIONS Boring Started: 10-18-2019 Boring Completed: 10-23-2019 While drilling CL Drill Rig: D-90 Track Driller: Terracon - Lodi 700 NE 55th Ave Project No.: 82195049 Portland, OR

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 8295049 TECHNICAL SERVICE GPJ TERRACON, DATATEMPLATE.GDT 1231/19

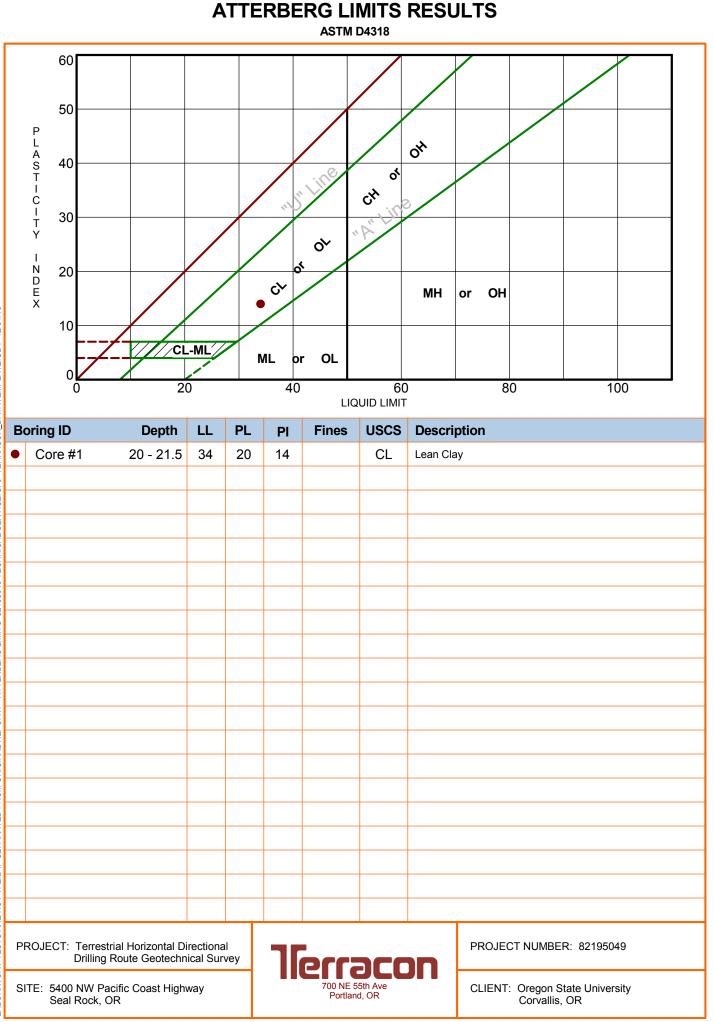
Page 3 of 6

BORING LOG NO. Core #1

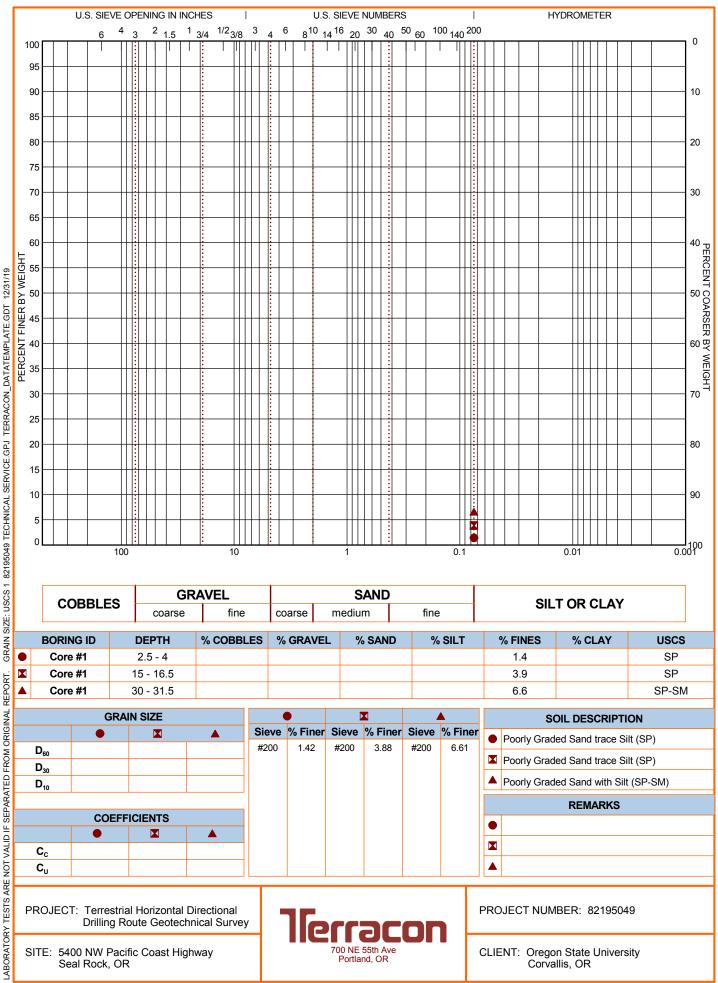
Page 4 of 6 **PROJECT:** Terrestrial Horizontal Directional Drilling CLIENT: Oregon State University Corvallis, OR **Route Geotechnical Survey** SITE: 5400 NW Pacific Coast Highway Seal Rock, OR LOCATION See Exploration Plan WATER LEVEL OBSERVATIONS MODEL LAYER **GRAPHIC LOG** SAMPLE TYPE # of Core Pieces WATER CONTENT (%) Ë. DRY UNIT WEIGHT (pcf) FIELD TEST RESULTS DEPTH (Ft.) RECOVERY Latitude: 44.4642° Longitude: -124.0802° Surface Elev .: 52 (Ft.) **ELEVATION (Ft.)** DEPTH SILTSTONE, gray to black, fine-grained, extremely fractured, 60 RQD = 83% 11 laminated bedding, unweathered, extremely weak (continued) 155 60 RQD = 77% 11 160 60 RQD = 73% 9 165 moderately fractured, massive bedding 60 RQD = 55% 16 170sound, very weak 7 60 RQD = 80% 175 blue with gray, weak rock, increase in hardness RQD = 96% 60 6 180 30 RQD = 95% 3 36 RQD = 95% 2 185 slightly fractured 36 RQD = 87% 12 18 106 190blue to gray, sound, very weak, brittle 17 110 60 6 RQD = 72% 195 moderately fractured 54 RQD = 60% 17 200 slightly fractured, laminated bedding Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a Hollow stem augering 6-inch OD for setting casing through description of field and laboratory procedures overburden soils and HQ3 wireline coring obtain core used and additional data (If any) samples Supporting Information for explanation of Abandonment Method: symbols and abbreviations. Exploration was backfilled with grout and capped with concrete at the completion of drilling activities. WATER LEVEL OBSERVATIONS Boring Started: 10-18-2019 Boring Completed: 10-23-2019 While drilling Drill Rig: D-90 Track Driller: Terracon - Lodi 700 NE 55th Ave Project No.: 82195049 Portland, OR

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 8295049 TECHNICAL SERVICE GPJ TERRACON, DATATEMPLATE.GDT 1231/19

BORING LOG NO. Core #1 PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey CLIENT: Oregon State University Corvallis, OR

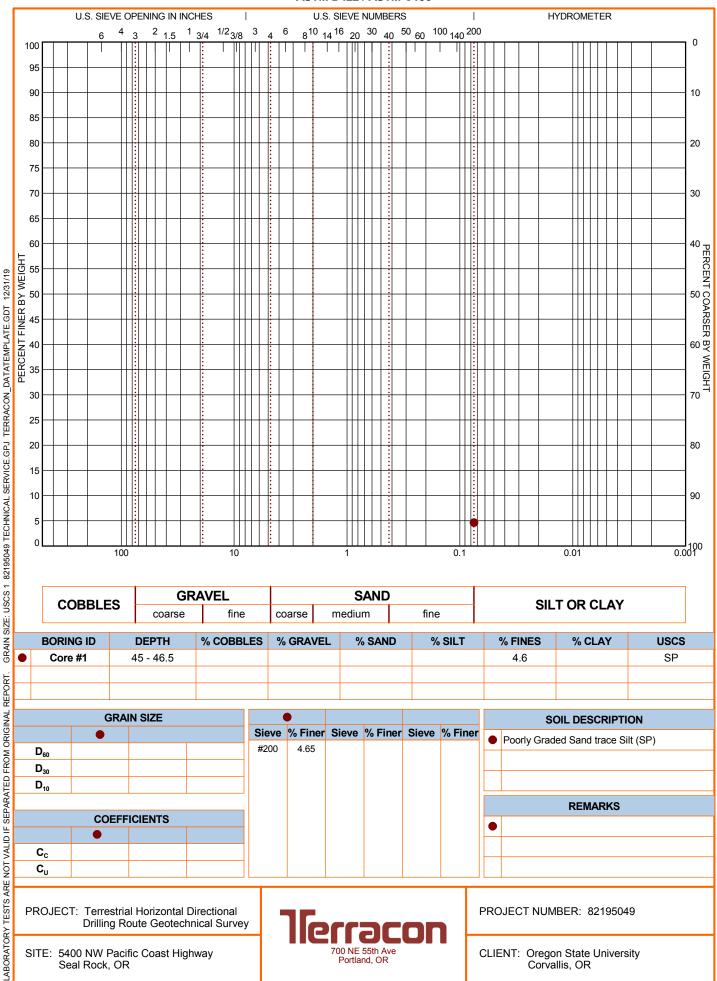

Page 5 of 6

	Route Geotechnical Survey				Corvallis, OR							
S	ITE:	5400 NW Pacific Coast Highw Seal Rock, OR	/ay									
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 44.4642° Longitude: -124.0802° DEPTH		ace Elev.: 52 (Ft.) ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	# of Core Pieces	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)
	× × × × × × × × ×	SILTSTONE, gray to black, fine-grained laminated bedding, unweathered, extremely a street bedding.	I, extremely fractured,		-			60	RQD = 84%	6 10		
61/10/	*****	massive bedding			205	-		60	RQD = 74%	6 12		
	× × × × × × × × × × × × × × × × × × ×	moderately fractured			210- - - 215-			60	RQD = 55%	6 18		
	sound 220 60 220 60 225 60	slightly fractured			-	-		60	RQD = 75%	6 13		
		60	RQD = 90%	6 9								
3	X X)			230-	-		60	RQD = 95%	6			
L 02 193049 15	* * * * * * * * * * * * * * * * * * *	slightly fractured, weak rock						60	RQD = 80%	6 9		
	× × × × × × × × × × × × × × × × × × ×	moderately fractured			235- - - 240-	-		60	RQD = 33%	6 16		
	× × × × × × × × × × × × × × × × × × ×	slightly fractured, laminated bedding, ve		240			60	RQD = 80%	6 12	20	94	
	× × × × × × × × × × × × × × × × × × ×	thick bedding, weak rock		243	-		60	RQD = 95%	6 10			
	× × × × × × × × × × × × × × × × × × ×					-						
		atification lines are approximate. In-situ, the transition r	nay be gradual.				her T	ype: A	utomatic			
H N Sa	ollow st verburd amples ndonme xplorati	ent Method: tem augering 6-inch OD for setting casing through en soils and HQ3 wireline coring obtain core nent Method: on was backfilled with grout and capped with	See Exploration and Tec description of field and I used and additional data See Supporting Informa symbols and abbreviation	aboratory procedur a (If any). tion for explanation	es	Notes:						
	oncrete	at the completion of drilling activities. WATER LEVEL OBSERVATIONS						-l. 10			. 40.00	0010
		hile drilling	1 Terr	9 CO I		oring S rill Rig				riller: Terracon -		2019
			700 NE	55th Ave nd, OR		roject l						
												-

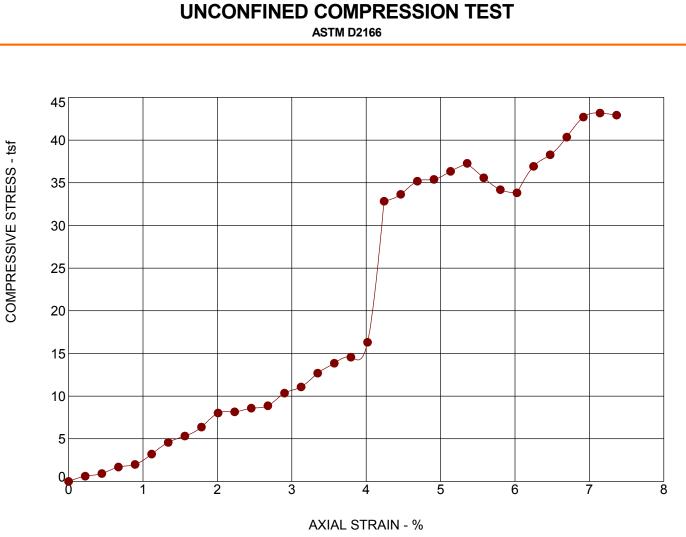

BORING LOG NO. Core #1

Page 6 of 6 **PROJECT:** Terrestrial Horizontal Directional Drilling CLIENT: Oregon State University Corvallis, OR **Route Geotechnical Survey** SITE: 5400 NW Pacific Coast Highway Seal Rock, OR LOCATION See Exploration Plan WATER LEVEL OBSERVATIONS MODEL LAYER **GRAPHIC LOG** SAMPLE TYPE # of Core Pieces WATER CONTENT (%) Ē. DRY UNIT WEIGHT (pcf) FIELD TEST RESULTS DEPTH (Ft.) RECOVERY Latitude: 44.4642° Longitude: -124.0802° Surface Elev .: 52 (Ft.) **ELEVATION (Ft.)** DEPTH RQD = 70% 11 SILTSTONE, gray to black, fine-grained, extremely fractured, laminated bedding, unweathered, extremely weak (continued) 255 extremely weak 52 RQD = 72% 9 260 moderately fractured, laminated bedding, very weak 60 RQD = 76% 20 265 sound, weak rock 60 RQD = 100% 5 270moderately fractured, medium bedding 60 RQD = 74% 20 275 slightly fractured 48 RQD = 58% 9 19 105 280 laminated bedding 48 RQD = 82% 9 21 98 285 moderately fractured, thick bedding 36 RQD = 80% 13 slightly fractured 24 5 RQD = 90% 290 60 RQD = 92% 10 295 sound 60 RQD = 88% 7 19 103 300.0 -248 300 Boring Terminated at 300 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a Hollow stem augering 6-inch OD for setting casing through description of field and laboratory procedures overburden soils and HQ3 wireline coring obtain core used and additional data (If any) samples Supporting Information for explanation of Abandonment Method: symbols and abbreviations. Exploration was backfilled with grout and capped with concrete at the completion of drilling activities. WATER LEVEL OBSERVATIONS Boring Started: 10-18-2019 Boring Completed: 10-23-2019 While drilling Drill Rig: D-90 Track Driller: Terracon - Lodi 700 NE 55th Ave Project No.: 82195049 Portland, OR

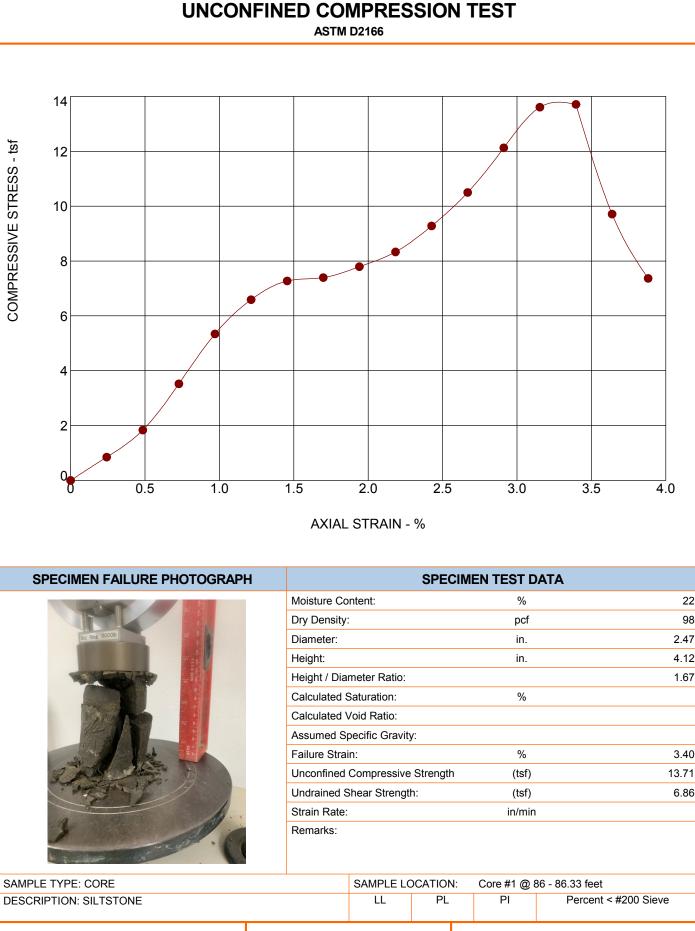
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 8295049 TECHNICAL SERVICE GPJ TERRACON, DATATEMPLATE.GDT 1231/19



LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ATTERBERG LIMITS 82195049 TECHNICAL SERVICE. GPJ TERRACON_DATATEMPLATE. GDT 12/31/19


GRAIN SIZE DISTRIBUTION

ASTM D422 / ASTM C136

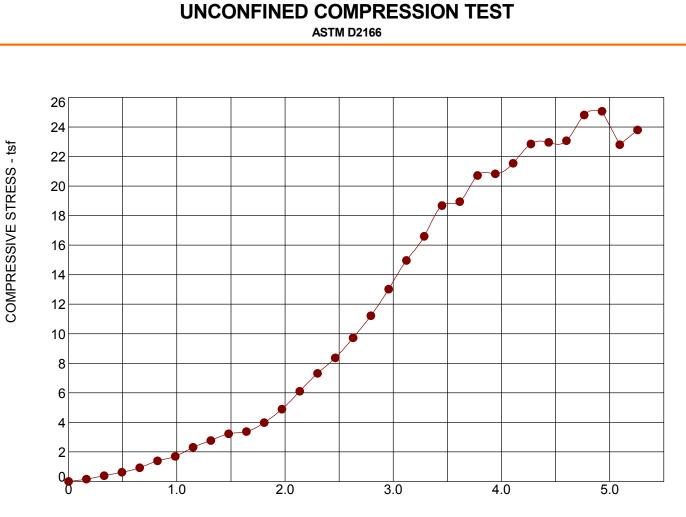


GRAIN SIZE DISTRIBUTION

ASTM D422 / ASTM C136

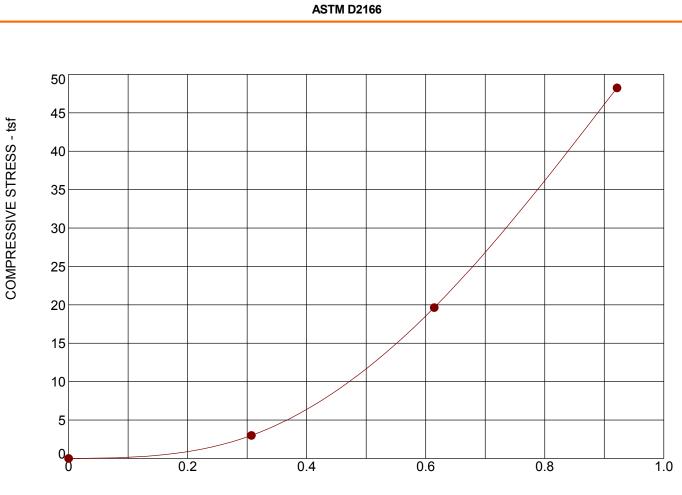
SPECIMEN FAILURE PHOTOGRAPH		SPECIMEN TEST DATA								
	Moisture Co	Moisture Content: %								
	Dry Density:			pcf	108					
	Diameter:			in.	2.37					
Big Ring 1000b	Height:			in.	4.48					
	Height / Dia	meter Ratio:			1.89					
	Calculated S	Saturation:		%						
	Calculated \	/oid Ratio:								
	Assumed Sp	pecific Gravit	/:							
	Failure Strai	Failure Strain: %								
	Unconfined	Unconfined Compressive Strength (tsf)								
A Contraction	Undrained S	hear Strengt	h:	(tsf)	21.58					
1 Dente The'	Strain Rate:			in/min						
	Remarks:	Remarks:								
SAMPLE TYPE: CORE		SAMPLE LO	OCATION	N: Core #1 @ 8	35 - 90 feet					
DESCRIPTION: SILTSTONE		LL	PL	PI	Percent < #200 Sieve					
PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey		ארח		PROJECT NUMBER: 82195049						
SITE: 5400 NW Pacific Coast Highway Seal Rock, OR	700 NE 5	To NE 55th Ave Portland, OR			on State University allis, OR					

700 NE 55th Ave


Portland, OR

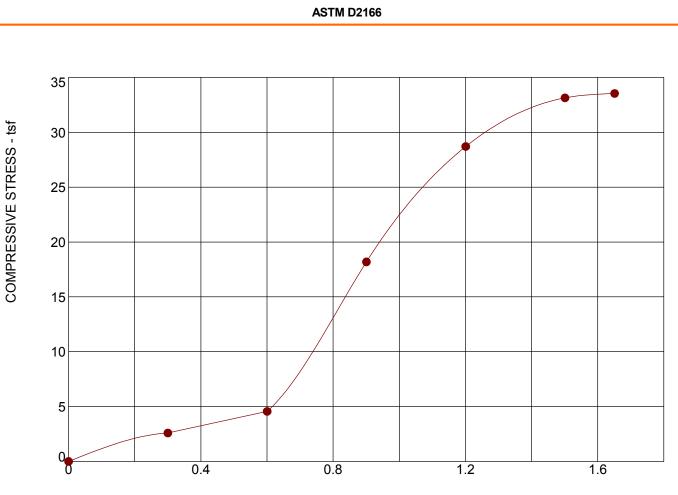
PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey

SITE: 5400 NW Pacific Coast Highway Seal Rock, OR


PROJECT NUMBER: 82195049

CLIENT: Oregon State University Corvallis, OR

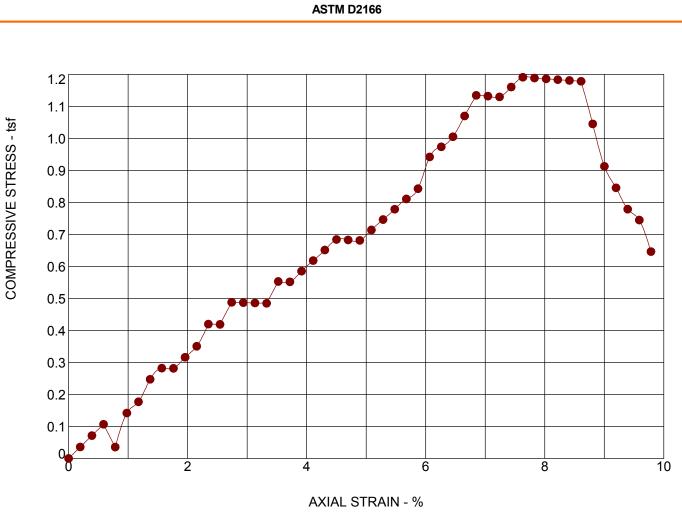
AXIAL STRAIN - %


SPECIMEN FAILURE PHOTOGRAPH	1	SPECIMEN TEST DATA							
tu kan	Moisture Co	ntent:		%		18			
	Dry Density:			pcf	1	06			
Bis Ring 11000lb	Diameter:			in.	2.	36			
	Height:			in.	6.	09			
	Height / Dia	meter Ratio:			2.	58			
	Calculated S	Saturation:		%					
	Calculated \	/oid Ratio:							
	Assumed S	pecific Gravit	y:						
	Failure Strai	Failure Strain: %							
	Unconfined	Unconfined Compressive Strength (tsf)							
	Undrained S	Shear Strengt	h:) 12.	53				
	Strain Rate:			in/m	in				
	Remarks:	Remarks:							
SAMPLE TYPE: CORE		SAMPLE LO	OCATION	N: Core #1 @) 187 - 190 feet				
DESCRIPTION: SILTSTONE		LL	PL	PI	Percent < #200 Sieve				
PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey	Terr	llerracon			PROJECT NUMBER: 82195049				
SITE: 5400 NW Pacific Coast Highway Seal Rock, OR		55th Ave	••	CLIENT: Oregon State University Corvallis, OR					

AXIAL STRAIN - %

SPECIMEN FAILURE PHOTOGRAPH	1	SPECIMEN TEST DATA								
110 A 158	Moistu	ire Co	ntent:			%		17		
	Dry De	ensity:					110			
Big Ring 11000lb	Diame	eter:					2.34			
	Height	t:			in.					
	Height	t / Diar	meter Ratio:					1.39		
	Calcul	ated S	Saturation:			%				
	Calcul	ated \	/oid Ratio:							
	Assum	Assumed Specific Gravity:								
	Failure	e Strai	n:			%		0.92		
	Uncon	Unconfined Compressive Strength (tsf) 48.2								
	Undra	ined S	hear Strengt	h:		(tsf)	2	24.12		
	Strain	Rate:				1				
	Rema	rks:								
SAMPLE TYPE: CORE	I		SAMPLE LO	OCATION	I: Core #	±1 @	191.5 - 191.75 feet			
DESCRIPTION: SILTSTONE			LL	PL	Р		Percent < #200 Sieve			
PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey	٦٦	ferracon				PROJECT NUMBER: 82195049				
SITE: 5400 NW Pacific Coast Highway Seal Rock, OR		700 NE 55th Ave Portland, OR			CLIENT: Oregon State University Corvallis, OR					

UNCONFINED COMPRESSION TEST



AXIAL STRAIN - %

SPECIMEN FAILURE PHOTOGRAPH		SPECIMEN TEST DATA							
	Moisture Co	ntent:		%	19				
	Dry Density:			pcf	105				
	Diameter:			in.	2.38				
Bis Res 1000	Height:			in.	3.33				
	Height / Dia	meter Ratio:			1.40				
	Calculated S	Saturation:		%					
	Calculated \	/oid Ratio:							
	Assumed S	pecific Gravit	y:						
	Failure Strai	n:		%	1.65				
	Unconfined	Compressive	e Strengtl	n (tsf)	33.54				
	Undrained S	hear Strengt	:h:	(tsf)	16.77				
	Strain Rate:			in/mir	1				
	Remarks:								
SAMPLE TYPE:	I	SAMPLE LO	OCATION	N: Core #1 @	279.5 feet				
DESCRIPTION: SILTSTONE		LL	PL	PI	Percent < #200 Sieve				
PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey	Terr	llerracon			MBER: 82195049				
SITE: 5400 NW Pacific Coast Highway Seal Rock, OR	700 NE Portlar	55th Ave		CLIENT: Oregon State University Corvallis, OR					

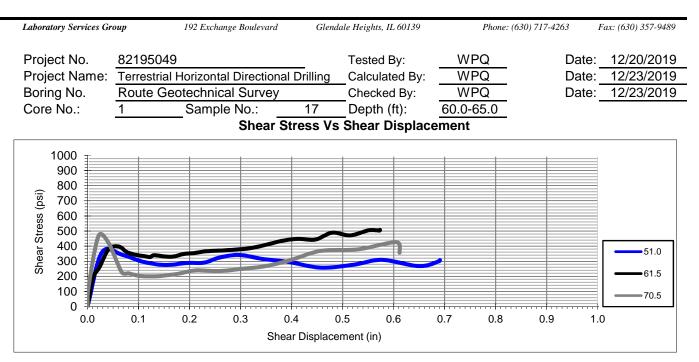
LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 82195049 TECHNICAL SERVICE.GPJ TERRACON_DATATEMPLATE.GDT 11/21/19

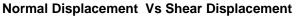
UNCONFINED COMPRESSION TEST

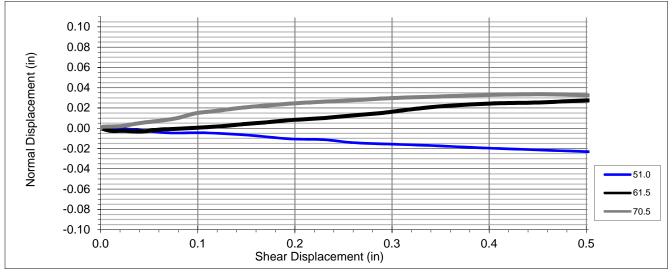
SPECIMEN FAILURE PHOTOGRAPH	ł	SPECIMEN TEST DATA								
(a) (a)	Moisture Co	ntent:		%		21				
	Dry Density:			pcf		98				
	Diameter:			in.	2	2.46				
Riz Ring 1000b	Height:			in.	5	5.11				
	Height / Dia	meter Ratio:			2	2.08				
	Calculated S	Saturation:		%						
	Calculated \	/oid Ratio:								
	Assumed Sp	pecific Gravit	y:							
	Failure Strai	n:		%	7	7.63				
	Unconfined	Unconfined Compressive Strength (tsf)								
	Undrained S	hear Strengt	h:	(tsf)	(0.60				
	Strain Rate:			in/mir	1					
	Remarks:	Remarks:								
SAMPLE TYPE: CORE		SAMPLE LO	OCATION	I: Core #1 @	280 - 285 feet					
DESCRIPTION: SILTSTONE		LL	PL	PI	Percent < #200 Sieve					
PROJECT: Terrestrial Horizontal Directional Drilling Route Geotechnical Survey		Terracon 700 NE 55th Ave Portland, OR			PROJECT NUMBER: 82195049					
SITE: 5400 NW Pacific Coast Highway Seal Rock, OR	700 NE 9				CLIENT: Oregon State University Corvallis, OR					

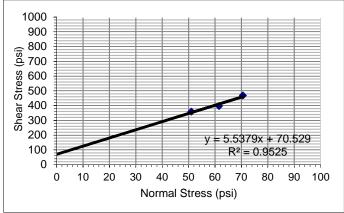
UNCONFINED COMPRESSION TEST

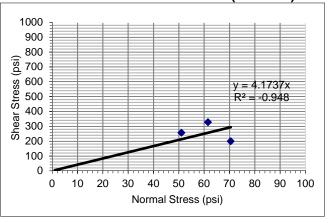
LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 82195049 TECHNICAL SERVICE.GPJ TERRACON_DATATEMPLATE.GDT 11/21/19


Remarks:


DIRECT SHEAR STRENGTH of ROCK SPECIMENS UNDER CONSTANT NORMAL FORCE ASTM D 5607


Laboratory Services Group	192 Excl	hange Boulevard	Glendale Heights,	, IL 60139	Phone: (630) 717-42	<i>Fax: (630) 357-9489</i>
Project No.: Project Name: Core No.: Rock Description:	82195049 Terrestrial Hor Route Geotect 1 S Dark Gray Cla	nnical Surve Sample No.:		Tested By: Calculated By: Checked By: Depth (ft):	WPQ WPQ KP 60.0-65.0	Date: 12/20/2019 Date: 12/23/2019 Date: 12/23/2019
Rock Sample Mo	oisture Conditi	on:	X As Received			In-Situ
			Saturated			Oven Dry
Discontinuity Ty	vpe:	Joint	Bedding Plane		Cleavage	Saw-Cut
Angle of Discon	tinuity to Core	Axis:		_		
Filling Type and	Description:		X None		Partial	Complete
		Clay	Shale		Healed	Mineral
Roughness Des	cription:	Planar	Stepped		Undulating	Slickensides
Asperities:		Rounded	Jagged		Smooth	
Area of Shear Su	-	Test 1	in ² Maximum Shea Test 2	Test 3	Test 1	esidual Shear Test 2 Test 3
Normal Stress σn (p Peak Shear Stress τ	r L	51.0 359.4	61.5	468.5	51.0 257.3	61.5 70.5 327.5 200.3
			s Shear			Roughness Sketch
For Normal Stress	Range	51.0		osi		i Specimen = 12-14
Angle of Friction	η φ	79.8	0			
Cohesion For Normal Stress	- s Range	70.5 Resid 51.0	psi Jual Shear to <u>70.5</u> p	osi	61.5 ps	i Specimen = 14-16
Angle of Frictior	י י	76.5	0		70.5 ps	si Specimen = 8-10
Cohesion	_	0.0	psi			


DIRECT SHEAR STRENGTH of ROCK SPECIMENS UNDER CONSTANT NORMAL FORCE ASTM D 5607



Shear Stress vs Normal Stress (Peak)

Shear Stress vs Normal Stress (Residual)

Project No. 82195049

Project Name:	Terrestrial Horizontal Directional Drilling					
	Route Geotechnical Survey					
Core No.:	1	Sample No.:	17			

Depth (ft):	60.0-65.0	Campio Ho.						
					Normal			
			2.	Area	Stress	Peak Stress	Residual	
			Area (in ²)	(in ²)	(psi)	(psi)	Stress (psi)	
Dia 1 (in)	2.389		4.483	4.483	51.0	359.4	257.3	
Dia 2 (in)	2.387		4.473	4.473	61.5	397.2	327.5	
Dia 3 (in)	2.388		4.478	4.478	70.5	468.5	200.3	

		51.0					61.5					70.5		
	Nor	mal Load (psi)			Normal Load (psi)				Normal Load (psi)					
Shear Displacement	Shear Load	Normal Displacement	A ==== (i=2)	Shear Stress	Shear Displacement	Shear Load	Normal Displacement	Area	Shear Stress	Shear Displacement	Shear Load	Normal Displacement	Ano (in ²)	Shear Stress
(in)	(lb)	(in)	Area (in ²)	(psi)	(in)	(lb)	(in)	(in ²)	(psi)	(in)	(lb)	(in)	Area (in ²)	(psi)
0.0000	0	0.0000	4.48	0.00	0.0000	0	0.0000	4.47	0.00	0.0000	0	0.0000	4.48	0.00
0.0283	1611	-0.0007	4.48	359.39	0.0108	849	-0.0025	4.47	189.70	0.0022	593	0.0015	4.48	132.35
0.0679	1538	-0.0045	4.48	343.12	0.0235	1167	-0.0025	4.47	260.83	0.0216	2098	0.0022	4.48	468.45
0.1067	1339	-0.0045	4.48	298.75	0.0418	1707	-0.0032	4.47	381.62	0.0410	1891	0.0052	4.48	422.32
0.1507	1233	-0.0067	4.48	275.08	0.0615	1777	-0.0013	4.47	397.19	0.0671	1018	0.0082	4.48	227.27
0.1947	1293	-0.0104	4.48	288.39	0.0761	1624	-0.0006	4.47	363.10	0.0806	987	0.0104	4.48	220.30
0.2290	1306	-0.0112	4.48	291.35	0.0888	1551	0.0000	4.47	346.79	0.0985	916	0.0149	4.48	204.63
0.2596	1458	-0.0142	4.48	325.37	0.1014	1515	0.0006	4.47	338.64	0.1193	897	0.0171	4.48	200.27
0.2983	1531	-0.0156	4.48	341.64	0.1116	1495	0.0013	4.47	334.19	0.1440	909	0.0201	4.48	202.88
0.3431	1412	-0.0171	4.48	315.02	0.1224	1465	0.0019	4.47	327.52	0.1783	975	0.0231	4.48	217.69
0.3938	1326	-0.0194	4.48	295.79	0.1306	1521	0.0025	4.47	340.12	0.2118	1072	0.0253	4.48	239.46
0.4580	1153	-0.0216	4.48	257.33	0.1509	1485	0.0044	4.47	331.97	0.2581	1053	0.0276	4.48	235.11
0.5229	1246	-0.0238	4.48	278.04	0.1686	1482	0.0057	4.47	331.23	0.3006	1115	0.0298	4.48	249.04
0.5773	1386	-0.0261	4.48	309.10	0.1889	1558	0.0076	4.47	348.27	0.3476	1197	0.0313	4.48	267.33
0.6504	1200	-0.0276	4.48	267.68	0.2092	1584	0.0089	4.47	354.20	0.3961	1369	0.0328	4.48	305.62
0.6899	1352	-0.0283	4.48	301.71	0.2308	1634	0.0101	4.47	365.32	0.4565	1650	0.0335	4.48	368.33
0.6907	1379	-0.0283	4.48	307.62	0.2593	1657	0.0127	4.47	370.51	0.5296	1696	0.0320	4.48	378.78
					0.2904	1687	0.0152	4.47	377.18	0.6056	1907	0.0328	4.48	425.80
					0.3170	1724	0.0184	4.47	385.33	0.6116	1607	0.0320	4.48	358.75
					0.3481	1823	0.0215	4.47	407.54	0.6116	1599	0.0320	4.48	357.00
					0.3804	1942	0.0234	4.47	434.22					
					0.4115	2005	0.0247	4.47	448.30					
					0.4470	1985	0.0253	4.47	443.86					
					0.4793	2188	0.0266	4.47	489.06					
					0.5148	2108	0.0279	4.47	471.28					
					0.5509	2257	0.0285	4.47	504.62					

Terracon

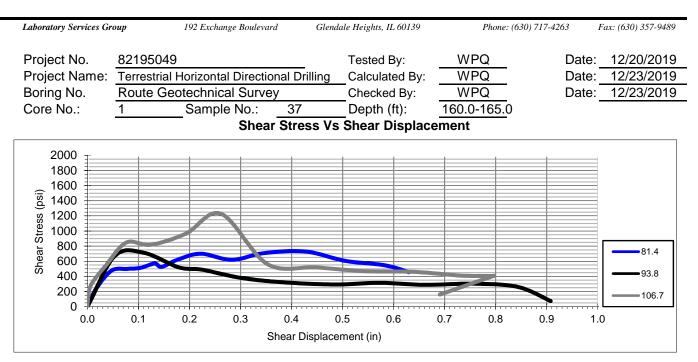
0.5725	2251	0.0298	4.47	503.14	
0.5731	2271	0.0298	4.47	507.59	

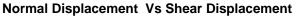
Project No.	82195049
Project	
Name:	Terrestrial Horizontal Directional Drilling
	Route Geotechnical Survey
Core No.:	1
Sample No.:	17
Depth:	60.0-65.0

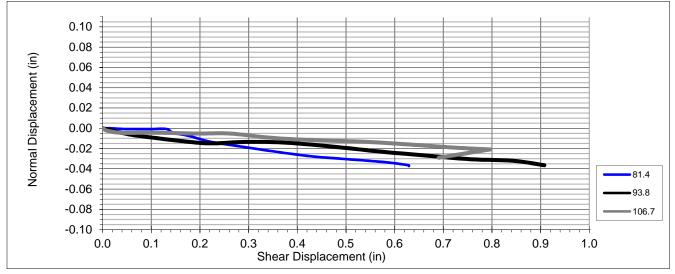
Terracon

51.0 psi Normal Stress Point

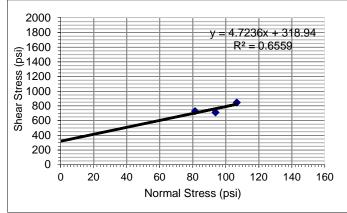
61.5 psi Normal Stress Point

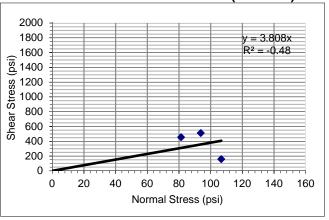

70.5 psi Normal Stress Point




Laboratory Services Group	19	2 Exchange Boulevard	Glendale Heights,	IL 60139	Phone: (630) 717-42	63 Fax: (630) 357-9489
Project No.: Project Name:		Horizontal Dire	еу	Tested E Calculated B Checked E	By: WPQ By: KP	Date: 12/20/2019 Date: 12/23/2019 Date: 12/23/2019
Core No.:	1	Sample No.	: 37	Depth (f	t): <u>160.0-165.0</u>	
Rock Description:	Dark Gray	Claystone				
Rock Sample Mo	isture Con	dition:	X As Received			In-Situ
			Saturated			Oven Dry
Discontinuity Ty	pe:	Joint	Bedding Plane	[Cleavage	Saw-Cut
Angle of Discont	inuity to C	ore Axis:	-	_		
Filling Type and	Descriptio	n:	XNone	[Partial	Complete
		Clay	Shale	[Healed	Mineral
Roughness Desc	ription:	Planar	Stepped	[Undulating	Slickensides
Asperities:		Rounded	Jagged	[Smooth	
Area of Shear Su	rface:	4.49	_in ²			
Normal Stress σn (ps	si)	Test 1 81.4	Maximum Shea Test 2 93.8	r Test 3 106.7	Re Test 1 81.4	Esidual ShearTest 2Test 393.8106.7
Peak Shear Stress $\boldsymbol{\tau}$	max (psi)	728.9	712.0	847.4	454.7	512.0 159.8

	Peak Shear	Joint Roughness Sketch			
For Normal Stress Range	<u>81</u> to <u>107</u> psi				
		81.4 psi Specimen = 14-16			
Angle of Friction ϕ	^o				
Cohesion	<u>318.9</u> psi				
	Residual Shear	93.8 psi Specimen = 10-12			
For Normal Stress Range	<u> </u>				
Angle of Friction	<u></u>				
		106.7 psi Specimen = 14-16			
Cohesion	<u> 0.0 </u> psi				
Demenden					
Remarks:					





Shear Stress vs Normal Stress (Peak)

Shear Stress vs Normal Stress (Residual)

Project No. 82195049

Project Name:	Terrestrial Horizontal Directional Drilling					
	Route Geotechnical Survey					
Core No.:	1	Sample No.:	37			
Depth (ft):	160 0-165	5.0				

Depth (ft):	160.0-165.0	Area (in ²)	Area (in ²)	Normal Stress (psi)	Peak Stress (psi)	Residual Stress (psi)
Dia 1 (in)	2.392	4.494	4.494	81.4	728.9	454.7
Dia 2 (in)	2.399	4.518	4.518	93.8	712.0	512.0
Dia 3 (in)	2.396	4.510	4.510	106.7	847.4	159.8

		81.4					93.8					106.7		
	Nor	mal Load (psi)			Normal Load (psi)				Normal Load (psi)					
Shear Displacement	Shear Load	Normal Displacement	• (; 2)	Shear Stress	Shear Displacement	Shear Load	Normal Displacement	Area	Shear Stress	Shear Displacement	Shear Load	Normal Displacement	a (; 2)	Shear Stress
(in)	(lb)	(in)	Area (in ²)	(psi)	(in)	(lb)	(in)	(in ²)	(psi)	(in)	(lb)	(in)	Area (in ²)	(psi)
0.0000	0	0.0000	4.49	0.00	0.0000	0	0.0000	4.52	0.00	0.0000	0	0.0000	4.51	0.00
0.0164	1037	0.0000	4.49	230.83	0.0537	3034	-0.0060	4.52	671.46	0.0015	614	0.0000	4.51	136.19
0.0470	2137	-0.0007	4.49	475.55	0.1104	3217	-0.0097	4.52	712.03	0.0082	1368	-0.0022	4.51	303.26
0.0768	2238	-0.0007	4.49	498.11	0.1783	2351	-0.0134	4.52	520.43	0.0365	2473	-0.0045	4.51	548.41
0.1037	2301	-0.0007	4.49	512.00	0.2245	2207	-0.0149	4.52	488.50	0.0761	3822	-0.0045	4.51	847.44
0.1313	2558	-0.0007	4.49	569.23	0.2961	1739	-0.0134	4.52	384.94	0.1246	3691	-0.0045	4.51	818.38
0.1454	2363	-0.0045	4.49	525.88	0.3767	1466	-0.0142	4.52	324.52	0.1932	4357	-0.0052	4.51	966.08
0.1768	2792	-0.0075	4.49	621.30	0.4833	1322	-0.0186	4.52	292.58	0.2618	5539	-0.0052	4.51	1228.17
0.2223	3143	-0.0134	4.49	699.41	0.5728	1419	-0.0231	4.52	314.16	0.3528	2530	-0.0097	4.51	561.12
0.2827	2776	-0.0179	4.49	617.83	0.6623	1299	-0.0268	4.52	287.40	0.4483	2337	-0.0119	4.51	518.14
0.3446	3174	-0.0224	4.49	706.35	0.7571	1369	-0.0306	4.52	302.94	0.5437	2113	-0.0134	4.51	468.50
0.4274	3276	-0.0276	4.49	728.92	0.8436	1174	-0.0320	4.52	259.78	0.6414	2069	-0.0164	4.51	458.82
0.5042	2722	-0.0306	4.49	605.68	0.9077	331	-0.0365	4.52	73.36	0.7332	1848	-0.0194	4.51	409.80
0.5825	2457	-0.0335	4.49	546.71	0.9077	335	-0.0365	4.52	74.22	0.7966	1829	-0.0209	4.51	405.56
0.6288	2059	-0.0365	4.49	458.19						0.7966	1840	-0.0209	4.51	407.98
0.6295	2043	-0.0373	4.49	454.72						0.6907	721	-0.0291	4.51	159.81
										0.6914	732	-0.0291	4.51	162.23

Terracon

 Project No.
 82195049

 Project
 Terrestrial Horizontal Directional Drilling Route Geotechnical Survey

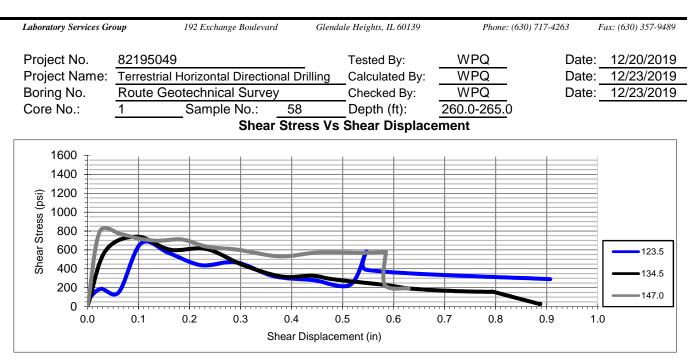
 Core No.
 1

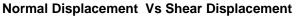
 Sample No.:
 37

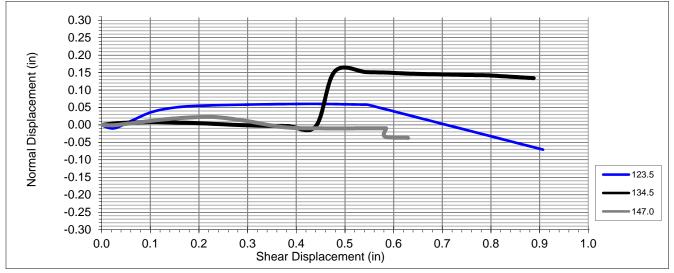
 Depth (ft):
 160.0-165.0

81.4 psi Normal Stress Point

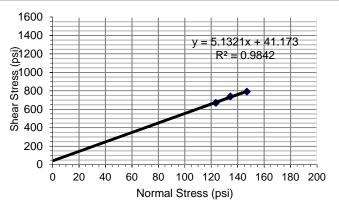
93.8 psi Normal Stress Point

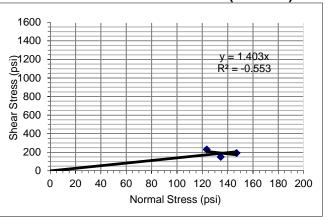

106.7 psi Normal Stress Point




Laboratory Services Group) 1	92 Exchange Boulevard	Glendale Heights,	, IL 60139	Phone: (630) 717-4.	263 Fax: (630) 357-9489
Project No.: Project Name: Core No.:		Horizontal Dire otechnical Surve Sample No.	еу	Tested E Calculated E Checked E Depth (1	By: WPQ	Date: 12/20/2019 Date: 12/23/2019 Date: 12/23/2019
Rock Description:	-	Claystone		Bopin (i	ny: <u>200:0 200:0</u>	
Rock Sample Mo			X As Received			In-Situ
Discontinuity Ty	vpe:	Joint	Bedding Plane		Cleavage	Saw-Cut
Angle of Discon	tinuity to C	Core Axis:				
Filling Type and	Descriptio	on:	XNone		Partial	Complete
		Clay	Shale		Healed	Mineral
Roughness Des	cription:	Planar	Stepped		Undulating	Slickensides
Asperities:		Rounded	Jagged		Smooth	
Area of Shear Su	urface:	4.47	_in ² Maximum Shea	ır	R	esidual Shear
Normal Stress σn (p	osi)	Test 1 123.5	Test 2 134.5	Test 3 147.0	Test 1 123.5	Test 2 Test 3 134.5 147.0
Peak Shear Stress τ	max (psi)	670.3	740.3	791.5	230.7	151.4 192.2
		Pea	k Shear		<u>Joint I</u>	Roughness Sketch

	Peak Shear	Joint Roughness Sketch
For Normal Stress Range	<u> 124 to 147 </u> psi	
	70.0 0	123.5 psi Specimen = 8-10
Angle of Friction ϕ	<u>79.0</u> °	
Cohesion	41.2psi	
	Residual Shear	134.5 psi Specimen = 12-14
For Normal Stress Range	<u>124</u> to <u>147</u> psi	
Angle of Friction	54.5 °	
Angle of Friedon	04.0	147.0 psi Specimen = 8-10
Cohesion	0.0psi	
Remarks:		





Shear Stress vs Normal Stress (Peak)

Shear Stress vs Normal Stress (Residual)

Project No. 82195049

Project Name:	Terrestria	I Horizontal Direc	tional Drilling	
	Route Geotechnical Survey			
Core No.:	1	Sample No.:	58	
Depth (ft):	260.0-265	5.0		

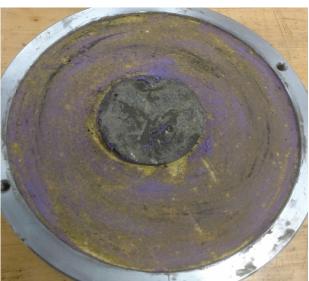
Depth (ft):	260.0-265.0					
			A	Normal		
		Area (in ²)	Area (in ²)	Stress (psi)	Peak Stress (psi)	Residual Stress (psi)
Dia 1 (in)	2.386	4.471	4.471	123.5	670.3	230.7
Dia 2 (in)	2.388	4.478	4.478	134.5	740.3	151.4
Dia 3 (in)	2.387	4.477	4.477	147.0	791.5	192.2

		123.5					134.5					147.0		
	Nor	mal Load (psi)				Nor	mal Load (psi)				No	rmal Load (psi)		
Shear Displacement (in)	Shear Load (lb)	Normal Displacement (in)	Area (in²)	Shear Stress (psi)	Shear Displacement (in)	Shear Load (lb)	Normal Displacement (in)	Area (in²)	Shear Stress (psi)	Shear Displacement (in)	Shear Load (lb)	Normal Displacement (in)	Area (in²)	Shear Stress (psi)
0.0000	0	0.0000	4.47	0.00	0.0000	0	0.0000	4.48	0.00	0.0000	0	0.0000	4.48	0.00
0.0000	267	-0.0007	4.47	0.00 59.79	0.0000	2636	0.0000	4.40 4.48	588.73	0.0000	3543	-0.0007	4.40	791.46
	207 841													
0.0254	-	-0.0097	4.47	187.99	0.0970	3315	0.0082	4.48	740.26	0.0641	3441	0.0052	4.48	768.60
0.0612	677	0.0119	4.47	151.36	0.1619	2695	0.0067	4.48	601.79	0.0985	3233	0.0112	4.48	722.16
0.1052	2997	0.0380	4.47	670.29	0.2327	2730	0.0030	4.48	609.63	0.1380	3121	0.0171	4.48	697.18
0.1596	2533	0.0514	4.47	566.49	0.3051	1965	-0.0015	4.48	438.94	0.1857	3178	0.0216	4.48	710.02
0.2230	1960	0.0559	4.47	438.29	0.3804	1423	-0.0030	4.48	317.87	0.2342	2836	0.0224	4.48	633.59
0.2909	2096	0.0581	4.47	468.82	0.4401	1462	-0.0037	4.48	326.58	0.2946	2692	0.0119	4.48	601.45
0.3647	1441	0.0596	4.47	322.30	0.4791	1302	0.1535	4.48	290.87	0.3767	2382	-0.0067	4.48	532.17
0.4423	1250	0.0604	4.47	279.58	0.5445	1126	0.1513	4.48	251.36	0.4527	2564	-0.0097	4.48	572.87
0.5147	1032	0.0589	4.47	230.73	0.5900	1006	0.1498	4.48	224.61	0.5363	2548	-0.0097	4.48	569.30
0.5467	2615	0.0581	4.47	584.81	0.6377	843	0.1468	4.48	188.34	0.5833	2587	-0.0097	4.48	577.87
0.5467	1741	0.0581	4.47	389.46	0.7295	728	0.1438	4.48	162.48	0.5848	2603	-0.0097	4.48	581.44
0.9070	1299	-0.0708	4.47	290.44	0.7929	700	0.1423	4.48	156.38	0.5825	1030	-0.0335	4.48	230.02
					0.7929	716	0.1423	4.48	159.86	0.6288	867	-0.0365	4.48	193.58
					0.8869	117	0.1341	4.48	26.13	0.6295	860	-0.0373	4.48	192.15
					0.8877	133	0.1341	4.48	29.62					

Terracon

 Project No.
 82195049

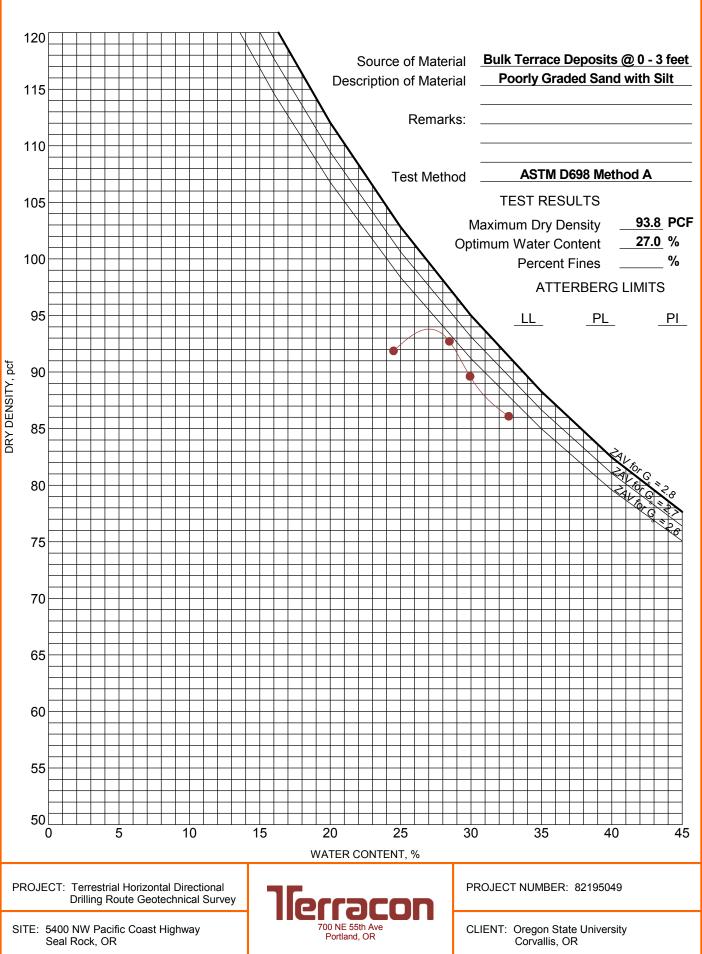
 Project
 Terrestrial Horizontal Directional Drilling Route Geotechnical Survey


 Core No.
 1

 Sample No.
 58

 Depth (ft):
 260.0-265.0

123.5 psi Normal Stress Point


134.5 psi Normal Stress Point

147.0 psi Normal Stress Point

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V3 82195049 TECHNICAL SERVICE GPJ TERRACON_DATATEMPLATE.GDT 12/31/19

Client

Oregon State University 644 SW 13th Street Corvallis, Oregon 97333

Material Information

Source of Material: Bulk Beach Deposit Proposed Use: Unknown

Project

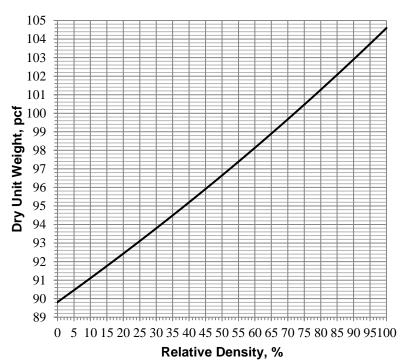
Technical Services for Terrestrial HDD Rout Geotechnical Survey #2020-000300 5400 NW Pacific Coast Highway Seal Rock, Oregon Project Number: 82195049

Sample Information

Sample Date:10/24/2019Sampled By:PortlandSample Location:Bulk Bea

0/24/2019 **Sample Time:** Unknown ortland Bulk Beach Deposit

Sample Description: Clean Fine Sand


Laboratory Test Data

Test Procedures: ASTM D4253 a	and D4254
Maximum Density Test Method:	1B
Minimum Density Test Method:	А
Nominal Mold Size, (cf):	0.1

Maximum Dry Unit Weight (pcf) 104.6 Minimum Dry Unit Weight (pcf): 89.8

Selected Values (For Information Only) Drv Density at Relative Density (%):

70% = 99.7 pcf 75% = 100.5 pcf				
70%	=	99.7	pcf	
75%	=	100.5	pcf	
80%	=	101.3	pcf	

Services:Drilling servicesTerracon Rep:BWPReported To:Dan HellinContractor:Terracon

Relative Density Chart

CHEMICAL LABORATORY TEST REPORT

 Project Number:
 82195049

 Service Date:
 11/27/19

 Report Date:
 12/09/19

 Task:
 12/09/19

Client

Oregon State University

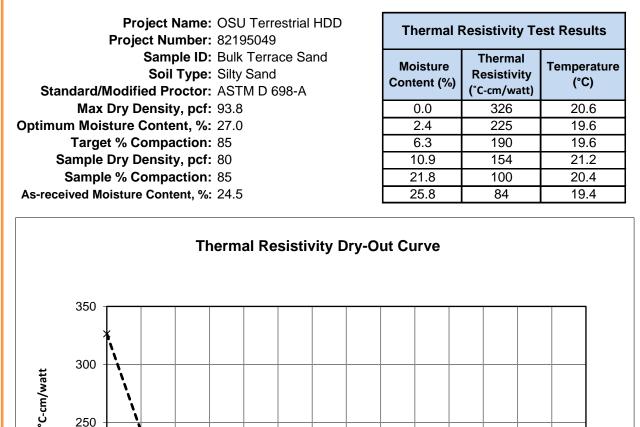
Project

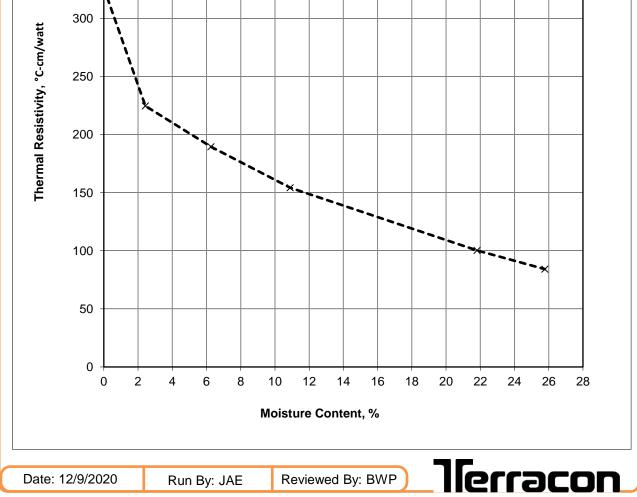
Technical Services for Terrestrial Horizontal Directional Drilling Route Geotechnical Study

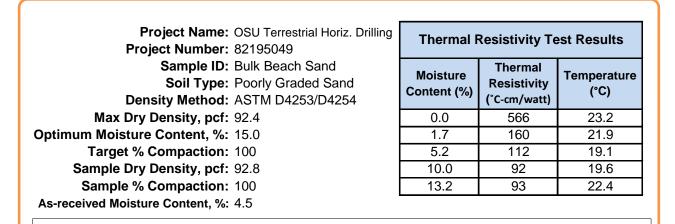
Sample Submitted By: Terracon (82)

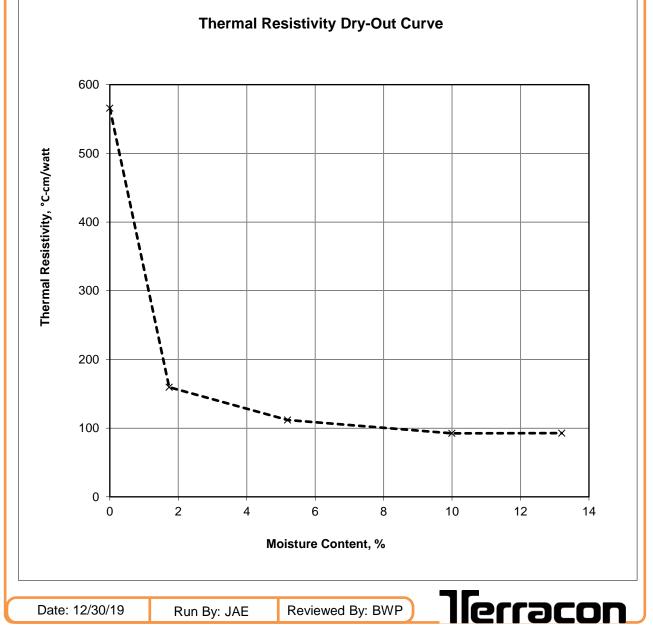
Date Received: 11/22/2019

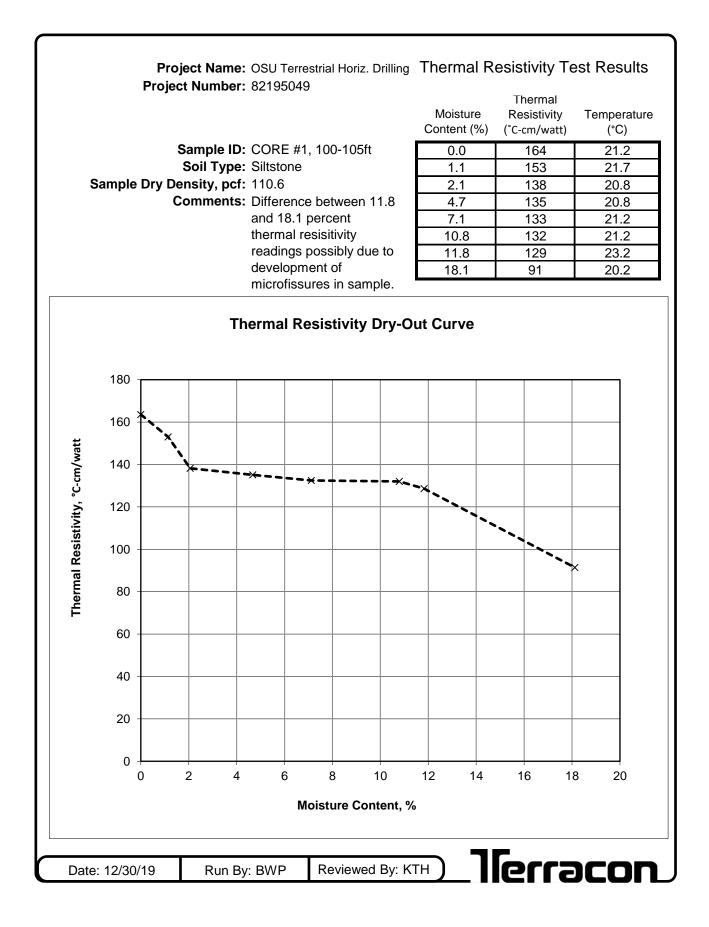
Lab No.: 19-1355

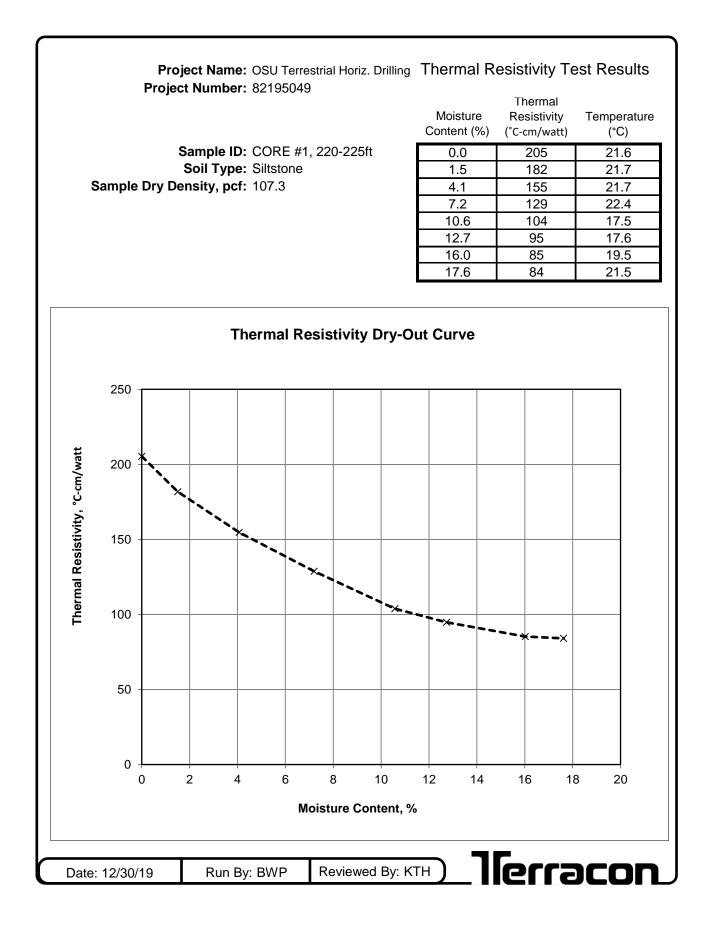

Sample Number	S-5	S-8	S-11
Sample Location	Core #1	Core #1	Core #1
Sample Depth (ft.)	10.0-11.5	25.0-26.5	40.0-41.5
pH Analysis, ASTM G 51	8.24	8.21	8.01
Water Soluble Sulfate (SO4), ASTM C 1580 (mg/kg)	28	70	10
Chlorides, ASTM D 512, (mg/kg)	53	53	82
Resistivity, ASTM G 57, (ohm-cm)	17460	17945	9700


Results of Corrosion Analysis


Analyzed By: Trisha Campo


Chemist


The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.



SUPPORTING INFORMATION

Contents:

General Notes Unified Soil Classification System Description of Rock Properties Diedrich D-90 Track Rig Information Driller (Bill Bradberry) Resume

Note: All attachments are one page unless noted above.

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

Technical Services for Terrestrial Horizontal Directional Drilling Route Geotechnical Survey Seal Rock, OR Terracon Project No. 82195049

SAMPLING	WATER LEVEL		FIELD TESTS
	Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Rock Core (W) Grab	Water Level After a Specified Period of Time	(HP)	Hand Penetrometer
	■ Water Level After a Specified Period of Time	(T)	Torvane
Standard Penetration Test	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times	(DCP)	Dynamic Cone Penetrometer
	indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations.		Unconfined Compressive Strength
			Photo-Ionization Detector
		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

STRENGTH TERMS							
(More than 50% retain Density determined by	COARSE-GRAINED SOILS ned on No. 200 sieve.) v Standard Penetration tance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			BEDR	оск	
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term Unconfined Compressive Strength Standard Penetration or N-Value Blows/Ft. F		Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)		
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1	< 20	Weathered	
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4	20 - 29	Firm	
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8	30 - 49	Medium Hard	
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15	50 - 79	Hard	
Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30	>79	Very Hard	
		Hard	> 4.00	> 30			

RELATIVE PROPORTION	S OF SAND AND GRAVEL	RELATIVE PROPO	RTIONS OF FINES	
Descriptive Term(s) of other constituents	Percent of Dry Weight	Descriptive Term(s) of other constituents	Percent of Dry Weight	
Trace	<15	Trace	<5	
With	15-29	With	5-12	
Modifier	>30	Modifier	>12	
GRAIN SIZE T	ERMINOLOGY	PLASTICITY DESCRIPTION		
			-	
Major Component of Sample	Particle Size	Term	Plasticity Index	
Boulders	Particle Size Over 12 in. (300 mm)	Term Non-plastic	Plasticity Index 0	
			•	
Boulders	Over 12 in. (300 mm)	Non-plastic	0	
Boulders Cobbles	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm)	Non-plastic Low	0 1 - 10	

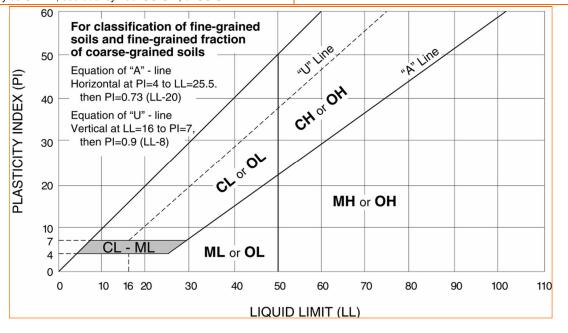
UNIFIED SOIL CLASSIFICATION SYSTEM

Terracon GeoReport

						Soil Classification		
Criteria for Assigni	ing Group Symbols	and Group Names	Using Laboratory	Fests A	Group Symbol	Group Name ^B		
		Clean Gravels:	Cu ³ 4 and 1 £ Cc £ 3 ^E		GW	Well-graded gravel F		
	Gravels: More than 50% of	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or Cc>3.0] ^E		GP	Poorly graded gravel ^F		
	coarse fraction retained on No. 4 sieve	Gravels with Fines:	Fines classify as ML or N	ИН	GM	Silty gravel ^{F, G, H}		
Coarse-Grained Soils: More than 50% retained		More than 12% fines ^C	Fines classify as CL or C	Η	GC	Clayey gravel ^{F, G, H}		
on No. 200 sieve	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	Cu ³ 6 and 1 £ Cc £ 3 ^E		SW	Well-graded sand		
		Less than 5% fines D	Cu < 6 and/or [Cc<1 or Cc>3.0] E		SP	Poorly graded sand ^I		
		Sands with Fines:	Fines classify as ML or MH		SM	Silty sand ^{G, H, I}		
		More than 12% fines ^D	Fines classify as CL or CH		SC	Clayey sand ^{G, H, I}		
		Inergenie	PI > 7 and plots on or above "A"		CL	Lean clay ^K , L, M		
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A" line ^J		ML	Silt ^K , L, M		
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75 O	OL	Organic clay ^{K, L, M, N}		
Fine-Grained Soils: 50% or more passes the		organic.	Liquid limit - not dried	< 0.75	0L	Organic silt ^{K, L, M, O}		
No. 200 sieve		Inorganic:	PI plots on or above "A"	line	СН	Fat clay ^K , L, M		
	Silts and Clays:	norganic.	PI plots below "A" line		MH	Elastic Silt ^K , ^L , ^M		
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay ^{K, L, M, P}		
		Organic.	Liquid limit - not dried	< 0.75		Organic silt ^K , L, M, Q		
Highly organic soils:	Primarily	organic matter, dark in co	olor, and organic odor		PT	Peat		

A Based on the material passing the 3-inch (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.


- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

^F If soil contains ³ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^HIf fines are organic, add "with organic fines" to group name.
- ¹ If soil contains ³ 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ³ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains ³ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- NPI ³ 4 and plots on or above "A" line.
- ^OPI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- ^QPI plots below "A" line.

DESCRIPTION OF ROCK PROPERTIES

WEATHERING				
Term	Description			
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.			
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.			
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.			
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.			
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.			
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.			
	STRENGTH OR HARDNESS			

STRENGTH OR HARDNESS						
Description	Field Identification	Uniaxial Compressive Strength, psi (MPa)				
Extremely weak	Indented by thumbnail	40-150 (0.3-1)				
Very weak Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife		150-700 (1-5)				
Weak rock Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer		700-4,000 (5-30)				
Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)				
Strong rock	Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)				
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)				
Extremely strong	Specimen can only be chipped with geological hammer	>36,000 (>250)				
	DISCONTINUITY DESCRIPTION					

DISCONTINUIT DESCRIPTION			
Fracture Spacing (Joints, Faults, Other Fractures)		Bedding Spacing (May Include Foliation or Banding)	
Description	Spacing	Description	Spacing
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)
Very close	¾ in – 2-1/2 in (19 - 60 mm)	Very thin	½ in – 2 in (12 – 50 mm)
Close	2-1/2 in – 8 in (60 – 200 mm)	Thin	2 in – 1 ft. (50 – 300 mm)
Moderate	8 in – 2 ft. (200 – 600 mm)	Medium	1 ft. – 3 ft. (300 – 900 mm)
Wide	2 ft. – 6 ft. (600 mm – 2.0 m)	Thick	3 ft. – 10 ft. (900 mm – 3 m)
Very Wide	6 ft. – 20 ft. (2.0 – 6 m)	Massive	> 10 ft. (3 m)

Discontinuity Orientation (Angle): Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0-degree angle.

ROCK QUALITY DESIGNATION (RQD) 1			
Description	RQD Value (%)		
Very Poor	0 - 25		
Poor	25 – 50		
Fair	50 – 75		
Good	75 – 90		
Excellent	90 - 100		
1 The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a			

1. The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

Terracon Exploration Team 2018 DIEDRICH D-90 REMOTE TRACK DRILL- LODI, CA

Terracon's D-90 remote track is our premiere, all purpose drill rig for the environmental and geotechnical exploration services. With up to 12,121 fl. Lbs. of spindle torque, it can power through most any job. Whether it is the D-90's ability to be mounted on a variety of carries, or its superior drilling capability with augers, mud rotary, or rock coring, you can be sure you have a versatile drill that has the ability to get you where you need to go and the power to get the job done.

Specification

- Serial # 508
- Power Source: John Deere, 4 Cylinder Turbo Diesel, Liquid Cooled
- Torque: 1st gear, low range 12,121 ft. lbs. (1646 Nm)
- Clutch & Transmission: 13 in (330 mm)
- Push/Retract Force: Up-32,515 lbs. (145 kN) / Down-18,064 lbs. (80 kN)
- Spindle Speed: 1st gear 70 to 78 RPM; 5th gear 566 to 630 RPM
- Rotary Box: #100, triple stand chain drive, totally enclosed and running in oil
- Right Angel Drive: Heavy duty spiral bevel gear box totally enclosed and running in oil-bath
- Trailer Dimensions: 84' x 42'
- Loaded Height: 13'-6"
- Water Pumps: Fordia KF50M piston pump and SPX50 hose pump
- Ground Speed: 0-6 MPH
- Water Tank: 220 Gallon Capacity
- Mast Height Folded: 10'-1"
- Mast Height Raised: 28'-3"
- Rig Dimensions: 8' W x 25'-5" L
- Rig Weight: 25,000 lbs
- Ground Pressure: 4.2 8.0 PSI

Geotech Services

- Packer testing (dual packer testing/open hole/through core steal)
- Instrumentation (slope indicators/vibrating piezometers/cathodic protection etc.)
- Well installation (piezometer/solinist/packer nested)
- Mud Rotary
- Air Rotary
- Odex/stradex
- Down hole hammer
- Casing advancer
- · Solid flight auger
- Hollow stem auger
 - Depths of 150 feet to 300 feet
- Pressure meter testing

We supply limited access rigs, track/truck mounted.

Environmental Services

- Hollow-stem auger (sizes 4 ¼", 6 ¼", 8 ¼") continuous sampler/cme/spt continuous
- Water sample (hydropunch)
- Water/Soil (simal pobe)
- Wells-2"/4"/6" vapor wells
- Odex/air rotary (cyclone containment to drums)
- Mud Rotary (4" to 10-7/8" hole)
- Completions concrete well finish
- Development of wells (surge, bail, pump)
- Well abandonments

William (Bill) Bradberry

PROFESSIONAL EXPERIENCE

Bill Bradberry is the Lead Driller in Terracon's Lodi, California office. He has 15+ years of drilling experience for geotechnical and environmental projects throughout the United States. Bill serves as an operator and driller for exploration service projects and oversees aspects of rig maintenance, personnel training, health and safety, and project documentation. He is highly experienced in performing drilling services for wells, including submersible pump, airlifting, and injection wells, as well as soil sampling using hydropunch, simal probing, and Packer testing methods. Mr. Bradberry is also experienced in drilling using methods such as hollow stem auger (HSA), sonic, mud rotary, air rotary, direct push, reverse circulation, diamond bit coring, and standard penetration testing (SPT). He is responsible for managing monitoring well installation and drilling activities.

Bill is known for overcoming difficult situations as they arise in the field, ensuring that all tasks are performed safely and efficiently. Bill puts a strong focus on safety by performing morning pre-work onsite safety meetings and ensures that everyone around his work area is trained on how to safely interact while equipment is operating or moving. Bill is known for meeting client expections and requests with ease and in a timely manner.

DRILLING RIGS OPERATED

Gefco 50K Shram 4200 Versa Drill 1500 Fraste Track Fraste Truck Flooded Reverse Rig Mobile B81, B61 CME 55/55(300)/75/85/95 Truck/Track, Buggy Acker Renegade Marl M11/M10 Gus Pesh Sonic with Speed Increaser Terra Sonic Track/Truck Semco Truck Mounted Diedrich Track/Truck Mounted

CORING TECHNIQUES

Reverse Circulation Mud Coring Air Coring (Foam Injestion) Wet Rotary Coring

PROJECT EXPERIENCE

Freeport Mines – Arizona HQ coring to depth up to 4000+ ft.

Tetra Tech Coal/Void Investigation – Wyoming

Air coring and wet rotary coring at a 45 degree angle to depths of 350+ ft.

HWY 7/HWY 34 Reconstruction with Yeh and Associates HQ Coring Duel Packer Testing, PQ Coring, ODEX/NQ Coring Depths up to 200 ft.

CERTIFICATIONS 40-hr HAZWOPER

BNSF Railroad Safety trained

Class A Driver's License

CPR/First Aid Certified

WORK HISTORY Terracon, 2014-Present

Cascade drilling 2013 to 2014

Gregg Drilling, 2010-2013

WDC Exploration and Wells 2002-2010

Rocky Mountain Flats

Auger/HQ Coring, Setting instrumentation rocktest pipe in core hole, Vibration Piezometer (2 inch piezometer wells) Depths up to 60 ft

Phillips 66 Pipeline – Montana, Idaho, Wyoming, Utah, Colorado

Auger, ODEX Semetrics, NQ Coring, HQ Coring Depths up to 275 ft

High Speed Rail – Dallas & Houston, Texas Auger, NQ Coring

Depths up to 250 ft

Marathon Pipeline HDD Crossing

Auger, HQ Coring Depths up to 225 ft

Various Windfarms

Auger, ODEX Semetrics, NQ Coring, HQ Coring Wet rotary and Air rotary Depths up to 100 ft