INVITATION TO BID #199053

MERRYFIELD HALL RENOVATION – RE-BID

ISSUE DATE: April 26, 2019

ITB DUE DATE/TIME: May 23, 2019 at 2:00 PM Pacific Time

MANDATORY PRE-BID CONFERENCE: May 3, 2019 at 10:00 AM Pacific Time at the front entrance to Merryfield Hall (1600 SW Monroe Ave – Corvallis OR 97331)

QUESTION DEADLINE: May 16, 2019 at 5:00 PM Pacific Time

CONTRACT ADMINISTRATOR:
Matt Hausman, Construction Contracts Officer
Construction Contract Administration
Oregon State University
644 SW 13th Street
Corvallis, OR 97333
Phone: (541) 737-3401
FAX: (541) 737-5546
Email: matt.hausman@oregonstate.edu

AWARD DECISION APPEALS:
Hanna Emerson, Construction Contracts Manager
Construction Contract Administration
Oregon State University
644 SW 13th Street
Corvallis, OR 97333
Phone: (541) 737-7342
FAX: (541) 737-5546
Email: hanna.emerson@oregonstate.edu
Notice of Opportunity

Instructions to Bidders

Supplemental Instructions to Bidders

Bid Form

Sample OSU Public Improvement Agreement

Performance Bond

Payment Bond

Oregon State University General Conditions for Public Improvement Contracts

OSU Supplemental General Conditions to the Public Improvement General Conditions

MWESB Form Instructions

MWESB Form

BOLI Prevailing Wage Rate Notification

GENERAL REQUIREMENTS

Division 01 prepared by Oregon State University dated April 2019

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of Work</td>
</tr>
<tr>
<td>Alternates</td>
</tr>
<tr>
<td>Application for Payment</td>
</tr>
<tr>
<td>Sample Contract Payment Request Form</td>
</tr>
<tr>
<td>Continuation Sheet</td>
</tr>
<tr>
<td>Product Substitution Procedures</td>
</tr>
<tr>
<td>Sample Substitution Request Form</td>
</tr>
<tr>
<td>Project Meetings</td>
</tr>
<tr>
<td>Shop Drawings, Product Data, Samples</td>
</tr>
<tr>
<td>Abbreviations and Symbols</td>
</tr>
<tr>
<td>Definitions</td>
</tr>
<tr>
<td>Reference Standards</td>
</tr>
<tr>
<td>Quality Control</td>
</tr>
<tr>
<td>Construction Facilities & Temporary Controls</td>
</tr>
<tr>
<td>Construction and Maintenance Safety Requirements</td>
</tr>
<tr>
<td>Construction and Maintenance Safety Form</td>
</tr>
<tr>
<td>Construction and Maintenance Isolation Requirements</td>
</tr>
<tr>
<td>Model Site Safety Plan</td>
</tr>
<tr>
<td>Tree and Plant Protection</td>
</tr>
<tr>
<td>Product Requirements</td>
</tr>
<tr>
<td>Cutting and Patching</td>
</tr>
<tr>
<td>Cleaning</td>
</tr>
<tr>
<td>Contract Closeout</td>
</tr>
</tbody>
</table>
DIVISION 2, SITE CONDITIONS
Section 02 41 00 Demolition
Section 02 75 10 Portland Cement Concrete Pavement

DIVISION 3, CONCRETE
Section 03 10 00 Concrete Formwork
Section 03 20 00 Concrete Reinforcement
Section 03 30 00 Cast-In-Place Concrete
Section 03 48 43 Precast Concrete Trim
Section 03 54 13 Cementitious Underlayment

DIVISION 4, MASONRY
Section 04 05 13 Mortars
Section 04 21 13 Brick Masonry
Section 04 22 00 Concrete Unit Masonry
Section 04 50 00 Masonry Cleaning

DIVISION 5, METALS
Section 05 12 00 Structural Steel

DIVISION 6, WOOD, PLASTICS AND COMPOSITES
Section 06 05 73 Wood Treatment
Section 06 10 00 Rough Carpentry
Section 06 17 00 Structural Glued Laminated Units
Section 06 20 00 Finish Carpentry
Section 06 41 00 Custom-Built Casework and Shelving
Section 06 64 00 Plastic Laminate

DIVISION 7, THERMAL AND MOISTURE PROTECTION
Section 07 11 50 Air Barrier and Vapor Retarder
Section 07 13 30 Pre-Applied Waterproof Membrane
Section 07 13 50 Self-Adhering Waterproof Membrane
Section 07 20 00 Thermal Insulation
Section 07 31 00 Shingle Roofing Modifications
Section 07 51 00 Membrane Roofing
Section 07 60 00 General Sheetmetal
Section 07 80 00 Fire and Smoke Protection
Section 07 92 00 Joint Sealants
Section 07 95 13 Seismic Joint Covers

DIVISION 8, OPENINGS
Section 08 11 00 Hollow Metalwork
Section 08 14 00 Wood Doors
Section 08 32 13 Aluminum Doors
Section 08 46 00 Power Door Operators
Section 08 52 00 Wood Windows
Section 08 71 00 Finish Hardware
Section 08 80 00 Glazing

DIVISION 9, FINISHES

Section 09 20 00 Gypsum Drywall
Section 09 51 00 Acoustic Ceilings
Section 09 65 00 Resilient Flooring
Section 09 68 00 Modular Carpet
Section 09 81 00 Acoustic Insulation
Section 09 90 00 Painting and Finishing

DIVISION 10, SPECIALTIES

Section 10 10 00 Information Specialties
Section 10 14 00 Signage
Section 10 28 00 Toilet Accessories
Section 10 40 00 Safety Specialties
Section 10 70 00 Exterior Specialties
Section 10 90 10 Miscellaneous Specialties

DIVISION 11, EQUIPMENT

Section 11 33 00 Retractable Stairs
Section 11 61 00 Fume Hoods

DIVISION 12, FURNISHINGS

Section 12 20 00 Window Treatment
Section 12 36 53 Laboratory Work Surfaces

DIVISION 13, COMPOSITE CONSTRUCTION

No Specification

DIVISION 14, CONVEYING SYSTEMS

Section 14 24 00 Hydraulic Elevator

DIVISION 21 – FIRE SUPPRESSION

Section 21 05 17 Sleeves and Sleeve Seals for Fire-Suppression Piping
Section 21 05 18 Escutcheons for Fire-Suppression Piping
Section 21 05 23 General-Duty Valves for Fire Protection Piping
Section 21 05 29 Hangers and Supports for Fire Supression Piping And Equipment
Section 21 05 33 Heat Tracing for Fire-Suppression Piping
Section 21 05 48 Vibration and Seismic Controls for Fire-Suppression Piping and Equipment
Section 21 05 53 Identification For Fire-suppression Piping and Equipment
Section 21 07 00 Fire-Suppression Systems Insulation
Section 21 13 13 Wet-Pipe Sprinkler Systems

DIVISION 22 – PLUMBING

Section 22 05 17 Sleeves And Sleeve Seals For Plumbing Piping
Section 22 05 18 Escutcheons For Plumbing Piping
Section 22 05 19 Meters And Gages For Plumbing Piping
Section 22 05 23.12 Ball Valves For Plumbing Piping
Section 22 05 23.14 Check Valves For Plumbing Piping
Section 22 05 29 Hangers And Supports For Plumbing Piping And Equipment
Section 22 05 33 Heat Tracing For Plumbing Piping
Section 22 05 53 Identification For Plumbing Piping And Equipment
Section 22 07 19 Plumbing Piping Insulation
Section 22 11 16 Domestic Water Piping
Section 22 11 19 Domestic Water Piping Specialties
Section 22 13 16 Sanitary Waste And Vent Piping
Section 22 13 19 Sanitary Waste Piping Specialties
Section 22 13 23 Sanitary Waste Interceptors
Section 22 33 00 Electric, Domestic-Water Heaters
Section 22 42 13.13 Commercial Water Closets
Section 22 42 16.13 Commercial Lavatories
Section 22 42 16.16 Commercial Sinks
Section 22 45 00 Emergency Plumbing Fixtures
Section 22 61 13 Compressed-Air Piping For Laboratory And Healthcare Facilities
Section 22 61 19 Compressed-Air Equipment For Laboratory And Healthcare Facilities
Section 22 62 13 Vacuum Piping For Laboratory And Healthcare Facilities
Section 22 62 19 Vacuum Equipment For Laboratory And Healthcare Facilities
Section 22 66 00 Chemical-Waste Systems For Laboratory And Healthcare Facilities
Section 22 67 00 Processed Water Systems For Laboratory And Healthcare Facilities

DIVISION 23 – HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)

Section 23 05 13 Common Motor Requirements For HVAC Equipment
Section 23 05 17 Sleeves And Sleeve Seals For HVAC Piping
Section 23 05 18 Escutcheons For HVAC Piping
Section 23 05 23.11 Globe Valves for HVAC Piping
Section 23 05 23.13 Butterfly Valves for HVAC Piping
Section 23 05 23.14 Check Valves for HVAC Piping
Section 23 05 13.15 Gate Valves for HVAC Piping
Section 23 05 29 Hangers And Supports For HVAC Piping And Equipment
Section 23 05 48 Vibration And Seismic Controls For HVAC
Section 23 05 53 Identification For HVAC Piping And Equipment
Section 23 05 93 Testing, Adjusting, and Balancing for HVAC
Section 23 07 13 Duct Insulation
Section 23 07 19 HVAC Piping Insulation
Section 23 09 23 Direct Digital Control (DDC) System for HVAC
Section 23 09 23.11 Control Valves
Section 23 09 23.12 Control Dampers
Section 23 09 23.27 Temperature Instruments
Section 23 09 93.11 Sequence Of Operations for HVAC DDC
Section 23 22 13 Steam and Condensate Heating Piping
Section 23 22 16 Steam and Condensate Heating Piping Specialties
Section 23 23 00 Refrigerant Piping
Section 23 31 13 Metal Ducts
Section 23 33 00 Air Duct Accessories
Section 23 33 46 Flexible Ducts
Section 23 34 16 Centrifugal HVAC Fans
Section 23 37 13.13 Air Diffusers
Section 23 37 13.23 Registers And Grilles
Section 23 73 13.13 Indoor, Basic Air Handling Units
Section 23 81 29 Variable-Refrigerant-Flow HVAC Systems
DIVISION 26 – ELECTRICAL

Section 26 05 19 Low-Voltage Electrical Power Conductors and Cables
Section 26 05 23 Control-Voltage Electrical Power Cables
Section 26 05 26 Grounding and Bonding for Electrical Systems
Section 26 05 29 Hangers and Supports for Electrical Systems
Section 26 05 33 Raceways and Boxes for Electrical Systems
Section 26 05 44 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
Section 26 05 48.16 Seismic Controls for Electrical Systems
Section 26 05 53 Identification for Electrical Systems
Section 26 05 73.13 Short-Circuit Studies
Section 26 05 73.16 Coordination Studies
Section 26 05 73.19 Arc-Flash Hazard Analysis
Section 26 09 23 Lighting Control Devices
Section 26 24 13 Switchboards
Section 26 24 16 Panelboards
Section 26 25 00 Enclosed Bus Assemblies
Section 26 27 26 Wiring Devices
Section 26 28 13 Fuses
Section 26 28 16 Enclosed Switches and Circuit Breakers
Section 26 29 13.03 Manual and Magnetic Motor Controllers
Section 26 29 23 Variable-frequency Motor Controllers
Section 26 43 13 Surge Protection for Low-Voltage Electrical Power Circuits
Section 26 51 19 Led Interior Lighting
Section 26 52 13 Emergency and Exit Lighting

DIVISION 27 – COMMUNICATIONS

Section 27 10 01 Structured Cabling General Requirements
Section 27 11 00 Communications Equipment Room Fittings

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

Section 28 13 00 Access Control
Section 28 31 11 Addressable Fire-Alarm System

DIVISION 31 – EARTHWORK

Section 31 20 00 Earth Moving

DIVISION 33 – SITE IMPROVEMENTS

Section 33 11 00 Water Distribution Piping
OREGON STATE UNIVERSITY

NOTICE OF OPPORTUNITY

ADVERTISEMENT FOR BIDS

Oregon State University (“Owner”) is accepting sealed bids for a public improvement project at Construction Contracts Administration, Oregon State University, 644 SW 13th Street, Corvallis, Oregon, until 2:00 PM local time, May 23, 2019 for the Merryfield Hall Renovation – Re-Bid project located on the campus of Oregon State University, Corvallis, Oregon.

A mandatory Pre-Bid Conference and examination of the site and conditions will take place on May 3, 2019 at 10:00 AM local time. Bidders shall meet with the Owner's Representatives at the front entrance to Merryfield Hall (1600 SW Monroe Ave – Corvallis OR 97331). Attendance will be documented through a sign-in sheet prepared by the Owner’s Representative. Prime bidders who arrive more than 5 minutes after start time of the meeting (as stated in the solicitation and by the Owner’s Authorized Representative’s watch) or after the discussion portion of the meeting (whichever comes first) shall not be permitted to sign in and will not be permitted to submit a bid on the project.

Bids will be due May 23, 2019 by 2:00 PM local time, at the Property Services Building, 644 SW 13th Street, Corvallis, Oregon.

Bid documents are available for viewing and downloading at the following link: https://bid.oregonstate.edu/

All bidders must comply with requirements of the prevailing wage law in ORS 279C.800 through ORS 279C.870. All bidders must be registered with the Construction Contractor's Board at the time of bid submission. No bid will be considered unless fully completed in the manner provided in the "Instructions to Bidders" upon the Bid Form provided. OSU encourages bids from Minority, Women, and Emerging Small Businesses.

OREGON STATE UNIVERSITY

By:

BY: Matt Hausman
Construction Contracts Officer
Oregon State University

PUBLICATION AND DATE:
Corvallis Gazette Times – Friday, April 26, 2019
Daily Journal of Commerce – Friday April 26, 2019
INSTRUCTIONS TO BIDDERS
OSU Policies and Standards govern this OSU procurement process.

Article 1. Definitions

1.1. Capitalized words used herein but not defined shall have the meaning set forth in the OSU General Conditions and OSU Policies and Standards. The following terms used herein shall have the meaning set forth below:

“Bid Form”- refers to OSU form provided by Owner to be completed by Bidder.

“Project Manual”- The Project Manual includes, but is not necessarily limited to, the following (if applicable): the Advertisement for Bids or Notice of Contracting Opportunity, these Instructions to Bidders, Supplemental Instructions to Bidders, Bid Form, Bid Bond, OSU General Conditions, Supplemental General Conditions (if any), Sample Supplement or Agreement, Performance Bond, Payment Bond, and the Plans and Specifications.

Article 2. Scope of Work

2.1 The Work contemplated in this document shall be for the Owner in connection with the Project described in the Project Manual.

Article 3. Examination of Site and Conditions

3.1 Before making a Bid, the Bidder shall examine the Work site to ascertain its physical condition. The Bidder shall be responsible for being fully informed as to the quality, quantity and sources of supply of the materials listed on the Project Manual. Failure to comply with this Section will not release Contractor from entering into the Contract nor excuse Contractor from performing the Work in strict accordance with the terms of the Contract Documents.

3.2 The Owner will not be responsible for any loss or unanticipated costs which may arise as a result of Contractor's failure to be fully informed in advance with regard to all conditions pertaining to the Work and the character of the Work required.

3.3. No statement made by any officer, agent, or employee of the Owner in relation to the physical conditions pertaining to the Work site or quality, quantity, and supply of materials will be binding on the Owner, unless included in writing in the Project Manual or an Addendum.

Article 4. Substitute Materials Approval Process

4.1 Prior to submitting a Bid including a Substitution, the Bidder must first seek approval of the Substitution from the Architect (or Engineer, as appropriate hereafter) by submitting a written request for approval at least 10 calendar days prior to the Closing Date and Time. The Bidder submitting the request shall be responsible for its timely delivery.

4.2 Substitution approval requests shall be accompanied by samples, records of performance, certified copies of tests by impartial and recognized laboratories, and such other information as the Architect may request.

4.3 Within a reasonable time after receiving such a request the Owner (or Architect if so designated) will consider whether the Substitution sought by Bidder is of equal value, utility, as the designated product in the Project Manual. If the requested Substitution is approved an Addendum to the Project Manual shall be issued. A copy of each Addendum shall become a part of the Project Manual.
4.4 When the Architect approves a Substitution by Addendum, it is with the understanding that the Contractor guarantees the substituted article or material to be equal or better than the one specified.

Article 5. Interpretation of Project Manual

5.1 A Bidder in doubt as to the meaning of any part of the Project Manual may submit a written request for an interpretation to the Architect at any time prior to 10 calendar days prior to the Closing Date and Time.

5.2 Any interpretation of the Project Manual will be made only by a duly issued Addendum. The Owner will not be responsible for any other explanation or interpretation of the Project Manual nor for any other approval of a particular manufacturer's process or item.

5.3 To establish a basis of quality, certain processes, types of machinery and equipment or kinds of materials may be specified in the Project Manual either by description of process or by designating a manufacturer by name and referring to a brand or product designation or by specifying a kind of material. Whenever a process is designated or a manufacturer named, brand or item designation given, or whenever a process or material covered by patent is designated or described, it shall be understood that the words "or approved equal" follow such name, designation or description, whether they do so or not.

Article 6. Execution of the Bid Form

6.1 The Bid Form relates to Bids on a specific Project Manual. Only the amounts and information asked for on the Bid Form furnished by the Owner will be considered as the Bid. Each Bidder shall Bid upon the Work exactly as set forth in the Bid Form. The Bidder shall include in the Bid a sum to cover the cost of all items contemplated by the Project Manual. Bids that fail to address alternates set forth on the Bid Form may be considered non-responsive.

6.2 Each Bid Form must: 1) Be completed in accordance with these instructions; 2) Include the appropriate signatures as noted on the Bid Form; 3) Include numbers pertaining to base Bids stated both in writing and in figures; and 4) Include the Bidder's typed or clearly printed address.

6.3 When Bidding on an alternate for which there is no charge, the Bidder shall write the words "No Charge" in the space provided on the Bid Form. If one or more alternates is shown on the Bid Form, the Bidder shall indicate whether each is "add" or "deduct."

Article 7. Prohibition of Alterations to Bid

7.1 Bids which are incomplete, or contain ambiguities or conditions not provided for in the Bid Form, may be rejected.

Article 8. Submission of Bid

8.1 Each Bid shall be sealed in an envelope, properly addressed to the appropriate project representative of the Owner, showing on the outside of the envelope the name of the Bidder and the name of the project. Bids will be received at the time and place stated in the Advertisement for Bids.

Article 9. Bid Closing and Opening of Bids

9.1 All Bids must be received by the Owner before the Closing Date and Time. Any Bids received after the Closing Date and Time will be rejected and returned to the Bidder unopened.
9.2 At the time of opening and reading of Bids, each Bid received, irrespective of any irregularities or informalities, will be publicly opened and read aloud.

Article 10. Acceptance or Rejection of Bids by Owner

10.1 Unless all Bids are rejected, the Owner will award the Contract based on the lowest responsive Bid from a responsible Bidder. If that Bidder does not execute the Contract, the Contract will be awarded to the next lowest responsible Bidder or Bidders in succession.

10.2 The procedures for Contract awards shall be in compliance with the provisions of OSU Standards adopted by the Owner.

10.3 The Owner reserves the right to reject all Bids and to waive minor informalities.

10.4 The Owner reserves the right to hold the Bid and any required Bid security, of the three lowest Bidders for a period of 30 calendar days from the time of Bid opening pending award of the Contract. Following award of the Contract, any Bid security furnished by the three lowest Bidders may be held 20 calendar days pending execution of the Contract. All other Bids will be rejected and Bid security returned.

10.5 In determining the lowest Bidder, the Owner reserves the right to take into consideration any or all authorized base Bids as well as alternates or combinations indicated in the Bid Form.

10.6 If Owner has not accepted a Bid within 30 calendar days after the opening of the Bids, each of the three lowest Bidders may withdraw the Bid submitted and request the return of any Bid security then held.

Article 11. Withdrawal of Bid

11.1 At any time prior to the Closing Date and Time a Bidder may withdraw its Bid. This will not preclude the submission of another Bid by such Bidder prior to the Closing Date and Time.

11.2 After the Closing Date and Time, no Bidder will be permitted to withdraw its Bid within the time period specified in Article 10 for award and execution, except as provided for in that Article.

Article 12. Execution of Contract, Agreement, Performance Bond and Payment Bond

12.1 The Owner will provide the successful Bidder with Contract Documents within 10 calendar days after the award of the Contract. The Bidder shall be required to execute the Contract as provided, including a Performance Bond and a Payment Bond from a surety company licensed to do surety business in the State of Oregon, within 20 calendar days after the award of the Contract. The Contract Documents shall be delivered to the Owner in the manner stated in the Notice of Award.

Article 13. Recyclable Products

13.1 Contractors must use recyclable products to the maximum extent economically feasible in the performance of the Contract.

Article 14. Security to Be Furnished by Each Bidder

14.1 Each Bid must be accompanied by either: 1) a cashier's check or a certified check drawn on a bank authorized to do business in the State of Oregon, or 2) a Bid Bond described hereinafter, executed in favor of Owner, for an
amount equal to 10 percent of the total Bid amount as a guarantee that if awarded the contract the Bidder will execute the contract and give a Performance Bond and Payment Bond as required.

14.2 The Contractor's check or Bid Bond will be retained until the Contractor has entered into a Contract and furnished a 100 percent Performance Bond and 100 percent Payment Bond.

14.3 The Owner reserves the right to hold the Bid security as described in Article 10. Should the successful Bidder fail to execute and deliver the Contract as provided for in Article 12, including a satisfactory performance bond and payment bond within 20 calendar days after the Bid has been accepted by the Owner, then the Contract award may be canceled and the Bid security may be forfeited as liquidated damages, at the option of the Owner. The date of the acceptance of the Bid and the award of the contract as contemplated by the Project Manual shall mean the date of acceptance specified in the Notice of Award.

Article 15. Execution of Bid Bond

15.1 Should the Bidder elect to utilize a Bid Bond as described in Article 14 in order to satisfy the Bid security requirements, such form must be completed in the following manner:

15.1.1 Bid Bonds must be executed on OSU forms, which will be provided to all prospective Bidders by the Owner.

15.1.2 The Bid Bond shall be executed on behalf of a bonding company licensed to do business in the State of Oregon.

15.1.3 In the case of a sole individual, the Bid Bond need only be executed as principal by the sole individual. In the case of a partnership, the Bid Bond must be executed by at least one of the partners. In the case of a corporation, the Bid Bond must be executed by stating the official name of the corporation under which is placed the signature of an officer authorized to sign on behalf of the corporation followed by such person's official capacity, such as president, etc. This signature shall be attested by the secretary or assistant secretary of the corporation. The corporation seal should then be affixed to the Bid Bond. In the case of a limited liability company/corporation (“LLC”), the Bid Bond must be executed by stating the official name of the LLC under which is placed the signature of a member authorized to sign on behalf of the LLC.

15.1.4 The name of the surety must be stated in the execution over the signature of its duly authorized attorney-in-fact and accompanied by the seal of the surety corporation.
OREGON STATE UNIVERSITY

SUPPLEMENTAL INSTRUCTIONS TO BIDDERS

Project Name: MERRYFIELD HALL RENOVATION – RE-BID

The following modify the Oregon State University “Instructions to Bidders” for this procurement. Where a portion of the Instructions to Bidders has been modified by these Supplemental Instructions to Bidders, the unaltered portions shall remain in effect.

SB-1, Revise Article 4 as follows:

Replace sub-paragraph 4.3 in its entirety with the following:

“4.3 Within a reasonable time after receiving such a request the Owner (or Architect if so designated) will consider whether the Substitution sought by Bidder is of equal value, utility, as the designated product in the Project Manual. If the requested Substitution is approved, an Addendum to the Project Manual shall be issued by the Owner to each planholder and shall become a part of the Project Manual.”

SB-2, Security to be Furnished by Each Bidder

Delete Article 14 of Instructions to Bidders in its entirety.

SB-3, Execution of Bid Bond

Delete Article 15 of Instructions to Bidders in its entirety.

SB-4 Add New Article 16:

At the time of submission of its bid, each bidder shall have on file with the Construction Contractors Board a public works bond required by ORS 279C.836, unless otherwise exempt under that statute. Failure to have on file a public works bond at the time of submission of the bid may result in rejection of the bidder’s bid as non-responsive.”
OREGON STATE UNIVERSITY

BID FORM

PROJECT: MERRYFIELD HALL RENOVATION – RE-BID

BID DUE DATE/TIME: MAY 23, 2019 AT 2:00 PM PACIFIC TIME

FROM: ___

Name of Contractor

TO: Oregon State University (“Owner”)
Construction Contract Administration
3015 SW Western Blvd.
Corvallis, Oregon 97333

1. The Undersigned (check one of the following and insert information requested):

 ___a. An individual doing business under an assumed name registered under the laws of the State of _____________________________; or

 ___b. A partnership registered under the laws of the State of _____________________________; or

 ___c. A corporation organized under the laws of the State of _____________________________; or

 ___d. A limited liability corporation/company organized under the laws of the State of _____________________________;

hereby proposes to furnish all material and labor and perform all work hereinafter indicated for the above project in strict accordance with the Contract Documents for the Basic Bid as follows:

___ Dollars ($__________________)

and the Undersigned agrees to be bound by the following documents:

• Notice of Opportunity • Instructions to Bidders
• Supplemental Instructions to Bidders • Sample Contract
• Performance Bond and Payment Bond • OSU General Conditions
• Supplemental OSU General Conditions • Payroll and Certified Statement Form
• Prevailing Wage Rates • Drawings and Details
• Plans and Specifications • ADDENDA numbered ____ through____, inclusive (fill in blanks)

2. The Undersigned proposes to add to or deduct from the Base Bid indicated above the items of work relating to the following Alternate(s) as designated in the Specifications:
MERRYFIELD HALL RENOVATION – RE-BID
BID FORM
PAGE 2

ALTERNATE M1: Deletion: Sheets M3A, M4A, M5A, M6A, M7A, M8A: Deleted new VRF fan coil systems serving Labs A, B, C, D, and E. This includes deleting the heat pumps, refrigerant piping, ductwork, diffusers, return grilles, and DDC controls associated with the fan coils. This also includes

ADD/DEDUCT: $___________

ALTERNATE M2: Addition: Sheets M1A, M3A: Added the removal and replacement of the existing steam and condensate piping in the crawl space under the area of work. This includes confirming the size of the existing steam and condensate piping in the crawl space.

ADD/DEDUCT: $___________

ALTERNATE M3: Addition: Sheets M3A, M4A, M5A, M6A, M7A, M8A, M11A: Added new steam reheat coils for the supply air valves serving Labs A, B, C, D, and E. This includes adding new steam piping to serve the new steam reheat coils. This also includes adding associated DDC controls.

ADD/DEDUCT: $___________

ALTERNATE M4: Change: Sheets M4A, M6A: Increased the capacity of AHU-1 since it will now be cooling and partially heating Labs A, B, C, D, and E instead of just providing neutral outside air to the spaces.

ADD/DEDUCT: $___________

ALTERNATE M5: Addition: Sheet M3A, M5A, M7A: Increased size of heat pump (adding second unit) serving AHU-1 due to the increased capacity of AHU-1.

ADD/DEDUCT: $___________

ADD/DEDUCT: $___________

ALTERNATE E1: Deletion: Sheets E4A, E5A, E11A: Deleted the electrical power for the fan coils and VRF heat pumps serving Labs A, B, C, D, and E. This includes deleting associated circuit breakers, wiring, and disconnects.

ADD/DEDUCT: $___________

ALTERNATE E2: Change: Sheets E11A: Increased the wire size for AHU-1 due to the increased capacity of AHU-1.

ADD/DEDUCT: $___________

ALTERNATE E3: Addition: Sheet E4A, E11A: Added electrical power for HP-AHU-1 due to the increased capacity of AHU-1. This includes adding associated circuit breaker, wiring, and disconnect.

ADD/DEDUCT: $___________
3. The work shall be completed within the time stipulated and specified in Division 1, Section 01 11 00, of the Specifications.

4. The Undersigned certifies that: (1) This Bid has been arrived at independently and is being submitted without collusion with and without any agreement, understanding, or planned common course of action with any other vendor of materials, supplies, equipment or services described in the invitation to bid designed to limit independent bidding or competition; and (2) The contents of the Bid have not been communicated by the Undersigned or its employees or agents to any person not an employee or agent of the Undersigned or its surety on any Bond furnished with the Bid and will not be communicated to such person prior to the official opening of the Bid.

5. The undersigned **HAS, HAS NOT** (circle applicable status) paid unemployment or income taxes in Oregon within the past 12 months and **HAS, HAS NOT** (circle applicable status) a business address in Oregon.

6. The Undersigned agrees, if awarded a contract, to comply with the provisions of ORS 279C.800 through 279C.870 pertaining to the payment of the prevailing rates of wage.

7. Contractor's CCB registration number is ____________________________. As a condition to submitting a bid, a Contractor must be registered with the Oregon Construction Contractors Board in accordance with ORS 701.035 to 701.055, and disclose the registration number. Failure to register and disclose the number will render the bid unresponsive and it will be rejected, unless contrary to federal law.

8. The successful Bidder hereby certifies that all subcontractors who will perform construction work as described in ORS 701.005(2) were registered with the Construction Contractors Board in accordance with ORS 701.035 to 701.055 at the time the subcontractor(s) made a bid to work under the Contract.

9. The successful Bidder hereby certifies that, in compliance with the Worker's Compensation Law of the State of Oregon, its Worker's Compensation Insurance provider is ____________________________, Policy No. _________________, and that Contractor shall submit Certificates of Insurance as required.

10. Contractor’s Project Manager for this project is: ______________________________.
 Office Phone: _________________________ Cell Phone: ______________________________.

11. The Undersigned certifies that it has not discriminated against minority, women, or emerging small businesses in obtaining any subcontracts for this project.

12. The Undersigned agrees, if awarded the Contract, to execute and deliver to Owner, within twenty (20) calendar days after receiving the Contract Documents, an Agreement Form and a satisfactory Performance Bond and Payment Bond, each in an amount equal to one hundred (100) percent of the Contract sum, using forms provided by the Owner. The surety requested to issue the Performance Bond and Payment Bond will be: _______________________________, (name of surety company - not insurance agency) The Undersigned hereby authorizes said surety company to disclose any information to the Owner concerning the Undersigned's ability to supply a Performance Bond and Payment Bond each in the amount of the Contract.
By signature below, Contractor agrees to be bound by this Bid.

NAME OF FIRM _______________________________________

ADDRESS _______________________________________

FEDERAL TAX ID _______________________________________

TELEPHONE NO _______________________________________

FAX NO _______________________________________

SIGNATURE 1) _______________________________________

 Sole Individual - Signature

 Sole Individual - Printed Name

 or 2) _______________________________________

 Partner

 or 3) _______________________________________

 Authorized Officer of Corporation - Signature

 Authorized Officer of Corporation Printed Name

(SEAL) _______________________________________

Attested: Secretary of Corporation

Payment information will be reported to the IRS under the name and taxpayer ID # provided above. Information not matching IRS records could subject Contractor to 31 percent backup withholding.

***** END OF BID *****
OREGON STATE UNIVERSITY
PUBLIC IMPROVEMENT CONTRACT

This Public Improvement Contract for the (Insert Project Name) (the "Contract"), made by and between Oregon State University, hereinafter called OWNER, and (Insert Contractor's Name) hereinafter called the CONTRACTOR (collectively the “Parties”), shall become effective on (Insert contract award date), or the date this Contract has been signed by all the Parties, whichever is later.

The CONTRACTOR, in consideration of the sum of ________________ (the "Contract Price"), to be paid to the CONTRACTOR by OWNER in the manner and at the time hereinafter provided, and subject to the terms and conditions provided for in the Instructions to Bidders and other Contract Documents (as defined in the Oregon State University General Conditions referenced within the Instructions to Bidders), all of which are incorporated herein by reference, hereby agrees to perform all Work described and reasonably inferred from the Contract Documents. The Contract Price is the amount contemplated by the Base Bid adjusted for Alternates____, as indicated in the accepted Bid.

Also, the following documents are incorporated by reference in this Contract and made a part hereof if checked for inclusion [X]:

[] (RESERVED)

2. Representatives.

CONTRACTOR has named (Insert Name) its' Authorized Representative to act on its behalf. OWNER designates, or shall designate, its Authorized Representative as indicated below (check one):

A. [] Unless otherwise specified in the Contract Documents, the OWNER designates (Insert Name) as its Authorized Representative in the administration of this Contract. The above-named individual shall be the initial point of contact for matters related to Contract performance, payment authorization, and to carry out the responsibilities of the OWNER.

B. [X] Name of OWNER’S Authorized Representative shall be submitted by OWNER in a separate writing.

COMMENCEMENT DATE: Within (Insert # of Days) days of the execution of the Contract (“Execution”).

SUBSTANTIAL COMPLETION DATE: (Insert # of Days) from Contract Execution (or a date certain).

FINAL COMPLETION DATE: (Insert # of Days) from Contract Execution (or a date certain).

4. Integration

The Contract documents constitute the entire agreement between the parties. There are no other understandings, agreements or representations, oral or written, not specified herein regarding this Contract.
CONTRACTOR, by the signature below of its authorized representative, hereby acknowledges that it has read this Contract, understands it, and agrees to be bound by its terms and conditions.

In witness whereof, Oregon State University executes this Contract and the CONTRACTOR does execute the same as of the day and year indicated below.

CONTRACTOR DATA:
(Insert Contractor Name & Address)

CONTRACTOR NAME:

CONTRACTOR FEDERAL ID #

CONTRACTOR CCB #

[Payment information will be reported to the IRS under the name and taxpayer ID # provided above. Information must be provided prior to contract approval. Information not matching IRS records could subject Contractor to 31 percent backup withholding.]

CONTRACTOR SIGNATURE

By__

Name/Title ________________________________ Date ______________

Oregon State University

By__

Michael J. Green ________________________________ Date ______________

Vice President for Finance and Administration
OREGON STATE UNIVERSITY

PERFORMANCE BOND

Bond No._______________________________
Solicitation _____________________________
Project Name ___________________________

__________________(Surety #1) Bond Amount No. 1: $______________
__________________(Surety #2)* Bond Amount No. 2:* $______________
* If using multiple sureties

Total Penal Sum of Bond: $______________

We, __as Principal, and the above identified
Surety(ies), authorized to transact surety business in Oregon, as Surety, hereby jointly and severally bind
ourselves, our respective heirs, executors, administrators, successors and assigns firmly by these presents
to pay unto Oregon State University (OSU), the sum of (Total Penal Sum of Bond)

(Provided, that we the Sureties bind ourselves in such sum “jointly and severally” as well as “severally”
only for the purpose of allowing a joint action or actions against any or all of us, and for all other
purposes each Surety binds itself, jointly and severally with the Principal, for the payment of such sum
only as is set forth opposite the name of such Surety), and

WHEREAS, the Principal has entered into contract No. ____________with the OSU, the plans,
specifications, terms and conditions of which are contained within the Contract resulting from the above-
referenced Solicitation;

WHEREAS, the terms and conditions of the Contract, together with applicable plans, standard
specifications, special provisions, schedule of performance, and schedule of Contract prices, are made a
part of this Performance Bond by reference, whether or not attached to the contract (all hereafter called
“Contract”); and

WHEREAS, the Principal has agreed to perform the Contract in accordance with the terms, conditions,
requirements, plans and specifications, and all authorized modifications of the Contract which increase
the amount of the work, the amount of the Contract, or constitute an authorized extension of the time for
performance, notice of any such modifications hereby being waived by the Surety:

NOW, THEREFORE, THE CONDITION OF THIS BOND IS SUCH that if the Principal herein shall (1)
faithfully and truly observe and comply with the terms, conditions and provisions of the Contract, in all
respects, (2) shall well and truly and fully do and perform all matters and things undertaken by Contractor
to be performed under the Contract, upon the terms set forth therein, and within the time prescribed
therein, or as extended as provided in the Contract, with or without notice to the Sureties, (3) shall save,
defend, indemnify and hold harmless OSU and its officers, board members, employees, agents and other
representatives, against any direct or indirect damages or claim of every kind and description that shall be
suffered or claimed to be suffered in connection with or arising out of the performance of the Contract by
the Principal or its subcontractors, and (4) shall in all respects perform said contract according to law, then this obligation is to be void; otherwise, it shall remain in full force and effect.

Nonpayment of the bond premium will not invalidate this bond, nor shall OSU be obligated for the payment of any premiums.

This bond is given and received under authority of ORS Chapters 279C and 352, the provisions of which hereby are incorporated into this bond and made a part hereof.

IN WITNESS WHEREOF, WE HAVE CAUSED THIS INSTRUMENT TO BE EXECUTED AND SEALED BY OUR DULY AUTHORIZED LEGAL REPRESENTATIVES.

Dated this ________________ day of __________________, 20__.

PRINCIPAL: __________________________
By____________________________________
Signature

Official Capacity
Attest: ________________________________
Corporation Secretary

SURETY: ________________________________
[Add signatures for each surety if using multiple bonds]

BY ATTORNEY-IN-FACT: ________________________________
[Power-of-Attorney must accompany each surety bond]

Name

Signature

Address

City State Zip

Phone Fax
OREGON STATE UNIVERSITY

PAYMENT BOND

Bond No. __________________________________
Solicitation __________________________________
Project Name ________________________________

__________________(Surety #1) Bond Amount No. 1: $ ___________
__________________(Surety #2)* Bond Amount No. 2:* $ ___________
* If using multiple sureties Total Penal Sum of Bond: $ ___________

We, __, as Principal, and the above identified Surety(ies), authorized to transact surety business in Oregon, as Surety, hereby jointly and severally bind ourselves, our respective heirs, executors, administrators, successors and assigns firmly by these presents to pay unto Oregon State University (OSU) the sum of (Total Penal Sum of Bond) _______________________________ ______________________________ (Provided, that we the Sureties bind ourselves in such sum “jointly and severally” as well as “severally” only for the purpose of allowing a joint action or actions against any or all of us, and for all other purposes each Surety binds itself, jointly and severally with the Principal, for the payment of such sum only as is set forth opposite the name of such Surety), and

WHEREAS, the Principal has entered into contract No. ___________ with OSU, the plans, specifications, terms and conditions of which are contained within the Contract resulting from the above-referenced Solicitation;

WHEREAS, the terms and conditions of the contract, together with applicable plans, standard specifications, special provisions, schedule of performance, and schedule of contract prices, are made a part of this Payment Bond by reference, whether or not attached to the contract (all hereafter called “Contract”); and

WHEREAS, the Principal has agreed to perform the Contract in accordance with the terms, conditions, requirements, plans and specifications, and schedule of contract prices which are set forth in the Contract and any attachments, and all authorized modifications of the Contract which increase the amount of the work, or the cost of the Contract, or constitute authorized extensions of time for performance of the Contract, notice of any such modifications hereby being waived by the Surety:

NOW, THEREFORE, THE CONDITION OF THIS BOND IS SUCH that if the Principal shall (1) faithfully and truly observe and comply with the terms, conditions and provisions of the Contract, in all respects, (2) shall well and truly and fully do and perform all matters and things by it undertaken to be performed under said Contract and any duly authorized modifications that are made, upon the terms set forth therein, and within the time prescribed therein, or as extended therein as provided in the Contract, with or without notice to the Sureties, (3) shall save, defend, indemnify and hold harmless OSU, and its officers, board members, employees, agents and other representatives, against any claim for direct or indirect damages of every kind and description that shall be suffered or claimed to be suffered in connection with or arising out of the performance of the Contract by the Contractor or its subcontractors, (4) shall promptly pay all persons supplying labor, materials or both to the Principal or its subcontractors for prosecution of the work provided in the Contract; (5) shall promptly pay all contributions due the State Industrial Accident Fund and the State Unemployment Compensation Fund from the Principal or its

{00522815;2} Revised August 2016
subcontractors in connection with the performance of the Contract; (6) shall pay over to the Oregon Department of Revenue all sums required to be deducted and retained from the wages of employees of the Principal and its subcontractors pursuant to ORS 316.167; (7) shall permit no lien nor claim to be filed or prosecuted against the State or OSU on account of any labor or materials furnished; and (8) shall do all things required of the Principal by the laws of this State, then this obligation shall be void; otherwise, it shall remain in full force and effect.

Nonpayment of the bond premium will not invalidate this bond, nor shall OSU be obligated for the payment of any premiums.

This bond is given and received under authority of ORS Chapters 279C and 352, the provisions of which hereby are incorporated into this bond and made a part hereof.

IN WITNESS WHEREOF, WE HAVE CAUSED THIS INSTRUMENT TO BE EXECUTED AND SEALED BY OUR DULY AUTHORIZED LEGAL REPRESENTATIVES:

Dated this ___________________ day of ___________________, 20__.

PRINCIPAL: _________________________
By __________________________________
Signature

Official Capacity
Attest: _______________________________ Corporation Secretary

SURETY: ____________________________
[Add signatures for each if using multiple bonds]

BY ATTORNEY-IN-FACT:
[Power-of-Attorney must accompany each bond]

Name

Signature

Address
City State Zip

Phone Fax
INSTRUCTIONS: The attached Oregon State University General Conditions for Public Improvement Contracts ("Public Improvement General Conditions") apply to all designated Public Improvement contracts. Changes to the Public Improvement General Conditions (including any additions, deletions or substitutions) should only be made by attaching Public Improvement Supplemental General Conditions. The text of these Public Improvement General Conditions should not otherwise be altered.

TABLE OF SECTIONS

SECTION A
GENERAL PROVISIONS
A.1 DEFINITION OF TERMS
A.2 SCOPE OF WORK
A.3 INTERPRETATION OF CONTRACT DOCUMENTS
A.4 EXAMINATION OF PLANS, SPECIFICATIONS, AND SITE
A.5 INDEPENDENT CONTRACTOR STATUS
A.6 RETIREMENT SYSTEM STATUS AND TAXES
A.7 GOVERNMENT EMPLOYMENT STATUS

SECTION B
ADMINISTRATION OF THE CONTRACT
B.1 OWNER'S ADMINISTRATION OF THE CONTRACT
B.2 CONTRACTOR'S MEANS AND METHODS
B.3 MATERIALS AND WORKMANSHIP
B.4 PERMITS
B.5 COMPLIANCE WITH GOVERNMENT REGULATIONS
B.6 SUPERINTENDENCE
B.7 INSPECTION
B.8 SEVERABILITY
B.9 ACCESS TO RECORDS
B.10 WAIVER
B.11 SUBCONTRACTS AND ASSIGNMENT
B.12 SUCCESSORS IN INTEREST
B.13 OWNER'S RIGHT TO DO WORK
B.14 OTHER CONTRACTS
B.15 GOVERNING LAW
B.16 LITIGATION
B.17 ALLOWANCES
B.18 SUBMITTALS, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
B.19 SUBSTITUTIONS
B.20 USE OF PLANS AND SPECIFICATIONS
B.21 FUNDS AVAILABLE AND AUTHORIZED
B.22 NO THIRD PARTY BENEFICIARIES

SECTION C
WAGES AND LABOR
C.1 MINIMUM WAGES RATES ON PUBLIC WORKS
C.2 PAYROLL CERTIFICATION AND FEE REQUIREMENTS, ADDITIONAL RETAINAGE
C.3 PROMPT PAYMENT AND CONTRACT CONDITIONS
C.4 PAYMENT FOR MEDICAL CARE
C.5 HOURS OF LABOR

SECTION D
CHANGES IN THE WORK
D.1 CHANGES IN THE WORK
D.2 DELAYS
D.3 CLAIMS REVIEW PROCESS
SECTION E
PAYMENTS
E.1 SCHEDULE OF VALUES
E.2 APPLICATIONS FOR PAYMENT
E.3 PAYROLL CERTIFICATION REQUIREMENT
E.4 DUAL PAYMENT SOURCES
E.5 RETAINAGE
E.6 FINAL PAYMENT

SECTION F
JOB SITE CONDITIONS
F.1 USE OF PREMISES
F.2 PROTECTION OF WORKERS, PROPERTY, AND THE PUBLIC
F.3 CUTTING AND PATCHING
F.4 CLEANING UP
F.5 ENVIRONMENTAL CONTAMINATION
F.6 ENVIRONMENTAL CLEAN-UP
F.7 FORCE MAJEURE

SECTION G
INDEMNITY, BONDING AND INSURANCE
G.1 RESPONSIBILITY FOR DAMAGES/INDEMNITY
G.2 PERFORMANCE AND PAYMENT SECURITY, PUBLIC WORKS BOND
G.3 INSURANCE

SECTION H
SCHEDULE OF WORK
H.1 CONTRACT PERIOD
H.2 SCHEDULE
H.3 PARTIAL OCCUPANCY OR USE

SECTION I
CORRECTION OF WORK
I.1 CORRECTIONS OF WORK BEFORE FINAL PAYMENT
I.2 WARRANTY WORK

SECTION J
SUSPENSION AND/OR TERMINATION OF THE WORK
J.1 OWNER’S RIGHT TO SUSPEND THE WORK
J.2 CONTRACTOR’S RESPONSIBILITIES
J.3 COMPENSATION FOR SUSPENSION
J.4 OWNER’S RIGHT TO TERMINATE CONTRACT
J.5 TERMINATION FOR CONVENIENCE
J.6 ACTION UPON TERMINATION

SECTION K
CONTRACT CLOSE-OUT
K.1 RECORD DOCUMENTS
K.2 OPERATION AND MAINTENANCE MANUALS
K.3 COMPLETION NOTICES
K.4 TRAINING
K.5 EXTRA MATERIALS
K.6 ENVIRONMENTAL CLEAN-UP
K.7 CERTIFICATE OF OCCUPANCY
K.8 OTHER CONTRACTOR RESPONSIBILITIES
K.9 SURVIVAL
SECTION A
GENERAL PROVISIONS

A.1 DEFINITION OF TERMS

In the Contract Documents the following terms shall be as defined below:

AMENDMENT, means a writing which, when fully executed by the Parties to this Contract, constitutes a change to a Contract Document. Amendments shall be issued in accordance with the changes provisions of Section D and, if applicable, establish a Contract Price or Contract Time adjustment.

APPLICABLE LAWS, means federal, state and local laws, codes, rules, regulations and ordinances applicable to the Work and the Contract.

ARCHITECT/ENGINEER, means the Person appointed by the Owner to make drawings and specifications and, to provide contract administration of the Work contemplated by the Contract to the extent provided herein or by supplemental instruction of Owner (under which Owner may delegate responsibilities to the Architect/Engineer) in accordance with ORS Chapter 671 (Architects) or ORS Chapter 672 (Engineers) and administrative rules adopted thereunder.

CHANGE ORDER, means a written order issued by the Owner to be later included as an Amendment. A Change Order shall not be effective until codified as an Amendment.

CLAIM, means a demand by Contractor pursuant to Section D.3 for review of the denial of Contractor’s initial request for an adjustment of Contract terms, payment of money, extension of Contract Time or other relief, submitted in accordance with the requirements and within the time limits established for review of Claims in these Public Improvement General Conditions.

CONSTRUCTION CHANGE DIRECTIVE, means a written order by the Owner to the Contractor requiring a change in the Work within the general scope of the Contract Documents, issued under the changes provisions of Section D.

CONSTRUCTION SCHEDULE, means the schedule prepared by the Contractor in CPM format and approved by the Owner, and all adjustments thereto approved by the Owner, that describes sequence and timing of the Work.

CONTRACT, means the written agreement between the Owner and the Contractor comprised of the Contract Documents which describe the Work to be done and the obligations between the parties.

CONTRACT DOCUMENTS, means the Public Improvement Contract, Public Improvement General Conditions, Supplemental General Conditions if any, the accepted Offer, Plans, Specifications, Construction Change Directives, Solicitation Document and addenda thereto, Instructions to Offerors, and Supplemental Instructions to Offerors, the CM/GC’s RFQ proposal, the GMP Amendment, and any other Amendment, the Construction Schedule prepared and approved in accordance with the Construction Documents, and all other required Submittals.

CONTRACT PERIOD, as set forth in the Contract Documents, means the total period of time beginning with the full execution of a Contract and, if applicable, the issuance of a Notice to Proceed and concluding upon Final Completion.

CONTRACT PRICE, means the total of the awarded Offer amount, as increased or decreased by the price of approved alternates, as indicated in the Contract Documents.

CONTRACT TIME, means any incremental period of time allowed under the Contract to complete any portion of the Work as reflected in the project schedule.

CONTRACTOR, means the Person awarded the Contract for the Work contemplated.

CPM, means a critical path method format to be used for the Construction Schedule.

DAYS, are calendar days, including weekdays, weekends and holidays, unless otherwise specified.

DIRECT COSTS, means, unless otherwise provided in the Contract Documents, the cost of materials, including sales tax, cost of delivery; cost of labor, including social security, Medicare and unemployment insurance, and fringe benefits required by agreement or custom; worker’s compensation insurance; project specific insurance (including, without limitation, Builder’s Risk Insurance and Builder’s Risk Installation Floater); bond premiums, rental cost of equipment, and machinery required for execution of the Work; and the additional costs of field personnel directly attributable to the Work.

FINAL COMPLETION, means the final completion of all requirements under the Contract, including Contract Closeout as described in Section K but excluding Warranty Work as described in Section I.2, and the final payment and release of all retainage, if any, released.

FINAL PAYMENT, means the last payment to the Contractor, including retainage, in connection with the Work.

FORCE MAJEURE, means an act, event or occurrence caused by fire, riot, war, acts of God, nature, sovereign, or public enemy, strikes, freight embargoes or any other act, event or occurrence that is beyond the control of the party to this Contract who is asserting Force Majeure.

MWESB REPORT, means an accurate report by the Contractor to the Owner identifying all Minority, Women and Emerging Small Business (MWESB) enterprises, as those terms are defined in ORS 200.005, receiving contracts throughout the course of the Work. An initial MWESB report is required (see Section E.2.9) and MWESB Reports are required annually (see Section E.2.9) and as a condition of final payment (see Section K.1). The initial report shall include the total number of contracts and subcontracts awarded to MWESB enterprises and the dollar value of their respective contracts and subcontracts. The annual reports shall include the total number of contracts and subcontracts awarded to MWESB enterprises, the dollar value of each, and the expenditure toward each contract and subcontract during the previous twelve (12) months. The final report shall include the total number of contracts and subcontracts awarded to MWESB enterprises and the dollar value of their respective contracts and subcontracts including all Contracts and Amendments incorporated during the course of the project. The reports shall only include enterprises certified with the State of Oregon as MWESB enterprises and shall include individual identification of each enterprise as a Minority business enterprise, a Women business enterprise, and/or an Emerging Small Business Enterprise, as applicable.
NOTICE TO PROCEED, means the official written notice from the Owner stating that the Contractor is to proceed with the Work defined in the Contract Documents. Notwithstanding the Notice to Proceed, Contractor shall not be authorized to proceed with the Work until all initial Contract requirements, including the Contract, performance bond and payment bond, and certificates of insurance, have been fully executed and submitted to Owner in a suitable form.

OFFER, means a bid in connection with Instructions to Bidders or a proposal in connection with a Request for Proposals.

OFFEROR, means a bidder in connection with Instructions to Bidders or a proposer in connection with a Request for Proposals.

OVERHEAD, means those items which may be included in the Contractor’s markup (general and administrative expense and profit) and that shall not be charged as Direct Cost of the Work, including without limitation such Overhead expenses as wages or salary of personnel above the level of foreman (i.e., superintendents and project managers), expenses of Contractor’s offices and supplies at the job site (e.g., job trailer) and at Contractor’s principal place of business and including expenses of personnel staffing the job site office and Contractor’s principal place of business, and Commercial General Liability Insurance and Automobile Liability Insurance.

OWNER, means Oregon State University (OSU). Owner may elect, by written notice to Contractor, to delegate certain duties to more than one party, including without limitation, to an Architect/Engineer. However, nothing in these Public Improvement General Conditions is intended to abrogate the separate design professional responsibilities of Architects under ORS Chapter 671 or of Engineers under ORS Chapter 672.

PERSON, means a natural person or entity doing business as a sole proprietorship, a partnership, a joint venture, a corporation, a limited liability company or partnership, or any other entity possessing the legal capacity to contract.

PLANS, means the drawings which show the location, type, dimensions, and details of the Work to be done under the Contract.

PROJECT, means the development, design, construction

PUNCH LIST, means the list of Work yet to be completed or deficiencies which need to be corrected in order to achieve Final Completion of the Contract.

RECORD DOCUMENT, means the as-built Plans, Specifications, testing and inspection records, product data, samples, manufacturer and distributor/supplier warranties evidencing transfer of ownership to Owner, operational and maintenance manuals, shop drawings, Construction Change Directives, MWESB Reports, correspondence, certificate(s) of occupancy, and other documents listed in Subsection B.9.1 of these Public Improvement General Conditions, recording all Services performed.

SOLICITATION DOCUMENT, means Instructions to Bidders or Offerors or a Request for Proposal or a Request for Quotes.

SPECIFICATION, means any description of the physical or functional characteristics of the Work, or of the nature of a supply, service or construction item. Specifications may include a description of any requirement for inspecting, testing or preparing a supply, service or construction item for delivery and the quantities or qualities of materials to be furnished under the Contract. Specifications generally will state the results or products to be obtained and may, on occasion, describe the method and manner of doing the Work to be performed. Specifications may be incorporated by reference and/or may be attached to the Contract.

SUBCONTRACT, means a contract between the Contractor and a subcontractor for the performance of a portion of the Work.

SUBCONTRACTOR, means a Person having a direct contract with the Contractor, or another Subcontractor, to perform one or more items of the Work.

SUBMITTAL, means a shop drawing, product data, sample, catalog cut, or similar item for specific portions of the Work as required by the Construction Documents.

SUBSTANTIAL COMPLETION, means the date when the Owner accepts in writing the construction, alteration or repair of the improvement to real property constituting the Work or any designated portion thereof as having reached that state of completion when it may be used or occupied for its intended purpose. Substantial Completion of facilities with operating systems occurs only after thirty (30) continuous Days of successful, trouble-free operation of the operating systems as provided in Section K.3.2.

SUBSTITUTIONS, means items that in function, performance, reliability, quality, and general configuration are the same or better than the product(s) specified. Approval of any substitute item shall be solely determined by the Owner. The decision of the Owner is final.

PUBLIC IMPROVEMENT SUPPLEMENTAL GENERAL CONDITIONS, means those conditions that remove from, add to, or modify these Public Improvement General Conditions. Public Improvement Supplemental General Conditions may be included in the Solicitation Document or may be a separate attachment to the Contract.

WORK, means the furnishing of all materials, equipment, labor, transportation, services and incidentals necessary to successfully complete any individual item or the entire Contract and the carrying out of duties and obligations imposed by the Contract Documents.

A.2 SCOPE OF WORK

The Work contemplated under this Contract includes all labor, materials, transportation, equipment and services for, and incidental to, the completion of all construction work in connection with the project described in the Contract Documents. The Contractor shall perform all Work necessary so that the project can be legally occupied and fully used for the intended use as set forth in the Contract Documents. Execution of the Contract by the Contractor is an express representation (1) that the Contractor understands the intent stated herein with respect to the Preconstruction Phase Services, and (2) the Contractor’s execution of an Amendment, including the GMP Amendment, shall be an express and unqualified representation that the Contractor understands the intent stated herein and therein.

A.3 INTERPRETATION OF CONTRACT DOCUMENTS

A.3.1 Unless otherwise specifically defined in the Contract
Documents, words which have well-known technical meanings or construction industry meanings are used in the Contract Documents in accordance with such recognized meanings. Contract Documents are intended to be complementary. Whatever is called for in one, is interpreted to be called for in all. However, in the event of conflicts or discrepancies among the Contract Documents, interpretations will be based on the following descending order of precedence:

(a) Amendments and Construction Change Directives, with those of later date having precedence over those of an earlier date;

(b) The Supplemental General Conditions;

(c) Public Improvement General Conditions;

(d) The Public Improvement Contract;

(e) Construction Change Directive;

(f) Division One (General Requirements) of the Specifications;

(g) Detailed Schedules of finishes, equipment and other items included in the Specifications;

(h) Plans and Specifications (other than Division One and the Detailed Schedules to the Specifications);

(i) Large-scale drawings on Plans;

(j) Small-scale drawings on Plans;

(k) Dimension numbers written on Plans which shall prevail and take precedence over dimensions scaled from Plans;

(m) The Contractor’s RFQ proposal.

A.3.2 In the case of an inconsistency between Plans and Specifications or within either document not clarified by addendum, the better quality or greater quantity of Work shall be provided in accordance with the Owner's interpretation in writing.

A.3.3 If the Contractor finds discrepancies in, or omissions from the Contract Documents, or if the Contractor is in doubt as to their meaning, the Contractor shall at once notify the Owner in writing. Matters concerning and interpretation of requirements of the Contract Documents will be decided by the Owner, who may delegate that duty in some instances to the Architect/Engineer. Responses to Contractor's requests for interpretation of Contract Documents will be made in writing by Owner (or the Architect/Engineer) within any time limits agreed upon or otherwise with reasonable promptness. Interpretations and decisions of the Owner (or Architect/Engineer) will be consistent with the intent of and reasonably inferable from the Contract Documents. Contractor shall not proceed without direction in writing from the Owner (or Architect/Engineer).

A.3.4 References to standard specifications, manuals, codes of any technical society, organization or association, to the laws or regulations of any governmental authority, whether such reference be specific or by implication, shall mean the latest standard specification, manual, code, laws or regulations in effect in the jurisdiction where the project is occurring on the first published date of the Solicitation Document, except as may be otherwise specifically stated.

A.4 EXAMINATION OF PLANS, SPECIFICATIONS, AND SITE

A.4.1 It is understood that the Contractor, before submitting an Offer, has made a careful examination of the Contract Documents; has become fully informed as to the quality and quantity of materials and the character of the Work required; and has made a careful examination of the location and conditions of the Work and the sources of supply for materials. The Owner will in no case be responsible for any loss or for any unanticipated costs that may be suffered by the Contractor as a result of the Contractor's failure to acquire full information in advance in regard to all conditions pertaining to the Work. No oral agreement or conversation with any officer, agent, or personnel of the Owner, or with the Architect/Engineer either before or after the examination of this Contract, shall affect or modify any of the terms or obligations herein contained.

A.4.2 Should the Plans or Specifications fail to particularly describe the materials, kind of goods, or details of construction of any aspect of the Work, Contractor shall have the duty to make inquiry of the Owner and Architect/Engineer as to what is required prior to performance of the Work. Absent Specifications to the contrary, the materials or processes that would normally be used to produce first quality finished Work shall be considered a part of the Contract requirements.

A.4.3 Any design errors or omissions noted by the Contractor shall be reported promptly to the Owner and confirmed in writing, including without limitation, any nonconformity with Applicable Laws.

A.4.4 If the Contractor believes that adjustments to cost or Contract Time is involved because of clarifications or instructions issued by the Owner (or Architect/Engineer) in response to the Contractor’s notices or requests for information, the Contractor must submit a written request to the Owner, setting forth the nature and specific extent of the request, including all time and cost impacts against the Contract as soon as possible, but no later than thirty (30) Days after receipt by Contractor of the clarifications or instructions issued. If the Owner denies Contractor’s request for additional compensation, additional Contract Time, or other relief that Contractor believes results from the clarifications or instructions, the Contractor may proceed to file a Claim under Section D.3, Claims Review Process. If the Contractor fails to perform the obligations of Sections A.4.1 to A.4.3, the Contractor shall pay such costs and damages to the Owner as would have been avoided if the Contractor had performed such obligations.

A.5 INDEPENDENT CONTRACTOR STATUS

The service or services to be performed under this Contract are those of an independent contractor as defined in ORS 670.600. Contractor represents and warrants that it is not an officer, employee or agent of the Owner as those terms are used in ORS 30.265.

A.6 RETIREMENT SYSTEM STATUS AND TAXES
Contractor represents and warrants that it is not a contributing member of the Public Employees’ Retirement System and will be responsible for any federal or state taxes applicable to payment received under this Contract. Contractor will not be eligible for any benefits from these Contract payments of federal Social Security, employment insurance, workers’ compensation or the Public Employees’ Retirement System, except as a self-employed individual. Unless the Contractor is subject to backup withholding, Owner will not withhold from such payments any amount(s) to cover Contractor’s federal or state tax obligations.

A.7 GOVERNMENT EMPLOYMENT STATUS

A.7.1 If this payment is to be charged against federal funds, Contractor represents and warrants that it is not currently employed by the Federal Government. This does not preclude the Contractor from holding another contract with the Federal Government.

A.7.2 Contractor represents and warrants that Contractor is not an employee of the State of Oregon for purposes of performing Work under this Contract.

SECTION B
ADMINISTRATION OF THE CONTRACT

B.1 OWNER’S ADMINISTRATION OF THE CONTRACT

B.1.1 The Owner shall administer the Contract as described in the Contract Documents (1) during construction (2) until Final Payment is due and (3) during the one-year period after correction of Work. The Owner will act as provided in the Contract Documents, unless modified in writing in accordance with other provisions of the Contract. In performing these tasks, the Owner may rely on the Architect/Engineer or other consultants to perform some or all of these tasks.

B.1.2 The Owner will visit the site at intervals appropriate to the stage of the Contractor’s operations (1) to become generally familiar with and to keep the Owner informed about the progress and quality of the portion of the Work completed, (2) to endeavor to guard the Owner against defects and deficiencies in the Work, and (3) to determine in general if Work is being performed in a manner indicating that the Work, when fully completed, will be in accordance with the Contract Documents. The Owner will not make exhaustive or continuous on-site inspections to check the quality or quantity of the Work. The Owner will neither have control over or charge of, nor be responsible for the construction means, methods, techniques, sequences or procedures, or for the safety precautions and programs in connection with the Work. Inspection of the progress, quality, or quantity of the Work done by the Owner, any Owner representative, and public agency, the Architect/Engineer, or any inspector, shall not relieve the Contractor of any responsibility for the compliance of all Work with the Contract Documents.

B.1.3 Except as otherwise provided in the Contract Documents or when direct communications have been specifically authorized, the Owner and Contractor shall communicate with each other about matters arising out of or relating to the Contract. Communications by and with the Architect/Engineer’s consultants shall be through the Architect/Engineer. Communications by and with Subcontractors and material suppliers shall be through the Contractor. Communications by and with separate contractors shall be through the Owner.

B.2 Based upon the Architect/Engineer’s evaluations of the Contractor’s Application for Payment, or unless otherwise stipulated by the Owner, the Architect/Engineer will review and certify the amounts due the Contractor and will issue Certificates for Payment in such amounts. CONTRACTOR’S MEANS AND METHODS: MITIGATION OF IMPACTS

B.2.1 The Contractor shall supervise and direct the Work, using the Contractor’s best skill and attention. The Contractor shall be solely responsible for and have control over construction means, methods, techniques, sequences and procedures and for coordinating all portions of the Work under the Contract, unless the Contract Documents give other specific instructions concerning these matters. If the Contract Documents give specific instructions concerning construction means, methods, techniques, sequences or procedures, the Contractor shall evaluate the jobsite safety thereof and, except as stated below, shall be fully and solely responsible for the jobsite safety of such means, methods, techniques, sequences or procedures.

B.2.2 The Contractor is responsible to protect and maintain the Work during the course of construction and to mitigate any adverse impacts to the project, including those caused by authorized changes, which may affect cost, schedule, or quality.

B.2.3 The Contractor is responsible for the actions of all its personnel, laborers, suppliers, and Subcontractors on the project. The Contractor shall enforce strict discipline and good order among Contractor’s employees and other persons carrying out the Work. The Contractor shall not permit employment of persons who are unfit or unskilled for the tasks assigned to them.

B.3 MATERIALS AND WORKMANSHIP

B.3.1 The intent of the Contract Documents is to provide for the construction and completion in every detail of the Work described. All Work shall be performed in a professional manner and unless the means or methods of performing a task are specified elsewhere in the Contract Documents, Contractor shall employ methods that are generally accepted and used by the industry, in accordance with industry standards.

B.3.2 The Contractor is responsible to perform the Work as required by the Contract Documents. Defective Work shall be corrected at the Contractor’s expense.

B.3.3 Work done and materials furnished shall be subject to inspection and/or observation and testing by the Owner to determine if they conform to the Contract Documents. Inspection of the Work by the Owner does not relieve the Contractor of responsibility for the Work in accordance with the Contract Documents.

B.3.4 Contractor shall furnish adequate facilities, as required, for the Owner to have safe access to the Work including without limitation walkways, railings, ladders, tunnels, and platforms. Producers, suppliers, and fabricators shall also provide proper facilities and access to their
facilities.

B.3.5 The Contractor shall furnish Samples of materials for testing by the Owner and include the cost of the Samples in the Contract Price.

B.4 PERMITS

Contractor shall obtain and pay for all necessary permits, licenses and fees, except for those specifically excluded in the Supplemental General Conditions, for the construction of the Work, for temporary obstructions, enclosures, opening of streets for pipes, walls, utilities, environmental Work, etc., as required for the project. Contractor shall be responsible for all violations of the law, in connection with the construction or caused by obstructing streets, sidewalks or otherwise. Contractor shall give all requisite notices to public authorities.

B.5 COMPLIANCE WITH GOVERNMENT REGULATIONS

B.5.1 Contractor shall comply with Applicable Laws pertaining to the Work and the Contract. Failure to comply with such requirements shall constitute a breach of Contract and shall be grounds for Contract termination. Without limiting the generality of the foregoing, Contractor expressly agrees to comply with the following, as applicable: (i) Title VI and VII of Civil Rights Act of 1964, as amended; (ii) Section 503 and 504 of the Rehabilitation Act of 1973, as amended; (iii) the Health Insurance Portability and Accountability Act of 1996; (iv) the Americans with Disabilities Act of 1990, as amended; (v) ORS Chapter 659; as amended; (vi) ORS Chapter 659A; as amended; (vii) all regulations and administrative rules established pursuant to the foregoing laws; and (viii) all other applicable requirements of federal and state civil rights and rehabilitation statutes, rules and regulations.

B.5.2 Contractor shall comply with all applicable requirements of federal and state civil rights and rehabilitation statutes, rules and regulations, and

(a) Contractor shall not discriminate against Disadvantaged, Minority, Women or Emerging Small Business enterprises, as those terms are defined in ORS 200.005, or a business enterprise that is owned or controlled by or that employs a disabled veteran, as that term is defined in ORS 408.225, in the awarding of subcontracts.

(b) Contractor shall maintain, in current and valid form, all licenses and certificates required by Applicable Laws or this Contract when performing the Work.

B.5.3 Unless contrary to federal law, Contractor shall certify that it shall not accept a bid from Subcontractors to perform Work as described in ORS 701.005 under this Contract unless such Subcontractors are registered with the Construction Contractors Board in accordance with ORS 701.021 to 701.068 at the time they submit their bids to the Contractor.

B.5.4 Unless contrary to federal law, Contractor shall certify that each landscape contractor, as defined in ORS 671.520(2), performing Work under this Contract holds a valid landscape contractor's license issued pursuant to ORS 671.560.

B.5.5 The following notice is applicable to Contractors who perform excavation Work. ATTENTION: Oregon law requires you to follow rules adopted by the Oregon Utility Notification Center. Those rules are set forth in OAR 952-001-0010 through OAR 952-001-00100. You may obtain copies of the rules by calling the center at (503)232-1987.

B.5.6 Failure to comply with any or all of the requirements of B.5.1 through B.5.5 shall be a breach of Contract and constitute grounds for Contract termination. Damages or costs resulting from such noncompliance shall be the responsibility of Contractor.

B.6 SUPERINTENDENCE

Contractor shall keep on the site, during the progress of the Work, a competent superintendent and any necessary assistants who shall be satisfactory to the Owner and who shall represent the Contractor on the site. Directions given to the superintendent by the Owner shall be confirmed in writing to the Contractor.

B.7 INSPECTION

B.7.1 Owner shall have access to the Work at all times.

B.7.2 Inspection of the Work will be made by the Owner at its discretion. The Owner will have authority to reject Work that does not conform to the Contract Documents. Any Work found to be not in conformance with the Contract Documents, in the discretion of the Owner, shall be removed and replaced at the Contractor's expense.

B.7.3 Contractor shall make or obtain at the appropriate time all tests, inspections and approvals of portions of the Work required by the Contract Documents or by Applicable Laws or orders of public authorities having jurisdiction. Unless otherwise provided, the Contractor shall make arrangements for such tests, inspections and approvals with an independent testing laboratory or entity acceptable to the Owner, or with the appropriate public authority, and shall bear all related costs of tests, inspections and approvals. Tests or inspections conducted pursuant to the Contract Documents shall be made promptly to avoid unreasonable delay in the Work. The Contractor shall give the Owner timely notice of when and where tests and inspections are to be made so that the Owner may be present for such procedures. Required certificates of testing, inspection or approval shall, unless otherwise required by the Contract Documents, be secured by the Contractor and promptly delivered to the Owner.

B.7.4 As required by the Contract Documents, Work done or material used without required inspection or testing and/or without providing timely notice to the Owner may be ordered removed at the Contractor's expense.

B.7.5 If directed to do so any time before the Work is accepted, the Contractor shall uncover portions of the completed Work for inspection. After inspection, the Contractor shall restore such portions of Work to the standard required by the Contract. If the Work uncovered is unacceptable or was done without required testing or inspection or sufficient notice to the Owner, the uncovering and restoration shall be done at the Contractor's expense. If the Work uncovered is acceptable and was done with sufficient notice to the
Owner, the uncovering and restoration will be paid for pursuant to an Amendment.

B.7.6 If any testing or inspection reveals failure of the portions of the Work to comply with requirements established by the Contract Documents, all costs made necessary by such failure, including those of repeated procedures and compensation for the Owner’s and Architect/Engineer’s services and expenses, shall be at the Contractor’s expense.

B.7.7 When the United States government participates in the cost of the Work, or the Owner has an agreement with other public or private organizations, or if any portion of the Work is being performed for a third party or in close proximity to third party facilities, representatives of these organizations shall have the right to inspect the Work affecting their interests or property. Their right to inspect shall not make them a party to the Contract and shall not interfere with the rights of the parties of the Contract. Instructions or orders of such parties shall be transmitted to the Contractor, through the Owner.

B.8 SEVERABILITY

If any provision of this Contract is declared by a court to be illegal or in conflict with any law, the validity of the remaining terms and provisions shall not be affected and the rights and obligations of the parties shall be construed and enforced as if the Contract did not contain the particular provision held to be invalid.

B.9 ACCESS TO RECORDS

B.9.1 Contractor shall keep, at all times on the Work site, one record copy of the complete Contract Documents, including the Plans, Specifications, Construction Change Directives and addenda, in good order and marked currently to record field changes and selections made during construction, and one record copy of Shop Drawings, Product Data, Samples and similar Submittals, and shall at all times give the Owner access thereto.

B.9.2 Contractor shall retain and the Owner and its duly authorized representatives shall have access, for a period not less than ten (10) years, to all Record Documents, financial and accounting records, and other books, documents, papers and records of Contractor which are pertinent to the Contract, including records pertaining to Overhead and indirect costs, for the purpose of making audit, examination, excerpts and transcripts. If for any reason, any part of the Work or this Contract shall be subject to litigation, Contractor shall retain all such records until all litigation is resolved and Contractor shall continue to provide Owner and/or its agents with full access to such records until such time as all litigation is complete and all periods for appeal have expired and full and final satisfaction of any judgment, order or decree is recorded and Owner receives a record copy of documentation from Contractor.

B.10 WAIVER

Failure of the Owner to enforce any provision of this Contract shall not constitute a waiver or relinquishment by the Owner of the right to such performance in the future nor of the right to enforce any other provision of this Contract.

B.11 SUBCONTRACTS AND ASSIGNMENT

B.11.1 Contractor shall require each Subcontractor, to the extent of the Work to be performed by the Subcontractor, to be bound by the terms and conditions of these Public Improvement General Conditions, and to assume toward the Contractor all of the obligations and responsibilities which the Contractor assumes toward the Owner thereunder, unless (1) the same are clearly inapplicable to the subcontract at issue because of legal requirements or industry practices, or (2) specific exceptions are requested by Contractor and approved in writing by Owner. Where appropriate, Contractor shall require each Subcontractor to enter into similar agreements with sub-subcontractors at any level.

B.11.2 At Owner’s request, Contractor shall submit to Owner prior to their execution either Contractor’s form of subcontract, or the subcontract to be executed with any particular Subcontractor. If Owner disapproves such form, Contractor shall not execute the form until the matters disapproved are resolved to Owner’s satisfaction. Owner’s review, comment upon or approval of any such form shall not relieve Contractor of its obligations under this Agreement or be deemed a waiver of such obligations of Contractor.

B.11.3 Contractor shall not assign, sell, or transfer its rights, or delegate its responsibilities under this Contract, in whole or in part, without the prior written approval of the Owner. No such written approval shall relieve Contractor of any obligations of this Contract, and any transferee shall be considered the agent of the Contractor and bound to perform in accordance with the Contract Documents. Contractor shall remain liable as between the original parties to the Contract as if no assignment had occurred.

B.12 SUCCESSORS IN INTEREST

The provisions of this Contract shall be binding upon and shall accrue to the benefit of the parties to the Contract and their respective permitted successors and assigns.

B.13 OWNER'S RIGHT TO DO WORK

Owner reserves the right to perform other or additional work at or near the project site with other forces than those of the Contractor. If such work takes place within or next to the project site, Contractor shall coordinate work with the other contractors or forces, cooperate with all other contractors or forces, carry out the Work in a way that will minimize interference and delay for all forces involved, place and dispose of materials being used so as not to interfere with the operations of another, and join the Work with the work of the others in an acceptable manner and perform it in proper sequence to that of the others. The Owner will resolve any disagreements that may arise between or among Contractor and the other contractors over the method or order of doing all work (including the Work). In case of unavoidable interference, the Owner will establish work priority (including the Work) which generally will be in the sequence that the contracts were awarded.

B.14 OTHER CONTRACTS

In all cases and at any time, the Owner has the right to execute other contracts related to or unrelated to the Work of this
Contract. The Contractor of this Contract shall fully cooperate with any and all other contractors without additional cost to the Owner in the manner described in section B.13.

B.15 GOVERNING LAW

This Contract shall be governed by and construed in accordance with the laws of the State of Oregon without regard to principles of conflict of laws.

B.16 LITIGATION

Any Claim between Owner and Contractor that arises from or relates to this Contract and that is not resolved through the Claims Review Process in Section D.3 shall be brought and conducted solely and exclusively within the Circuit Court of Benton County for the State of Oregon; provided, however, if a Claim must be brought in a federal forum, then it shall be brought and conducted solely and exclusively within the United States District Court for the District of Oregon. In no event shall this section be construed as a waiver by the State of Oregon on any form of defense or immunity, whether sovereign immunity, governmental immunity, immunity based on the Eleventh Amendment to the Constitution of the United States or otherwise, from any claim or from the jurisdiction of any court.

CONTRACTOR, BY EXECUTION OF THIS CONTRACT, HEREBY CONSENTS TO THE IN PERSONAM JURISDICTION OF THE COURTS REFERENCED IN THIS SECTION B.16.

B.17 ALLOWANCES

B.17.1 The Contractor shall include in the Contract Price all allowances stated in the Contract Documents. Items covered by allowances shall be supplied for such amounts and by such persons or entities as the Owner may direct.

B.17.2 Unless otherwise provided in the Contract Documents:

(a) when finally reconciled, allowances shall cover the cost to the Contractor of materials and equipment delivered at the site and all required taxes, less applicable trade discounts;

(b) Contractor’s costs for unloading and handling at the site, labor, installation costs, Overhead, profit and other expenses contemplated for stated allowance amounts shall be included in the Contract Price but not in the allowances;

(c) whenever costs are more than or less than allowances, the Contract Price shall be adjusted accordingly by Amendment. The amount of the Amendment shall reflect (i) the difference between actual costs and the allowances under Section B.17.2(a) and (2) changes in Contractor’s costs under Section B.17.2(b);

(d) Unless Owner requests otherwise, Contractor shall provide to Owner a proposed fixed price for any allowance work prior to its performance.

B.18 SUBMITTALS, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

B.18.1 The Contractor shall prepare and keep current, for the Architect’s/Engineer’s approval (or for the approval of Owner if approval authority has not been delegated to the Architect/Engineer), a schedule and list of Submittals which is coordinated with the Contractor’s construction schedule and allows the Architect/Engineer reasonable time to review Submittals. Owner reserves the right to finally approve the schedule and list of Submittals. Submittals include, without limitation, Shop Drawings, product data, and samples which are described below:

(a) Shop Drawings are drawings, diagrams, schedules and other data specially prepared for the Work by the Contractor or a Subcontractor (including any sub-subcontractor), manufacturer, supplier or distributor to illustrate some portion of the Work.

(b) Product Data are illustrations, standard schedules, performance charts, instructions, brochures, diagrams and other information furnished by the Contractor to illustrate materials or equipment for some portion of the Work.

(c) Samples are physical examples which illustrate materials, equipment or workmanship and establish standards by which the Work will be judged.

B.18.2 Shop Drawings, Product Data, Samples and similar Submittals are not Contract Documents. The purpose of their Submittal is to demonstrate for those portions of the Work for which Submittals are required by the Contract Documents the way by which the Contractor proposes to conform to the information given and the design concept expressed in the Contract Documents. Review of Submittals by the Architect/Engineer is not conducted for the purpose of determining the accuracy and completeness of other details such as dimensions and quantities, or for substantiating instructions for installation or performance of equipment or systems, or for approval of safety precautions or, unless otherwise specifically stated by the Architect/Engineer, of any construction means, methods, techniques, sequences or procedures, all of which remain the responsibility of the Contractor as required by the Contract Documents. The Architect/Engineer’s review of the Contractor’s Submittals shall not relieve the Contractor of its obligations under the Contract Documents. The Architect/Engineer’s approval of a specific item shall not indicate approval of an assembly of which the item is a component. Informational Submittals upon which the Architect/Engineer is not expected to take responsive action may be so identified in the Contract Documents. Submittals which are not required by the Contract Documents may be returned by the Architect/Engineer without action.

B.18.3 The Contractor shall review for compliance with the Contract Documents, approve and submit to the Architect/Engineer Shop Drawings, Product Data, Samples and similar Submittals required by the Contract Documents with reasonable promptness and in such sequence as to cause no delay in the Work or in the activities of the Owner or of separate contractors. Submittals which are not marked as reviewed for compliance with the Contract Documents and approved by the Contractor may be returned by the Architect/Engineer without action.
B.18.4 Approving and submitting shop drawings, product data, samples and similar Submittals, the Contractor represents that the Contractor has determined and verified materials, field measurements and field construction criteria related thereto, or will do so, and has checked and coordinated the information contained within such Submittals with the requirements of the Work and of the Contract Documents.

B.18.5 The Contractor shall perform no portion of the Work for which the Contract Documents require submittal and review of Shop Drawings, Product Data, Samples or similar Submittals until the respective Submittal has been approved by the Architect/Engineer.

B.18.6 The Work shall be in accordance with approved Submittals except that the Contractor shall not be relieved of responsibility for deviations from requirements of the Contract Documents by the Architect/Engineer’s review or approval of Shop Drawings, Product Data, Samples or similar Submittals unless the Contractor has specifically informed the Architect/Engineer in writing of such deviation at the time of submittal and (i) the Architect/Engineer has given written approval to the specific deviation as a minor change in the Work, or (ii) an Amendment or Construction Change Directive has been executed by Owner authorizing the deviation. The Contractor shall not be relieved of responsibility for errors or omissions in Shop Drawings, Product Data, Samples or similar Submittals by the Architect/Engineer’s review or approval thereof.

B.18.7 In the event that Owner elects not to have the obligations and duties described under this Section B.18 performed by the Architect/Engineer, or in the event no Architect/Engineer is employed by Owner on the project, all obligations and duties assigned to the Architect/Engineer hereunder shall be performed by the Owner.

B.19 SUBSTITUTIONS

The Contractor may make Substitutions only with the written consent of the Owner, after evaluation by the Owner and only in accordance with an Amendment or Construction Change Directive. Substitutions shall be subject to the requirements of the bid documents. By making requests for Substitutions, the Contractor: represents that the Contractor has personally investigated the proposed substitute product; represents that the Contractor will provide the same warranty for the Substitution that the Contractor would for the product originally specified unless approved otherwise; certifies that the cost data presented is complete and includes all related costs under this Contract including redesign costs, and waives all claims for additional costs related to the Substitution which subsequently become apparent; and will coordinate the installation of the accepted Substitution, making such changes as may be required for the Work to be completed in all respects.

B.20 USE OF PLANS AND SPECIFICATIONS

Plans, Specifications and related Contract Documents furnished to Contractor by Owner or Owner’s Architect/Engineer shall be used solely for the performance of the Work under this Contract. Contractor and its Subcontractors and suppliers are authorized to use and reproduce applicable portions of such documents appropriate to the execution of the Work, but shall not claim any ownership or other interest in them beyond the scope of this Contract, and no such interest shall attach. Unless otherwise indicated, all common law, statutory and terminate the Contract.

B.21 FUNDS AVAILABLE AND AUTHORIZED

If Owner fails to receive funding, appropriations, allocations or other expenditure authority as contemplated by Owner’s budget and Owner determines, in its assessment and ranking of the policy objectives explicit or implicit in Owner’s budget, Owner may other reserved rights, in addition to copyrights, are retained by Owner.

B.22 NO THIRD PARTY BENEFICIARIES

Owner and Contractor are the only parties to this Contract and are the only parties entitled to enforce its terms. Nothing in this Contract gives, is intended to give, or shall be construed to give or provide any benefit or right, whether directly, indirectly, or otherwise, to third persons unless such third persons are individually identified by name herein and expressly described as intended beneficiaries of the terms of this Contract.

SECTION C WAGES AND LABOR

C.1 MINIMUM WAGE RATES ON PUBLIC WORKS

Contractor shall comply fully with the provisions of ORS 279C.300 through 279C.870. Documents establishing those conditions, as determined by the Commissioner of the Bureau of Labor and Industries (BOLI), are included as attachments to or are incorporated by reference in the Contract Documents. Pursuant to ORS 279C.830(1)(c), Contractor shall pay workers at not less than the specified minimum hourly rate of wage, and shall include that requirement in all subcontracts. If the Work is subject to both the state prevailing wage rate law and the federal Davis-Bacon Act, Contractor shall pay the higher of the applicable state or federal prevailing rate of wage. Contractor shall provide written notice to all workers of the number of hours per day and days per week such workers may be required to work.

C.2 PAYROLL CERTIFICATION AND FEE REQUIREMENTS

C.2.1 In accordance with ORS 279C.845, the Contractor and every Subcontractor shall submit written certified statements to the Owner, on the form prescribed by the Commissioner of the Bureau of Labor and Industries, certifying the hourly rate of wage paid each worker which the Contractor or the Subcontractor has employed on the project and further certifying that no worker employed on the project has been paid less than the prevailing rate of wage or less than the minimum hourly rate of wage specified in the Contract, which certificate and statement shall be verified by the oath of the Contractor or the Subcontractor that the Contractor or Subcontractor has read the certified statement, that the Contractor or Subcontractor knows the contents of the certified statement, and, that to the Contractor’s or Subcontractor's best knowledge and belief, the certified statement is true. The certified statements shall set out accurately and completely the payroll records for the prior week, including the name and address of each worker, the worker's correct classification, rate of pay, daily and weekly number of
hours worked, deductions made, and actual wages paid. Certified statements for each week during which the Contractor or Subcontractor has employed a worker on the project shall be submitted once a month, by the fifth business day of the following month. The Contractor and Subcontractors shall preserve the certified statements for a period of ten (10) years from the date of completion of the Contract.

C.2.2 Pursuant to ORS 279C.845(7), the Owner shall retain 25 percent of any amount earned by the Contractor on this public works project until the Contractor has filed the certified statements required by section C.2.1. The Owner shall pay to the Contractor the amount retained under this subsection within 14 days after the Contractor files the required certified statements, regardless of whether a Subcontractor has failed to file certified statements. Pursuant to ORS 279C.845(8), the Contractor shall retain 25 percent of any amount earned by a first-tier Subcontractor on this public works project until the first-tier Subcontractor has filed with the Owner the certified statements required by C.2.1. Before paying any amount retained under this subsection, the Contractor shall verify that the first-tier Subcontractor has filed the certified statement. Within 14 days after the first-tier Subcontractor files the required certified statement the Contractor shall pay the first-tier Subcontractor any amount retained under this subsection.

C.2.3 In accordance with statutory requirements and administrative rules promulgated by the Commissioner of the Bureau of Labor and Industries, the fee required by ORS 279C.825(1) will be paid by Owner to the Commissioner.

C.3 PROMPT PAYMENT AND CONTRACT CONDITIONS

C.3.1 As a condition to Owner's performance hereunder, the Contractor shall:

C.3.1.1 Make payment promptly, as due, to all persons supplying to Contractor labor or materials for the prosecution of the Work provided for in this Contract.

C.3.1.2 Pay all contributions or amounts due the State Industrial Accident Fund from such Contractor Subcontractor incurred in the performance of the Contract.

C.3.1.3 Not permit any lien or claim to be filed or prosecuted against the Owner on account of any labor or material furnished. Contractor will not assign any claims that Contractor has against Owner, or assign any sums due by Owner, to Subcontractors, suppliers, or manufacturers, and will not make any agreement or act in any way to give Subcontractors a claim or standing to make a claim against the Owner.

C.3.1.4 Pay to the Department of Revenue all sums withheld from employees pursuant to ORS 316.167.

C.3.2 As a condition to Owner’s performance hereunder, if Contractor fails, neglects or refuses to make prompt payment of any claim for labor or services furnished to the Contractor of a Subcontractor by any person in connection with the project as such claim becomes due, the proper officer(s) representing the Owner may pay the claim and charge the amount of the payment against funds due or become due to contractor under this Contract.

Payment of claims in this manner shall not relieve the Contractor or the Contractor’s surety from obligation with respect to any unpaid claims.

C.3.3 Contractor shall include in each subcontract for property or services entered into by the Contractor and a first-tier subcontractor, including a material supplier, for the purpose of performing a construction contract, a payment clause that obligates the Contractor to pay the first-tier Subcontractor for satisfactory performance under its subcontract within ten (10) Days out of such amounts as are paid to the Contractor by the public contracting agency under such contract.

C.3.4 All employers, including Contractor, that employ subject workers who work under this contract in the State of Oregon shall comply with ORS 656.017 and provide the required Workers’ Compensation coverage, unless such employers are exempt under ORS 656.126. Contractor shall ensure that each of its Subcontractors complies with these requirements.

C.4 PAYMENT FOR MEDICAL CARE

As a condition to Owner's performance hereunder, Contractor shall promptly, as due, make payment to any person, partnership, association or corporation furnishing medical, surgical, and hospital care or other needed care and attention, incident to sickness or injury, to the employees of such Contractor, all sums of which the Contractor agrees to pay for such services and all moneys and sums which the Contractor has collected or deducted from the wages of personnel pursuant to any law, contract or agreement for the purpose of providing or paying for such services.

C.5 HOURS OF LABOR

As a condition to Owner's performance hereunder, no person shall be employed to perform Work under this Contract for more than ten (10) hours in any one day or forty (40) hours in any one week, except in cases of necessity, emergency or where public policy absolutely requires it. In such instances, Contractor shall pay the employee at least time and a half pay:

(a) For all overtime in excess of eight (8) hours a day or forty (40) hours in any one week when the work week is five consecutive Days, Monday through Friday; or

(b) For all overtime in excess of ten (10) hours a day or forty (40) hours in any one week when the work week is four consecutive Days, Monday through Friday; and

(c) For all Work performed on Saturday and on any legal holiday specified in ORS 279C.540.

This section C.5 will not apply to Contractor's Work under this Contract to the extent Contractor is currently a party to a collective bargaining agreement with any labor organization.

This Section C.5 shall not excuse Contractor from completion of the Work within the time required under this Contract.
SECTION D
CHANGES IN THE WORK

D.1 CHANGES IN WORK

D.1.1 The terms of this Contract shall not be waived, altered, modified, supplemented or amended in any manner whatsoever, without prior written agreement and then only after any necessary approvals have been obtained. An Amendment or Change Order is required, which shall not be effective until its execution by the parties to this Contract and all approvals required by public contracting laws have been obtained.

D.1.2 It is mutually agreed that changes in Plans, quantities, or details of construction are inherent in the nature of construction and may be necessary or desirable during the course of construction. Within the general scope of this Contract, the Owner may at any time, without notice to the sureties and without impairing the Contract, require changes consistent with this Section D.1. All changes to the Work shall be documented and Amendments shall be executed under the conditions of the Contract Documents. Such changes may include, but are not limited to:

(a) Modification of specifications and design.
(b) Increases or decreases in quantities.
(c) Increases or decreases to the amount of Work.
(d) Addition or elimination of any Work item.
(e) Change in the duration of the project.
(f) Acceleration or delay in performance of Work.
(g) Deductive changes.
(h) Changed conditions.

Deductive changes are those that reduce the scope of the Work, and shall be made by mutual agreement whenever feasible. In cases of suspension or partial termination under Section J, Owner reserves the right to unilaterally impose a deductive change and to self-perform such Work, for which the provisions of B.13 (Owner’s Right to Do Work) shall then apply. Adjustments in compensation shall be made under the provisions of D.1.3, in which costs for deductive changes shall be based upon a Direct Costs adjustment together with the related percentage markup specified for profit, Overhead and other indirect costs, unless otherwise agreed to by Owner.

D.1.3 The Owner and Contractor agree that adjustments to or deletions from the Work shall be administered and compensated according to the following:

(a) Unit pricing may be utilized at the Owner’s option when unit prices or solicitation alternates were provided that established the cost for adjustments to Work, and a binding obligation exists under the Contract on the parties covering the terms and conditions of the adjustment to Work.

(b) If the Owner elects not to utilize unit pricing, or in the event that unit pricing is not available or appropriate, fixed pricing may be used for adjustments to or deletions from the Work. In fixed pricing, the basis of payments or total price shall be agreed upon in writing between the parties to the Contract, and shall be established before the Work is done whenever feasible. Notwithstanding the foregoing, the mark-ups set forth in D.1.3(c) shall be utilized in establishing fixed pricing, and such mark-ups shall not be exceeded. Cost and price data relating to adjustments to or deletions from the Work shall be supplied by Contractor to Owner upon request, but Owner shall be under no obligation to make such requests.

(c) In the event that unit pricing and fixed pricing are not utilized, then adjustments to or deletions from the Work shall be performed on a cost reimbursement basis for Direct Costs. Such Work shall be compensated on the basis of the actual, reasonable and allowable cost of labor, equipment, and material furnished on the Work performed. In addition, the following markups shall be added to the Contractor’s or Subcontractor’s Direct Costs as full compensation for profit, Overhead and other indirect costs for Work directly performed with the Contractor’s or Subcontractor’s own forces:

<table>
<thead>
<tr>
<th>Description</th>
<th>Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Labor</td>
<td>15%</td>
</tr>
<tr>
<td>On Equipment</td>
<td>10%</td>
</tr>
<tr>
<td>On Materials</td>
<td>10%</td>
</tr>
<tr>
<td>$0.00 - $5,000.00</td>
<td>10%</td>
</tr>
<tr>
<td>and then Over $5,000.00</td>
<td>5%</td>
</tr>
</tbody>
</table>

Notwithstanding the foregoing, the maximum aggregate markup to be billed shall not exceed 10% regardless of the number of Subcontract tiers.

Payments made to the Contractor shall be complete compensation for Overhead, profit, and all costs that were incurred by the Contractor or by other forces furnished by the Contractor, including Subcontractors, for adjustments or deletions from the Work pursuant to an Amendment or Change Order. Owner may establish a maximum cost for additional Work under this Section D.1.3, which shall not be exceeded for reimbursement without additional written authorization from Owner in the form of an Amendment or Change Order. Contractor shall not be required to complete such additional Work without additional authorization.

D.1.4 Any necessary adjustment of Contract Time that may be required as a result of adjustments to or deletions from the Work must be agreed upon by the parties before the start of the revised Work unless Owner authorizes Contractor to start the revised Work before agreement on Contract Time adjustment. Contractor shall submit any request for additional compensation (and additional Contract Time if Contractor was authorized to start Work before an adjustment of Contract Time was approved) as soon as possible but no later than thirty (30) Days after receipt of Owner’s request for additional Work. Contractor agrees that this thirty (30) Day notice period is adequate time for it to request and document the amount of additional compensation or adjustment of Contract Time. If Contractor’s request for additional compensation or adjustment of Contract Time is not made within the
D.1.5 If any adjustment to Work under Section D.1.3 causes an increase in Contractor's cost of, or the Contract Time required for the performance of any other part of the Work under this Contract, Contractor shall submit a written request to the Owner, setting forth the nature and specific extent of the request, including all time and cost impacts against the Contract as soon as possible, but no later than thirty (30) Days after receipt of Owner's request for adjustments to or deletions from the Work by Contractor.

The thirty (30) Day time limit applies to claims of Subcontractors, suppliers, or manufacturers who may be affected by Owner's request for adjustments to or deletions from the Work and who request additional compensation or an extension of Contract Time to perform; Contractor has responsibility for contacting its Subcontractors, suppliers, or manufacturers within the thirty (30) Day time limit, and including their requests with Contractor's requests. If the request involves Work to be completed by Subcontractors, or materials to be furnished by suppliers or manufacturers, such requests shall be submitted to the Contractor in writing with full analysis and justification for the adjustments to compensation and Contract Time requested. The Contractor shall analyze and evaluate the merits of the requests submitted by Subcontractors, suppliers, and manufacturers to Contractor prior to including those requests and Contractor's analysis and evaluation of those requests with Contractor's requests for adjustments to compensation or Contract Time that Contractor submits to the Owner. Failure of Subcontractors, suppliers, manufacturers or others to submit their requests to Contractor for inclusion with Contractor's requests submitted to Owner within the time period and by the means described in this section shall constitute a waiver of these Subcontractor claims. The Owner will not consider direct requests or claims from Subcontractors, suppliers, manufacturers or others not a party to this Contract. The consideration of such requests and claims under this section does not give any Person, not a party to the Contract the right to bring a claim against Owner, whether in this claims process, in litigation, or in any dispute resolution process.

If the Owner denies the Contractor's request for adjustment to compensation or Contract Time and the request is timely as set forth herein, the Contractor may proceed to file a Claim under Section D.3, Claims Review Process.

D.1.6 Contractor agrees that no request or Claim for additional costs or an adjustment of Contract Time shall be allowed if made after receipt of Final Payment application under this Contract. Final Payment application must be made by Contractor within the time required under Section E.6.4.

D.1.7 It is understood that changes in the Work are inherent in construction of this type. The number of changes, the scope of those changes, and the effect they have on the progress of the original Work cannot be defined at this time. The Contractor is notified that numerous changes may be required and that there will be no compensation made, unless and only to the extent otherwise provided in the Contract Documents, to the Contractor directly related to the number of changes. Each change will be evaluated for extension of Contract Time and increase or decrease in compensation based on its own merit.

D.2 DELAYS

D.2.1 Delays in construction include “Avoidable Delays”, which are defined in Section D.2.1.1, and “Unavoidable Delays”, which are defined in Section D.2.1.2. The effect of Avoidable Delays is described in Section D.2.2 and the effect of Unavoidable Delays is described in Section D.2.3.

D.2.1.1 Avoidable Delays include any delays other than Unavoidable Delays, and include delays that otherwise would be considered Unavoidable Delays but that:

(a) Could have been avoided by the exercise of care, prudence, foresight, and diligence on the part of the Contractor or its Subcontractors.

(b) Affect only a portion of the Work and do not necessarily prevent or delay the prosecution of other parts of the Work or the completion of the whole Work within the Contract Time.

(c) Do not impact activities on the accepted CPM Construction Schedule.

(d) Are associated with the reasonable interference of other contractors employed by the Owner that do not necessarily prevent the completion of the whole Work within the Contract Time.

D.2.1.2 Unavoidable Delays include delays other than Avoidable Delays that are:

(a) To the extent caused by any actions of the Owner, or any other employee or agent of the Owner, or by separate contractor employed by the Owner.

(b) To the extent caused by any site conditions that differ materially from what was represented in the Contract Documents or from conditions that would normally be expected to exist and be inherent to the construction activities defined in the Contract Documents. The Contractor agrees to notify the Owner immediately of differing site conditions before the area has been disturbed. The Owner will investigate the area and make a determination as to whether the conditions differ materially from either the conditions stated in the Contract Documents or those that could reasonably be expected in execution of this particular Contract. If Contractor and the Owner agree that a differing site condition exists, any adjustment to compensation or Contract Time will be determined based on the process set forth in Section D.1.5 for adjustments to or deletions from Work. If the Owner disagrees that a differing site condition exists, the process set forth in Section D.1.5 for adjustments to or deletions from Work shall be followed.
condition exists and denies Contractor’s request for additional compensation or Contract Time, Contractor may proceed to file a Claim under Section D.3, Claims Review Process.

(c) To the extent caused by Force Majeure acts, events or occurrences that could not have been avoided by the exercise of care, prudence, foresight, and diligence on the part of the Contractor or its Subcontractors.

(d) To the extent caused by adverse weather conditions. Any adverse weather conditions must be substantiated by documentary evidence that weather conditions were abnormal for the specific time period claimed, could not have been anticipated by the Contractor, and adversely impacted the Project in a manner that could not be avoided by rescheduling the Work or by implementing measures to protect against the weather so that the Work could proceed. A rain, windstorm, high water, or other natural phenomenon for the specific locality of the Work, which might reasonably have been anticipated from the previous 10-year historical records of the general locality of the Work, shall not be construed as abnormal. The parties agree that rainfall greater than the following levels cannot be reasonably anticipated:

(i) Daily rainfall equal to, or greater than, 0.50 inch during a month when the monthly rainfall exceeds the normal monthly average by twenty-five percent (25 %) or more.

(ii) Daily rainfall equal to, or greater than, 0.75 inch at any time.

The Office of the Environmental Data Service of the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce nearest the Project site shall be considered the official agency of record for weather information.

D.2.2 Contractor agrees it is not entitled to additional compensation or additional Contract Time for Avoidable Delays.

D.2.3 In the event of Unavoidable Delays, based on principles of equitable adjustment, Contractor may be entitled to the following:

(a) Contractor may be entitled to additional compensation or additional Contract Time, or both, for Unavoidable Delays described in Section D.2.1.2 (a) and (b).

(b) Contractor may be entitled to additional Contract Time for Unavoidable Delays described in Section D.2.1.2(c) and (d).

In the event of any requests for additional compensation or additional Contract Time, or both, as applicable, arising under this Section D.2.3 for Unavoidable Delays, other than requests for additional compensation or additional Contract Time for differing site conditions for which a review process is established under Section D.2.1.2 (b), Contractor must submit a written notification of the delay to the Owner within two (2) Days of the occurrence of the cause of the delay. This written notification shall state the cause of the potential delay, the project components impacted by the delay, and the anticipated additional Contract Time extension or the additional compensation, or both, as applicable, resulting from the delay. Within seven (7) Days after the cause of the delay has been mitigated, or in no case more than thirty (30) Days after the initial written notification, the Contractor agrees to submit to the Owner, a complete and detailed request for additional compensation or additional Contract Time, or both, as applicable, resulting from the delay. If the Owner denies Contractor’s request for additional compensation or adjustment of Contract Time, the Contractor may proceed to file a Claim under Section D.3, Claims Review Process, provided Contractor has complied with the requirement in this Section D.2.3. Contractor agrees any Claim it may have is barred if Contractor does not comply with the requirements herein.

If Contractor does not timely submit the notices required under this Section D.2, then unless otherwise prohibited by law, Contractor’s Claim shall be barred.

D.3 CLAIMS REVIEW PROCESS

D.3.1 All Contractor Claims shall be referred to the Owner for review. Contractor’s Claims, including Claims for adjustments to compensation or Contract Time, shall be submitted in writing by Contractor to the Owner within five (5) Days after a denial of Contractor’s initial request for an adjustment of Contract terms, payment of money, extension of Contract Time or other relief, provided that such initial request has been submitted in accordance with the requirements and within the time limits established in these Public Improvement General Conditions. Within thirty (30) Days after the initial Claim, Contractor shall submit to the Owner a complete and detailed description of the Claim (the “Detailed Notice”) that includes all information required by Section D.3.2. Contractor agrees that, unless the Claim is made in accordance with these time requirements, Contractor voluntarily waived all rights to prosecute its Claim.

D.3.2 The Detailed Notice of the Claim shall be submitted in writing by Contractor and shall include a detailed, factual statement of the basis of the Claim, pertinent dates, Contract provisions which support or allow the Claim, reference to or copies of any documents which support the Claim, the dollar value of the Claim, and the Contract Time adjustment requested for the Claim. If the Claim involves Work to be completed by Subcontractors, the Contractor will analyze and evaluate the merits of the Subcontractor claim prior to forwarding it and that analysis and evaluation to the Owner. The Owner will not consider direct claims from Subcontractors, suppliers, manufacturers, or others not a party to this Contract. Contractor agrees that it will make no agreement, covenant, or assignment, nor will it commit any other act that will permit or assist any Subcontractor, supplier, manufacturer, or other to directly or indirectly make a claim against Owner.

D.3.3 The Owner will review all Claims and take one or more of the following preliminary actions within ten (10) Days of receipt of the Detailed Notice of a Claim: (1) request additional supporting information from the Contractor; (2) inform the Contractor and Owner in writing of the time required for adequate review and response; (3) reject the Claim in whole or in part and identify the reasons for rejection; (4) based on principles of equitable adjustment,
recommend approval of all or part of the Claim; or
(5) propose an alternate resolution.

D.3.4 The Owner’s decision shall be final and binding on the Contractor unless appealed by written notice to the Owner within fifteen (15) Days of receipt of the decision. The Contractor must present written documentation supporting the Claim within fifteen (15) Days of the notice of appeal. After receiving the appeal documentation, the Owner shall review the materials and render a decision within thirty (30) Days after receiving the appeal documents.

D.3.5 The decision of the Owner shall be final and binding unless the Contractor delivers to the Owner its request for mediation, which shall be a non-binding process, within fifteen (15) Days of the date of the Owner’s decision. The mediation process will be considered to have commenced as of the date the Contractor delivers the request. Both parties acknowledge and agree that participation in mediation is a prerequisite to commencement of litigation of any disputes relating to the Contract. Both parties further agree to exercise their best efforts in good faith to resolve all disputes within sixty (60) Days of the commencement of the mediation through the mediation process set forth herein.

In the event that a lawsuit must be filed within this sixty (60) Day period in order to preserve a cause of action, the parties agree that, notwithstanding the filing, they shall proceed diligently with the mediation to its conclusion prior to actively prosecuting the lawsuit, and shall seek from the Court in which the lawsuit is pending such stays or extensions, including the filing of an answer, as may be necessary to facilitate the mediation process. Further, in the event settlements are reached on any issues through mediation, the plaintiff shall promptly cause to be entered by the Court a stipulated general judgment of dismissal with prejudice, or other appropriate order limiting the scope of litigation as provided in the settlement.

D.3.6 Should the parties arrive at an impasse regarding any Claims or disputed Claims, it is agreed that the parties shall participate in mediation as specified in Section D.3.5. The mediation process will be considered to have been commenced as of the date one party delivers to the other its request in writing to mediate. The mediator shall be an individual mutually acceptable to both parties, but in the absence of agreement each party shall select a temporary mediator and the temporary mediators shall jointly select the permanent mediator. Each party shall pay its own costs for the time and effort involved in mediation. The cost of the mediator shall be split equally between the two parties. Both parties agree to exercise their best effort in good faith to resolve all disputes in mediation. Participation in mediation is a mandatory requirement of both the Owner and the Contractor. The schedule, time and place for mediation will be mutually acceptable, or, failing mutual agreement, shall be as established by the mediator. The parties agree to comply with Owner’s administrative rules governing the confidentiality of mediation, if any, and shall execute all necessary documents to give effect to such confidentiality rules. In any event, the parties shall not subpoena the mediator or otherwise require the mediator to produce records, notes or work product, or to testify in any future proceedings as to information disclosed or representations made in the course of mediation, except to the extent disclosure is required by law.

D.3.7 Unless otherwise directed by Owner, Contractor shall proceed with the Work while any Claim, or mediation or litigation arising from a Claim, is pending. Regardless of the review period or the final decision of the Owner, the Contractor shall continue to diligently pursue the Work as identified in the Contract Documents. In no case is the Contractor justified or allowed to cease or Delay Work, in whole or in part, without a written stop work order from the Owner.

SECTION E
P A Y M E N T S

E.1 SCHEDULE OF VALUES

The Contractor shall submit, at least ten (10) Days prior to submission of its first application for progress payment, a schedule of values ("Schedule of Values") for the contracted Work. This schedule shall provide a breakdown of values for the contracted Work and will be the basis for progress payments. The breakdown shall demonstrate reasonable, identifiable, and measurable components of the Work.

Unless objected to by the Owner, this schedule shall be used as the basis for reviewing Contractor’s applications for payment. If objected to by Owner, Contractor shall revise the schedule of values and resubmit the same for approval of Owner.

E.2 APPLICATIONS FOR PAYMENT

E.2.1 Owner shall make progress payments on the Contract monthly as Work progresses, in accordance with the requirements of this Section E.2. Applications for payment shall be based upon estimates of Work completed and the Schedule of Values. As a condition precedent to Owner’s obligation to pay, all applications for payment shall be approved by the Owner. A progress payment shall not be considered acceptance or approval of any Work or waiver of any defects therein. Owner shall pay to Contractor interest for overdue invoices at the rate of two-thirds of one percent per month on the progress payment, not including retainage, due the Contractor. Overdue invoices will be those that have not been paid within forty-five (45) Days from the latest of:

(a) The date of the receipt of the accurate invoice;
(b) The date Owner receives the correct application for payment if no invoice is received;
(c) The date all goods and services have been received; or
(d) The date a Claim is made certain by agreement of the parties or by operation of law.

Notwithstanding the foregoing, in instances when an application for payment is filled out incorrectly, or when there is any defect or impropriety in any submitted application or when there is a good faith dispute, Owner shall so notify the Contractor within fifteen (15) Days stating the reason or reasons the application for payment is defective or improper or the reasons for the dispute. A defective or improper application for payment, if corrected by the Contractor within seven (7) Days of being notified by the Owner, shall not cause a payment to be made later than specified in this section unless interest is also paid. Payment of interest will be postponed when payment on the principal is delayed because of disagreement between the Owner and the Contractor.
Owner reserves the right, instead of requiring the Contractor to correct or resubmit a defective or improper application for payment, to reject the defective or improper portion of the application for payment and pay the remainder of the application for such amounts which are correct and proper.

Owner, upon written notice to the Contractor, may elect to make payments to the Contractor only by means of Electronic Funds Transfers (EFT) through Automated Clearing House (ACH) payments. If Owner makes this election, the Contractor shall arrange for receipt of the EFT/ACH payments.

E.2.2 Contractor shall submit to the Owner an application for each payment and, if required, receipts or other vouchers showing payments for materials and labor including payments to Subcontractors. Contractor shall include in its application for payment a schedule of the percentages of the various parts of the Work completed, based on the Schedule of Values which shall aggregate to the payment application total, and shall include, on the face of each copy thereof, a certificate in substantially the following form:

"I, the undersigned, hereby certify that the above bill is true and correct, and the payment therefore, has not been received.

Signed: ______________________________,

Dated: _________________________________.

E.2.3 Generally, applications for payment will be accepted only for materials that have been installed. Under special conditions, applications for payment for stored materials will be accepted at Owner’s sole discretion. Such a payment, if made, will be subject to the following conditions:

(a) The request for stored material shall be submitted at least thirty (30) Days in advance of the application for payment on which it applies. Applications for payment shall be entertained for major equipment, components or expenditures only.

(b) The Contractor shall submit applications for payment showing the quantity and cost of the material stored.

(c) The material shall be stored in a bonded warehouse and Owner shall be granted the right to access the material for the purpose of removal or inspection at any time during the Contract Period.

(d) The Contractor shall name the Owner as co-insured on the insurance policy covering the full value of the property while in the care and custody of the Contractor until it is installed. A certificate noting this coverage shall be issued to the Owner.

(e) Payments shall be made for materials and equipment only. The submitted amount in the application for payment shall be reduced by the cost of transportation from the storage site to the project site and for the cost of an inspector to verify delivery and condition of the goods at the storage site. The cost of storage and inspection shall be borne solely by the Contractor.

(f) Within sixty (60) Days of the application for payment, the Contractor shall submit evidence of payment covering the material and/or equipment stored and of payment for the storage site.

(g) Payment for stored materials and/or equipment shall in no way indicate acceptance of the materials and/or equipment or waive any rights under this Contract for the rejection of the Work or materials and/or equipment not in conformance with the Contract Documents.

(h) All required documentation shall be submitted with the respective application for payment.

E.2.4 The Owner reserves the right to withhold all or part of a payment, or may nullify in whole or part any payment previously made, to such extent as may be necessary in the Owner’s opinion to protect the Owner from loss because of:

(a) Work that is defective and not remedied, or that has been demonstrated or identified as failing to conform with Applicable Laws or the Contract Documents,

(b) third party claims filed or evidence reasonably indicating that such claims will likely be filed unless security acceptable to the Owner is provided by the Contractor;

(c) failure of the Contractor to make payments properly to Subcontractors or for labor, materials or equipment (in which case Owner may issue checks made payable jointly to Contractor and such unpaid persons under this provision, or directly to Subcontractors and suppliers at any level under Section C.3.2.);

(d) reasonable evidence that the Work cannot be completed for the unpaid balance of the Contract Price;

(e) damage to the Work, Owner or another contractor;

(f) reasonable evidence that the Work will not be completed within the Contract Time required by the Contract, and that the unpaid balance would not be adequate to cover actual or liquidated damages for the anticipated delay;

(g) failure to carry out the Work in accordance with the Contract Documents; or

(h) assessment of liquidated damages, when withholding is made for offset purposes.

E.2.5 Subject to the provisions of the Contract Documents, the amount of each progress payment shall be computed as follows:

(a) Take that portion of the Contract Price properly allocable to completed Work as determined by multiplying the percentage completion of each portion of the Work by the share of the total Contract Price allocated to that portion of the Work in the Schedule of Values, less retainage as provided in Section E.5. Pending final determination of cost to the Owner of changes in the Work, no amounts for changes in the Work can be included in applications for payment until the Contract Price has been adjusted by an Amendment or Change Order.
(b) Add that portion of the Contract Price properly allocable to materials and equipment delivered and suitably stored at the site for subsequent incorporation in the completed construction (or, if approved in advance by the Owner pursuant to Section E.2.3, suitably stored off the site at a location agreed upon in writing), less retainage as provided in Section E.5;

(c) Subtract the aggregate of previous payments made by the Owner; and

(d) Subtract any amounts for which the Owner has withheld or nullified payment as provided in the Contract Documents.

E.2.6 Contractor’s applications for payment shall not include requests for payment for portions of the Work for which the Contractor does not intend to pay to a Subcontractor or material supplier.

E.2.7 The Contractor warrants to Owner that title to all Work covered by an application for payment will pass to the Owner no later than the time of payment. The Contractor further warrants that upon submittal of an application for payment all Work for which payments are received from the Owner shall be free and clear of liens, claims, security interests or encumbrances in favor of the Contractor, Subcontractors, material suppliers, or other persons or entities making a claim by reason of having provided financing, labor, materials and equipment relating to the Work.

E.2.8 If Contractor disputes any determination by Owner with regard to any application for payment, Contractor nevertheless shall continue to expeditiously perform the Work. No payment made hereunder shall be or be construed to be final acceptance or approval of that portion of the Work to which such partial payment relates or shall relieve Contractor of any of its obligations hereunder.

E.2.9 Contractor shall submit its initial MWESB Report within ten (10) Days of Contractor’s execution of the Contract, or if there will be a Guaranteed Maximum Price (GMP) Amendment, then within ten (10) Days of Contractor’s execution of the GMP Amendment. Contractor shall submit annual MWESB Reports on June 30 of each year the Contract is active. Contracts (or GMP Amendments) first executed by Contractor within ninety (90) Days before June 30 of the year of execution by Contractor may at the discretion of Owner be exempt from submitting the annual MWESB Report otherwise due on that June 30. The final MWESB Report shall be filed with the application for final payment. Timely receipt of MWESB Reports by Owner shall be a condition precedent to Owner’s obligation to pay any progress payments or final payment otherwise due.

E.3 PAYROLL CERTIFICATION REQUIREMENT

Owner’s receipt of payroll certification pursuant to Section C.2 of this Contract shall be a condition precedent to Owner’s obligation to pay any progress payments or final payment otherwise due.

E.4 DUAL PAYMENT SOURCES

Contractor shall not be compensated for Work performed under this Contract from any state agency other than the agency that is a party to this Contract.

E.5 RETAINAGE

E.5.1 Retainage shall be withheld and released in accordance with the requirements set forth in OSU Standard 580-063-0045.

E.5.1.1 Owner may reserve as retainage from any progress payment an amount not to exceed five percent of the payment. As Work progresses, Owner may reduce the amount of retainage on or may eliminate retainage on any remaining monthly Contract payments after 50 percent of the Work under the Contract is completed if, in the Owner's discretion, such Work is progressing satisfactorily. Elimination or reduction of retainage shall be at Owner’s sole discretion and only upon written application by the Contractor, which application shall include written approval of Contractor’s surety; except that when the Work is 97-1/2 percent completed the Owner may, at its discretion and without application by the Contractor, reduce the retained amount to 100 percent of the value of the Work remaining to be done. Upon receipt of written application by the Contractor, Owner shall respond in writing within a reasonable time.

E.5.1.2 Contractor may request in writing:

(a) to be paid amounts which would otherwise have been retained from progress payments where Contractor has deposited acceptable bonds and securities of equal value with Owner or in a custodial account or other mutually-agreed account satisfactory to Owner, with an approved bank or trust company to be held in lieu of the cash retainage for the benefit of Owner;

(b) for construction projects over $1,000,000, that retainage be deposited in an interest bearing account, established through the State Treasurer for state agencies, in a bank, savings bank, trust company or savings association for the benefit of Owner, with earnings from such account accruing to the Contractor; or

(c) that the Owner allow Contractor to deposit a surety bond for the benefit of Owner, in a form acceptable to Owner, in lieu of all or a portion of funds retained, or to be retained. Such bond and any proceeds therefrom shall be made subject to all claims in the manner and priority as set forth for retainage.

When the Owner has accepted the Contractor’s election of option (a) or (b), Owner may recover from Contractor any additional costs incurred through such election by reducing Contractor’s final payment. Where the Owner has agreed to Contractor’s request for option (c), Contractor shall accept like bonds from Subcontractors and suppliers on the project from which Contractor has required retainages.

E.5.1.3 The retainage held by Owner shall be included in and paid to the Contractor as part of the Final Payment of the Contract Price. The Owner shall pay to Contractor interest at the rate of two-thirds of one percent per month on the final payment due Contractor, interest to commence forty-five (45) Days after the date which Owner receives Contractor’s final approved application.
for payment and Work under the Contract has been completed and accepted and to run until the date when final payment is tendered to Contractor. The Contractor shall notify Owner in writing when the Contractor considers the Work complete and deliver to Owner its final application for payment and Owner shall, within fifteen (15) Days after receiving the written notice and the application for payment, either accept the Work or notify the Contractor of Work yet to be performed on the Contract. If Owner does not within the time allowed notify the Contractor of Work yet to be performed to fulfill contractual obligations, the interest provided by this subsection shall commence to run forty-five (45) Days after the end of the 15- Day period.

E.6.2 Neither Final Payment nor any remaining retained percentage shall become due until the Contractor submits to the Owner (1) a certificate evidencing that insurance required by the Contractor Documents to remain in force after Final Payment is currently in effect and will not be canceled or allowed to expire until at least thirty (30) Days' prior written notice has been given to the Owner, (2) a written statement that the Contractor knows of no substantial reason that the insurance will not be renewable to cover the period required by the Contractor Documents, (3) consent of surety, if any, to Final Payment and (4), if required by the Owner, other data establishing payment or satisfaction of obligations, such as receipts, releases and waivers of liens, claims, security interests or encumbrances arising out of the Contract, to the extent and in such form as may be designated by the Owner. If a Subcontractor refuses to furnish a release or waiver required by the Owner, the Contractor may furnish a bond satisfactory to the Owner to indemnify the Owner against such lien. If such lien remains unsatisfied after payments are made, the Contractor shall refund to the Owner all money that the Owner may be compelled to pay in discharging such lien, including all costs and reasonable attorneys' fees.

E.6.3 Acceptance of Final Payment by the Contractor, a Subcontractor or material supplier shall constitute a waiver of claims by that payee except those previously made in writing and identified by that payee as unsettled at the time of final application for payment.

E.6.4 Contractor agrees to submit its final payment application within ninety (90) Days after Substantial Completion, unless written extension is granted by Owner. Contractor shall not delay Final Payment application for any reason, including without limitation nonpayment of Subcontractors, suppliers, manufacturers or others not a party to this Contract, or lack of resolution of a dispute with Owner or any other person of matters arising out of or relating to the Contract. If Contractor fails to submit its Final Payment application within ninety (90) Days after Substantial Completion, and Contractor has not obtained written extension by Owner, all requests or Claims for additional costs or an extension of Contract Time shall be waived.

SECTION F
JOB SITE CONDITIONS

F.1 USE OF PREMISES
Contractor shall confine equipment, storage of materials and operation of Work to the limits indicated by Contract Documents, Applicable Laws, permits or directions of the Owner. Contractor shall follow the Owner's instructions regarding use of premises, if any.

F.2 PROTECTION OF WORKERS, PROPERTY AND THE PUBLIC
F.2.1 Contractor shall maintain continuous and adequate protection of all of the Work from damage and shall protect the Owner, workers and property from injury or loss arising in connection with this Contract. Contractor shall remedy acceptably to the Owner any damage, injury, or loss, except such as may be directly due to errors in the Contractor Documents or caused by authorized representatives or personnel of the Owner. Contractor shall adequately protect adjacent property as provided by law and the Contract Documents.

F.2.2 Contractor shall take all necessary precautions for the safety of all personnel on the job site or otherwise engaged in the undertaking of the Work and shall comply with the Contract Documents, best practices and all applicable provisions of federal, state and municipal safety laws and building codes to prevent accidents or injury to persons on, about or adjacent to the premises where the Work is being performed. Contractor shall erect and properly maintain at all times, as required by the conditions and progress of the Work, all necessary safeguards for protection of workers and the public against any hazards created by construction. Contractor shall designate a responsible employee or associate on the Work site, whose duty shall be the prevention of accidents. The name and position of the person designated shall be reported to the Owner. The Owner has no responsibility for Work site safety. Work site safety shall be the responsibility of the Contractor.
F.2.3 Contractor shall not enter upon private property without first obtaining permission from the property owner or its duly authorized representative. Contractor shall be responsible for the preservation of all public and private property along and adjacent to the Work contemplated under the Contract and shall use every precaution necessary to prevent damage thereto. In the event the Contractor damages any property, the Contractor shall at once notify the property owner and make, or arrange to make, full restitution. Contractor shall, immediately and in writing, report to the Owner, all pertinent facts relating to such property damage and the ultimate disposition of the claim for damage.

F.2.4 Contractor shall be responsible for protection of adjacent work areas including impacts brought about by activities, equipment, labor, utilities, vehicles and materials on the site.

F.2.5 Contractor shall at all times direct its activities in such a manner as to minimize adverse effects on the environment. Handling of all materials shall be conducted so no release will occur that may pollute or become hazardous.

F.2.6 In an emergency affecting the safety of life or limb or of the Work or of adjoining property, the Contractor, without special instruction or authorization from the Owner, shall act reasonably to prevent threatened loss or injury, and shall so act, without appeal, if instructed by the Owner. Any compensation claimed by the Contractor on account of emergency work shall be determined in accordance with section D.

F.3 CUTTING AND PATCHING

F.3.1 Contractor shall be responsible for coordinating all cutting, fitting, or patching of the Work to make its several parts come together properly and fit to receive or be received by work of other contractors or Subcontractors shown upon, or reasonably implied by, the Contract Documents.

F.3.2 Contractor shall be responsible for restoring all cut, fitted, or patched surfaces to an original condition; provided, however, that if a different condition is specified in the Contract Documents, then Contractor shall be responsible for restoring such surfaces to the condition specified in the Contract Documents.

F.4 CLEANING UP

From time to time as may be prudent or ordered by the Owner and, in any event, immediately after completion of the Work, the Contractor shall, at its own expense, clean up and remove all refuse and unused materials of any kind resulting from the Work. If Contractor fails to do so within twenty-four hours after notification by the Owner the work may be done by others and the cost charged to the Contractor and deducted from payment due the Contractor.

F.5 ENVIRONMENTAL CONTAMINATION

F.5.1.1 Contractor agrees to promptly dispose of such spills, releases, discharge or leaks to the satisfaction of Owner and regulatory agencies having jurisdiction in a manner that complies with Applicable Laws. Cleanup shall be at no cost to the Owner and shall be performed by properly qualified and, if applicable, licensed personnel.

F.5.1.2 Contractor shall obtain the Owner's written consent prior to bringing onto the Work site any (i) environmental pollutants or (ii) hazardous substances or materials, as the same or reasonably similar terms are used in any Applicable Laws. Notwithstanding such written consent from the Owner, the Contractor, at all times, shall:

(a) properly handle, use and dispose of all environmental pollutants and hazardous substances or materials brought onto the Work site, in accordance with all Applicable Laws;

(b) be responsible for any and all spills, releases, discharges, or leaks of (or from) environmental pollutants or hazardous substances or materials which Contractor has brought onto the Work site; and

(c) promptly clean up and remediate, without cost to the Owner, such spills, releases, discharges, or leaks to the Owner's satisfaction and in compliance with all Applicable Laws.

F.5.2 Contractor shall report all reportable quantity releases, as such releases are defined in Applicable Laws, including but not limited to 40 CFR Part 302, Table 302.4 and in OAR 340-142-0050, to applicable federal, state, and local regulatory and emergency response agencies. Upon discovery, regardless of quantity, Contractor must telephonically report all releases to the Owner. A written follow-up report shall be submitted to Owner within 48 hours of the telephonic report. Such written report shall contain, as a minimum:

(a) Description of items released (identity, quantity, manifest numbers, and any and all other documentation required by law.)

(b) Whether amount of items released is EPA/DEQ reportable, and, if so, when reported.

(c) Exact time and location of release, including a description of the area involved.

(d) Containment procedures initiated.

(e) Summary of communications about the release between Contractor and members of the press or State, local or federal officials other than...
Owner.

(f) Description of cleanup procedures employed or to be employed at the site, including disposal location of spill residue.

(g) Personal injuries, if any, resulting from, or aggravated by, the release.

F.6 ENVIRONMENTAL CLEAN-UP

F.6.1 Unless disposition of environmental pollution is specifically a part of this Contract, or was caused by the Contractor (reference F.5 Environmental Contamination), Contractor shall immediately notify Owner of any hazardous substances which Contractor discovers or encounters during performance of the Work required by this Contract. “Hazardous substance(s)” means any hazardous, toxic and radioactive materials and those substances defined as “hazardous substances,” “hazardous materials,” “hazardous wastes,” “toxic substances,” or other similar designations in any federal, state, or local law, regulation, or ordinance, including without limitation asbestos, polychlorinated biphenyl (PCB), petroleum, and any substances, materials or wastes regulated by 40 CFR, Part 261 and defined as hazardous in 40 CFR S 261.3. In addition to notifying Owner of any hazardous substance(s) discovered or encountered, Contractor shall immediately cease working in any particular area of the project where a hazardous substance(s) has been discovered or encountered if continued work in such area would present a risk or danger to the health or well-being of Contractor's or any Subcontractor's work force, property or the environment.

F.6.2 Upon being notified by Contractor of the presence of hazardous substance(s) on the project site, Owner shall arrange for the proper disposition of such hazardous substance(s).

F.7 FORCE MAJEURE

A party to this Contract shall not be held responsible for delay or default due to Force Majeure acts, events or occurrences unless they could have been avoided by the exercise of reasonable care, prudence, foresight, and diligence by that party. The Owner may terminate this Contract upon written notice after determining that delay or default caused by Force Majeure acts, events or occurrences will reasonably prevent successful performance of the Contract.

SECTION G INDEMNITY, BONDING, AND INSURANCE

G.1 RESPONSIBILITY FOR DAMAGES / INDEMNITY

G.1.1 Contractor shall be responsible for all damage to property, injury to persons, and loss, expense, inconvenience, and delay that may be caused by, or result from, the carrying out of the Work to be done under this Contract, or from any act, omission or neglect of the Contractor, its Subcontractors, sub-subcontractors of any tier, suppliers, employees, guests, visitors, invitees and agents.

G.1.2 To the fullest extent permitted by law, Contractor shall indemnify, defend (with counsel approved by Owner) and hold harmless the Owner, Architect/Engineer, Architect/Engineer’s consultants, and their respective officers, directors, agents, employees, partners, members, stockholders and affiliated companies (collectively “Indemnities”) from and against all liabilities, damages, losses, claims, expenses (including reasonable attorney fees), demands and actions of any nature whatsoever which arise out of, result from or are related to, (a) any damage, injury, loss, expense, inconvenience or delay described in this Section G.1., (b) any accident or occurrence which happens or is alleged to have happened in or about the project site or any place where the Work is being performed, or in the vicinity of either, at any time prior to the time the Work is fully completed in all respects, (c) any failure of the Contractor or its Subcontractors, sub-subcontractors of any tier, suppliers, employees, or consultants to observe or perform any duty or obligation under the Contract Documents which is to be observed or performed as required by any agreement, representation or warranty of the Contractor contained in the Contract Documents or in any subcontract, (d) the negligent acts or omissions of the Contractor, a Subcontractor, sub-subcontractor of any tier, a supplier, a consultant, or anyone directly or indirectly employed by them or any one of them or anyone for whose acts they may be liable, regardless of whether or not such claim, damage, loss or expense is caused in part by a party indemnified hereunder (except to the extent otherwise void under ORS 30.140), and (e) any lien filed upon the project or bond claim in connection with the Work. Such obligation shall not be construed to negate, abridge, or reduce other rights or obligations of indemnity which would otherwise exist as to a party or person described in this Section G.1.2.

G.1.3 In claims against any person or entity indemnified under Section G.1.2 by an employee of the Contractor, a Subcontractor, anyone directly or indirectly employed by them or anyone for whose acts they may be liable, the indemnification obligation under Section G.1.2 shall not be limited by a limitation on amount or type of damages, compensation or benefits payable by or for the Contractor or a Subcontractor under workers' compensation acts, disability benefit acts or other employee benefit acts.

G.2 PERFORMANCE AND PAYMENT SECURITY; PUBLIC WORKS BOND

G.2.1 When the Contract Price is $100,000 or more (or $50,000 or more in the case of Contracts for highways, bridges and other transportation projects), the Contractor shall furnish and maintain in effect at all times during the Contract Period a performance bond in a sum equal to the Contract Price and a separate payment bond also in a sum equal to the Contract Price. Contractor shall furnish such bonds even if the Contract Price is less than the above thresholds if otherwise required by the Contract Documents.

G.2.2 Bond forms furnished by the Owner and notarized by awarded Contractor's surety company authorized to do business in Oregon are the only acceptable forms of performance and payment security, unless otherwise specified in the Contract Documents.

G.2.3 Before execution of the Contract the Contractor shall file with the Construction Contractors Board, and maintain in full force and effect, the separate public works bond required by Oregon Laws 2015, Chapter 279C, and OAR 839-025-0015, unless otherwise exempt under those provisions. The Contractor shall also include in every subcontract a provision requiring the Subcontractor to have a public works bond filed with the
Construction Contractors Board before starting Work, unless otherwise exempt, and shall verify that the Subcontractor has filed a public works bond before permitting any Subcontractor to start Work.

G.3 INSURANCE

G.3.1 Primary Coverage: Insurance carried by Contractor and Subcontractors under this Contract shall be the primary coverage. The coverages indicated are minimums unless otherwise specified in the Contract Documents.

G.3.2 Workers' Compensation: All employers, including Contractor, that employ subject workers who work under this Contract in the State of Oregon shall comply with ORS 656.017 and provide the "required Workers' Compensation coverage, unless such employers are exempt under ORS 656.126. This shall include Employer’s Liability Insurance with coverage limits of not less than the minimum amount required by statute for each accident. Contractors who perform the Work without the assistance or labor of any employee need not obtain such coverage if the Contractor certifies so in writing. Contractor shall ensure that each of its Subcontractors complies with these requirements. The Contractor shall require proof of such Workers’ Compensation coverage by receiving and keeping on file a certificate of insurance from each Subcontractor or anyone else directly employed by either the Contractor or its Subcontractors.

G.3.3 Builder's Risk Insurance:

G.3.3.1 Builder's Risk: During the term of this Contract, for new construction the Contractor shall obtain and keep in effect Builder's Risk insurance on an all risk forms, including earthquake and flood, for an amount equal to the full amount of the Contract, plus any changes in values due to modifications. Change Orders and loss of materials added. Such Builder's Risk shall include, in addition to earthquake and flood, theft, vandalism, mischief, collapse, transit, debris removal, and architect's fees "soft costs" associated with delay of project due to insured peril. Any deductible shall not exceed $50,000 for each loss, except the earthquake and flood deductible which shall not exceed 2 percent of each loss or $50,000, whichever is greater. The deductible shall be paid by Contractor if Contractor or its Subcontractors are negligent. The policy will include as loss payees Owner, the Contractor and its Subcontractors as their interests may appear.

G.3.3.2 Builder's Risk Installation Floater: For Work other than new construction, Contractor shall obtain and keep in effect during the term of this Contract, a Builder's Risk Installation Floater for coverage of the Contractor's labor, materials and equipment to be used for completion of the Work performed under this Contract. The minimum amount of coverage to be carried shall be equal to the full amount of the Contract. The policy will include as loss payees Owner, the Contractor and its Subcontractors as their interests may appear. Owner may waive this requirement at their sole and absolute discretion.

G.3.3.3 Such insurance shall be maintained until Owner has occupied the facility.

G.3.3.4 Loss insured under the Builder’s Risk insurance shall be adjusted by the Owner and made payable to the Owner as loss payee. The Contractor shall pay Subcontractors their just share of insurance proceeds received by the Contractor, and by appropriate agreements, written where legally required for validity, shall require Subcontractors to make payments to their sub-subcontractors of any tier in similar manner. The Owner shall have power to adjust and settle a loss with insurers.

G.3.4 General Liability Insurance:

G.3.4.1 Commercial General Liability: Upon issuance of a Contract, Contractor shall obtain, and keep in effect at Contractor's expense for the term of the Contract, Commercial General Liability Insurance covering bodily injury and property damage in the amount of $1,000,000 per claim and $2,000,000 per occurrence in a form satisfactory to Owner. This insurance shall include personal injury liability, products and completed operations, no subcontractors’ limitations, and blanket contractual liability coverage for the indemnities provided under this Contract (to the extent contractual liability coverage for the indemnity is available in the marketplace), and shall be issued on an occurrence basis.

G.3.4.2 Automobile Liability: Contractor shall obtain, at Contractor's expense, and keep in effect during the term of this Contract, Automobile Liability Insurance covering owned, and/or hired vehicles, as applicable. The coverage may be written in combination with the Commercial General Liability Insurance. Contractor shall provide proof of insurance of not less than $1,000,000 per claim and $2,000,000 per occurrence. Contractor and its Subcontractors shall be responsible for ensuring that all non-owned vehicles maintain adequate Automobile Liability insurance while on site.

G.3.4.3 Owner may adjust the insurance amounts required in Section G.3.4.1 and G.3.4.2 based upon institution specific risk assessments through the issuance of Supplemental General Conditions and a Contract.

G.3.4.4 "Tail" Coverage: If any of the required liability insurance is arranged on a "claims made" basis, "tail" coverage will be required at the completion of this Contract for a duration of 36 months or the maximum time period available in the marketplace if less than 36 months. Contractor shall furnish certification of "tail" coverage as described or continuous "claims made" liability coverage for 36 months following Final Completion. Continuous "claims made" coverage will be acceptable in lieu of "tail" coverage, provided its retroactive date is on or before the effective date of this Contract. Owner’s receipt of the policy endorsement evidencing such coverage shall be a condition precedent to Owner’s obligation to make final payment and to Owner’s final acceptance of Work or services and related warranty (if any).

G.3.4.5 Umbrella Liability: Contractor shall obtain, at Contractor’s expense, and keep in effect during the term of this Contract, Umbrella Liability Insurance over and above the general liability, automobile liability and workers’ compensation coverage if required by Owner in specified limits at time of requirement.

G.3.4.6 Pollution Liability (if required by Owner through issuance of Supplemental General Conditions): Contractor shall obtain, at Contractor’s expense, and
keep in effect during the term of this Contract, Pollution liability insurance in minimum amounts of $3,000,000 naming Owner as “additional insured,” as noted in the “additional insured section below.

G.3.5 Additional Insured: The general liability insurance coverage, professional liability, umbrella, and pollution liability if required, shall include the Owner as additional insureds but only with respect to the Contractor’s activities to be performed under this Contract, and shall include completed operations coverage.

If Contractor cannot obtain an insurer to name the Owner as additional insureds, Contractor shall obtain at Contractor’s expense, and keep in effect during the term of this Contract, Owners and Contractors Protective Liability Insurance, naming the Owner as additional insureds with not less than a $2,000,000 limit per occurrence. This policy must be kept in effect for at least 36 months following Final Completion. As evidence of coverage, Contractor shall furnish the actual policy to Owner prior to execution of this Contract.

G.3.6 Notice of Cancellation or Change: If the Contractor receives a non-renewal or cancellation notice from an insurance carrier affording coverage required herein, or receives notice that coverage no longer complies with the insurance requirements herein, Contractor agrees to notify Owner by fax within five (5) business days with a copy of the non-renewal or cancellation notice, or written specifics as to which coverage is no longer in compliance. When notified by Owner, the Contractor agrees to stop Work pursuant to this Contract, unless all required insurance remain in effect. Any failure to comply with the reporting provisions of this insurance, except for the potential exhaustion of aggregate limits, shall not affect the coverage provided to the Owner and its institutions, divisions, officers, and employees.

Owner shall have the right, but not the obligation, of prohibiting Contractor from entering the Work site until a new certificate(s) of insurance is provided to Owner evidencing the replacement coverage. The Contractor agrees Owner reserves the right to withhold payment to Contract until evidence of reinstated or replacement coverage is provided to Owner.

G.3.7 Certificate(s) of Insurance: As evidence of the insurance coverage required by this Contract, the Contractor shall furnish certificate(s) of insurance to the Owner prior to execution of the Contract. The certificate(s) will specify all of the parties who are additional insureds or loss payees for this contract. Insurance coverage required under this Contract shall be obtained from insurance companies or entities acceptable to the Owner and that are eligible to provide such insurance under Oregon law. Eligible insurers include admitted insurers that have been issued a certificate of authority from the Oregon Department of Consumer and Business Services authorizing them to conduct an insurance business and issue policies of insurance in the state of Oregon, and certain non-admitted surplus lines insurers that satisfy the requirements of applicable Oregon law and which are subject to approval by the Owner. The Contractor shall be financially responsible for all deductibles, self-insured retentions and/or self-insurance included hereunder. Any deductible, self-insured retention and/or self-insurance in excess of $50,000 shall be subject to approval by the Owner in writing and shall be a condition precedent to the effectiveness of any Contract. The Owner has the right to require the Contractor at any time during the performance of the Work to furnish to Owner copies of the Contractor’s actual policies.

SECTION II SCHEDULE OF WORK

H.1 CONTRACT PERIOD

H.1.1 Time is of the essence. The Contractor shall at all times carry on the Work diligently, without delay and punctually fulfill all requirements herein. If required by the Contract Documents, Contractor shall commence Work on the site within fifteen (15) Days of Notice to Proceed, unless directed otherwise.

H.1.2 Unless specifically extended by an Amendment or Change Order, all Work shall be complete by the date contained in the Contract Documents. The Owner shall have the right to accelerate the completion date of the Work, which may require the use of overtime. Such accelerated Work schedule shall be an acceleration in performance of Work under Section D.1.2 (f) and shall be subject to the provisions of Section D.1.

H.1.3 The Owner shall not waive any rights under the Contract by permitting the Contractor to continue or complete in whole or in part the Work after the date described in Section H.1.2 above.

H.2 SCHEDULE

H.2.1 Contractor shall provide, by or before the pre-construction conference, the initial as-planned Construction Schedule for review and acceptance by the Owner. The submitted Construction Schedule must illustrate Work by project components, labor trades, and long lead items broken down by building and/or floor where applicable. If Owner shall so elect, Contractor shall provide the Construction Schedule in CPM format showing the graphical network of planned activities, including 1) a reasonably detailed list of all activities required to complete the Work; ii) the time and duration that each activity will take to completion; and iii) the dependencies between the activities. Construction Schedules lacking adequate detail, or unreasonably detailed, will be rejected. The Construction Schedule shall include the following: Notice to Proceed or the date the Work commences, if no Notice to Proceed is issued by Owner, Substantial Completion, and Final Completion. Construction Schedules shall be updated monthly, unless otherwise required by the Contract Documents, and submitted with the monthly application for payment. Acceptance of the Construction Schedule by the Owner does not constitute agreement by the Owner as to the Contractor’s sequencing, means, methods, or durations. Any positive difference between the Contractor’s scheduled completion and the Completion date is float owned by the Owner. Owner reserves the right to negotiate the float if it is deemed to be in Owner’s best interest to do so. In no case shall the Contractor make a claim for delays if the Work is completed within the Contract Time but after Contractor’s scheduled completion.

H.3 PARTIAL OCCUPANCY OR USE
H.3.1 The Owner may occupy or use any completed or partially completed portion of the Work at any stage, provided such occupancy or use is consented to by public authorities having jurisdiction over the Work. Such partial occupancy or use may commence whether or not the portion is substantially complete, provided the Owner and Contractor have reasonably accepted in writing the responsibilities assigned to each of them for payments, retainage, if any, security, insurance or self-insurance, maintenance, heat, utilities, and damage to the Work, and have agreed in writing concerning the period for correction of the Work and commencement of warranties required by the Contract Documents with respect to such portion of the Work. Approval by the Contractor to partial occupancy or use shall not be unreasonably withheld. Immediately prior to such partial occupancy or use, the Owner and Contractor shall jointly inspect the area to be occupied or portion of the Work to be used in order to determine and record the condition of the Work. Partial occupancy or use of a portion or portions of the Work shall not constitute acceptance of Work not complying with the requirements of the Contract Documents.

SECTION I
CORRECTION OF WORK

1.1 CORRECTION OF WORK BEFORE FINAL PAYMENT

The Contractor warrants to the Owner that materials and equipment furnished under the Contract will be of good quality and new unless otherwise required or permitted by the Contract Documents, that the Work will be free from defects, and that the Work will conform to the requirements of the Contract Documents. Work failing to conform to these requirements shall be deemed defective. Contractor shall promptly remove from the premises and replace all defective materials and equipment as determined by the Owner, whether incorporated in the Work or not. Removal and replacement shall be without loss or expense to the Owner, and Contractor shall bear the cost of repairing all Work destroyed or damaged by such removal or replacement. Contractor shall be allowed a period of no longer than thirty (30) Days after Substantial Completion for completion of defective (Punch List) work. At the end of the thirty-day period, or earlier if requested by the Contractor, Owner shall arrange for inspection of the Work by the Architect/Engineer. Should the work not be complete, and all corrections made, the costs for all subsequent re-inspections shall be borne by the Contractor. If Contractor fails to complete the Punch List work within the thirty (30) Day period, Owner may perform such work and Contractor shall reimburse Owner all costs of the same within ten (10) Days after demand without affecting Contractor’s obligations.

1.2 WARRANTY WORK

1.2.1 Neither the final certificate of payment nor any provision of the Contract Documents shall relieve the Contractor from responsibility for defective Work and, unless a longer period is specified, Contractor shall correct all defects that appear in the Work within a period of one year from the date of issuance of the written notice of Substantial Completion by the Owner except for latent defects which will be remedied by the Contractor at any time they become apparent. The Owner shall give Contractor notice of defects with reasonable promptness. The Contractor shall perform the warranty Work by correcting defects within twenty-four (24) hours of notification by Owner, unless otherwise specified in the Contract Documents. Should the Contractor fail to respond within the specified response time, the Owner may, at its option, complete the necessary repairs using another contractor or its own forces. If Owner completes the repairs using Owner’s own forces, Contractor shall pay Owner at the rate of one and one-half (1½) times the standard hourly rate of Owner’s forces, plus related overhead and any direct non-salary costs. If Owner completes the repairs using another contractor, Contractor shall pay Owner the amount of Owner’s direct costs billed by the other contractor for the work, plus the direct salary costs and related overhead and direct non-salary expenses of Owner’s forces who are required to monitor that contractor’s work. Work performed by Owner using Owner’s own forces or those of another contractor shall not affect the Contractor’s contractual duties under these provisions, including warranty provisions. In the event of warranty work consisting of emergency repairs, Owner may perform such work and Contractor shall reimburse Owner all costs of the same within ten (10) Days after demand, without affecting Contractor’s obligations.

1.2.2 Nothing in this Section 1.2 provision shall negate guarantees or warranties for periods longer than one year including without limitation such guarantees or warranties required by other sections of the Contract Documents for specific installations, materials, processes, equipment or fixtures.

1.2.3 In addition to Contractor’s warranty, manufacturer’s warranties shall pass to the Owner and shall not take effect until such portion of the Work covered by the applicable warranty has been accepted in writing by the Owner.

1.2.4 The one-year period for correction of Work shall be extended with respect to portions of Work performed after Substantial Completion by the period of time between Substantial Completion and the actual performance of the Work, and shall be extended by corrective Work performed by the Contractor pursuant to this Section, as to the Work corrected. The Contractor shall remove from the site portions of the Work which are not in accordance with the requirements of the Contract Documents and are neither corrected by the Contractor nor accepted by the Owner.

1.2.5 Nothing contained in this Section 1.2 shall be construed to establish a period of limitation with respect to other obligations which the Contractor might have under the Contract Documents. Establishment of the period for correction of Work as described in this Section 1.2 relates only to the specific obligation of the Contractor to correct the Work, and has no relationship to the time within which the obligation to comply with the Contract Documents may be sought to be enforced, nor to the time within which proceedings may be commenced to establish the Contractor’s liability with respect to the Contractor’s obligations other than specifically to correct the Work.

1.2.6 If the Owner prefers to accept Work which is not in accordance with the requirements of the Contract Documents, the Owner may do so instead of requiring its removal and correction, in which case the Contract Price will be reduced as appropriate and equitable. Such adjustment shall be effected whether or not final payment has been made.
SECTION J
SUSPENSION AND/OR TERMINATION OF THE WORK

J.1 OWNER'S RIGHT TO SUSPEND THE WORK

J.1.1 The Owner has the authority to suspend portions or all of the Work due to the following causes:

(a) Failure of the Contractor to correct unsafe conditions;

(b) Failure of the Contractor to carry out any provision of the Contract;

(c) Failure of the Contractor to carry out orders;

(d) Conditions, in the opinion of the Owner, which are unsuitable for performing the Work;

(e) Time required to investigate differing site conditions;

(f) Any reason considered to be in the public interest.

J.1.2 The Owner shall notify Contractor and the Contractor's Surety in writing of the effective date and time of the suspension, and Owner shall notify Contractor and Contractor's surety in writing to resume Work.

J.2 CONTRACTOR'S RESPONSIBILITIES

J.2.1 During the period of the suspension, Contractor is responsible to continue maintenance at the project just as if the Work were in progress. This includes, but is not limited to, protection of completed Work, maintenance of access, protection of stored materials, temporary facilities, and clean-up.

J.2.2 When the Work is recommenced after the suspension, the Contractor shall replace or renew any Work damaged during the suspension, remove any materials or facilities used as part of temporary maintenance, and complete the project in every respect as though its prosecution had been continuous and without suspension.

J.2.3 COMPENSATION FOR SUSPENSION

J.2.4 Depending on the reason for suspension of the Work, the Contractor or the Owner may be due compensation by the other party. If the suspension was required due to acts or omissions of the Contractor, the Owner may assess the Contractor actual costs of the suspension in terms of administration, remedial work by the Owner's forces or another contractor to correct the problem associated with the suspension, rent of temporary facilities, and other actual costs related to the suspension. If the suspension was caused by acts or omissions of the Owner, the Contractor may be due compensation which shall be defined using Section D, Changes in Work. If the suspension was required through no fault of the Contractor or the Owner, neither party shall owe the other for the impact.

J.4 OWNER'S RIGHT TO TERMINATE CONTRACT

J.4.1 The Owner may, without prejudice to any other right or remedy, and after giving Contractor seven (7) Days' written notice and an opportunity to cure, terminate the Contract in whole or in part under the following conditions:

(a) If Contractor should, voluntarily or involuntarily, seek protection under the United States Bankruptcy Code and Contractor as debtor-in-possession or the Trustee for the estate fails to assume the Contract within a reasonable time;

(b) If Contractor should make a general assignment for the benefit of Contractor's creditors;

(c) If a receiver should be appointed on account of Contractor's insolvency;

(d) If Contractor should repeatedly refuse or fail to supply an adequate number of skilled workers or proper materials to carry on the Work as required by the Contract Documents, or otherwise fail to perform the Work in a timely manner;

(e) If Contractor should repeatedly fail to make prompt payment to Subcontractors or for materials or labor, or should disregard laws, ordinances or the instructions of the Owner; or

(f) If Contractor is otherwise in breach of any part of the Contract.

(g) If Contractor is in violation of Applicable Laws, either in the conduct of its business or in its performance of the Work.

J.4.2 At any time that any of the above occurs, Owner may exercise all rights and remedies available to Owner at law or in equity, and, in addition, Owner may take possession of the premises and of all materials and appliances and finish the Work by whatever method it may deem expedient. In such case, the Contractor shall not be entitled to receive further payment until the Work is completed. If the Owner's cost of finishing the Work exceeds the unpaid balance of the Contract Price, Contractor shall pay the difference to the Owner.

J.5 TERMINATION FOR CONVENIENCE

J.5.1 Owner may terminate the Contract in whole or in part whenever Owner determines that termination of the Contract is in the best interest of Owner or the public.

The Owner shall provide the Contractor with seven (7) Days' prior written notice of a termination for Owner's or for public convenience. After such notice, the Contractor shall provide the Owner with immediate and peaceful possession of the premises and materials located on and off the premises for which the Contractor received progress payment under Section E. Compensation for Work terminated by the Owner under this provision will be according to Section E. In no circumstance shall Contractor be entitled to lost profits for Work not performed due to termination.

J.6 ACTION UPON TERMINATION

J.6.1 Upon receiving a notice of termination, and except as directed otherwise by the Owner, Contractor shall immediately cease placing further subcontracts or orders for materials, services, or facilities. In addition, Contractor shall terminate all subcontracts or orders to the extent they...
relate to the Work terminated and, with the prior written approval of the Owner, settle all outstanding liabilities and termination settlement proposals arising from the termination of subcontracts and orders.

J.6.2 As directed by the Owner, Contractor shall, upon termination, transfer title and deliver to the Owner all Record Documents, information, and other property that, if the Contract had been completed, would have been required to be furnished to the Owner.

J.6.3 Upon Owner’s notice of termination pursuant to either Section J.4 or J.5, if Owner shall so elect, Contractor shall assign the Owner such subcontracts and orders as Owner shall specify. In the event Owner elects to take assignment of any such subcontract or order, Contractor shall take such action and shall execute such documents as Owner shall reasonably require for the effectiveness of such assignment and Contractor shall ensure that no contractual arrangement between it and its subcontractors or suppliers of any tier or sub-tier shall prevent such assignment.

SECTION K
CONTRACT CLOSE OUT

K.1 RECORD DOCUMENTS

As a condition of final payment (refer also to section E.6), Contractor shall comply with the following: Contractor shall provide Record Documents for the entire project to Owner. Record Documents shall depict the project as constructed and shall reflect each and every change, modification, and deletion made during the construction. Record Documents are part of the Work and shall be provided prior to the Owner’s issuance of final payment. Record Documents include all modifications to the Contract Documents unless otherwise directed, and accurate MWESB Reports.

K.2 OPERATION AND MAINTENANCE MANUALS

As part of the Work, Contractor shall submit two completed operation and maintenance manuals ("O & M Manuals") for review by the Owner prior to submission of any pay request for more than 75% of the Work. Owner’s receipt of the O & M Manuals shall be a condition precedent to any payment thereafter due. The O & M Manuals shall contain a complete set of all Submittals, all product data as required by the specifications, training information, telephone list and contact information for all consultants, manufacturers, installer and suppliers, manufacturer’s printed data, record and shop drawings, schematic diagrams of systems, appropriate equipment indices, warranties and bonds. The Owner shall review and return one O & M Manual for any modifications or adjustments required. Prior to submission of its final pay request, Contractor shall deliver two (2) complete and approved sets of O & M Manuals in paper form and one (1) complete and approved set in electronic form to the Owner and Owner’s receipt of the O & M Manuals shall be a condition precedent to Owner’s obligation to make final payment.

K.3 COMPLETION NOTICES

K.3.1 Contractor shall provide Owner written notice of both Substantial and Final Completion. The certificate of Substantial Completion shall state the date of Substantial Completion, the responsibilities of the Owner and Contractor for security, maintenance, heat, utilities, damage to the Work and insurance, and the time within which the Contractor shall finish all items on the Punch List accompanying the Certificate. Both completion notices must be signed by the Contractor and the Owner to be valid. The Owner shall provide the final signature on the notices. The notices shall take effect on the date they are signed by the Owner.

K.3.2 Substantial Completion of a facility with operating systems (e.g., mechanical, electrical, HVAC) shall be that degree of completion that has provided a minimum of thirty (30) continuous Days of successful, trouble-free operation, which period shall begin after all performance and acceptance testing has been successfully demonstrated to the Owner. All equipment contained in the Work, plus all other components necessary to enable the Owner to operate the facility in the manner that was intended, shall be complete on the Substantial Completion date. The Contractor may request that a Punch List be prepared by the Owner with submission of the request for the Substantial Completion notice.

K.4 TRAINING

As part of the Work, and prior to submission of the final application for payment, the Contractor shall schedule with the Owner training sessions for all equipment and systems as required by the Contract Documents. Contractor shall schedule training sessions at least two weeks in advance of the date of training to allow Owner to provide its personnel with adequate notice. The O & M Manual shall be used as a basis for training. In addition to any off-site training required by the Contract Documents, training shall include a formal session conducted at the Work site after the equipment and/or system is completely installed and operational in its normal operating environment.

K.5 EXTRA MATERIALS

As part of the Work, Contractor shall provide spare parts, extra maintenance materials, and other materials or products in the quantities specified in the Contract Documents prior to final payment. Delivery point for extra materials shall be designated by the Owner.

K.6 ENVIRONMENTAL CLEAN-UP

As part of the Final Completion notice, or as a separate written notice submitted with or before the notice of Final Completion, the Contractor shall notify the Owner that all environmental and pollution clean-up, remediation and closure have been completed in accordance with all Applicable Laws and pursuant to the authority of all agencies having jurisdiction, and Contractor shall provide Owner with any and all documentation related to the same, including but not limited to directives, orders, letters, certificates and permits related to or arising from such environmental pollution. The notice shall reaffirm the indemnification given under Section F.5.1 above. Contractor’s completion of its obligations under this Section K.6 and Owner’s receipt of documents evidencing such completion shall be a condition precedent to Owner’s obligation to make final payment.

K.7 CERTIFICATE OF OCCUPANCY

Owner’s receipt of an unconditioned certificate of occupancy from the appropriate state and/or local building officials shall be a condition precedent to Owner’s obligation to make final payment, except to the extent failure to obtain an unconditional certificate of occupancy is due to the sole fault or neglect of Owner.

K.8 OTHER CONTRACTOR RESPONSIBILITIES

The Contractor shall be responsible for returning to the
Owner all property of Owner issued to Contractor during construction such as keys, security passes, site admittance badges, and all other pertinent items. Upon notice from Owner, Contractor shall be responsible for notifying the appropriate utility companies to transfer utility charges from the Contractor to the Owner. The utility transfer date shall not be before Substantial Completion and may not be until Final Completion, if the Owner does not take beneficial use of the facility and the Contractor's forces continue with the Work.

K.9 SURVIVAL

All warranty and indemnification provisions of this Contract, and all of Contractor’s other obligations under this Contract that are not fully performed by the time of Final Completion or termination, shall survive Final Completion or any termination of the Contract.
OREGON STATE UNIVERSITY

SUPPLEMENTAL GENERAL CONDITIONS

To The

PUBLIC IMPROVEMENT GENERAL CONDITIONS

Project Name: MERRYFIELD HALL RENOVATION – RE-BID

The following modify the June 30, 2017 Oregon State University General Conditions (“OSU Public Improvement General Conditions”) for this Contract. Where a portion of the OSU General Conditions is modified by these Supplemental General Conditions, the unaltered portions shall remain in effect.

SG-1 Section B.4 is modified as follows: Revise to read:
“Contractor shall obtain and pay for all necessary permits and licenses, except for those specifically excluded in the Supplemental General Conditions, for the construction of the Work, for temporary obstructions, enclosures, opening of streets for pipes, walls, utilities, environmental Work, etc., as required for the project. Owner shall obtain and pay for the general building permit and pay for any specialty permits required for the Work. Contractor shall be responsible for all violations of the law, in connection with the construction or caused by obstructing streets, sidewalks or otherwise. Contractor shall give all requisite notices to public authorities. The Contractor shall pay all royalties and license fees. The Contractor shall defend all suits or claims for infringement of any patent or other proprietary rights and save harmless and blameless from loss, on account thereof, Oregon State University, and its departments, divisions, members and employees.

SG-2 Section F.2.4 is modified as follows: Add the following:
“Contractor shall verify that all mechanical or electrical equipment in the construction areas that may be affected by the Work is in working order and shall notify the Owner, in writing, of any equipment not in working order prior to the start of the Work. Start of Work will be considered as acknowledgement that all equipment is in good working order. Contractor shall be required to restore equipment to its original, or better, condition upon completion of the Project.”
SG-3 Section H.2.1 is replaced with the following:

"Contractor shall provide, by or before the pre-construction conference, a detailed Construction Schedule for review and acceptance by the Owner. The submitted Construction Schedule must illustrate Work by significant project components, significant labor trades, long lead items, broken down by building and/or floor where applicable. Each Construction Schedule item shall account for no greater than 5% of the monetary value of the Project or 5% of the available time. Schedules with activities of less than one day or valued at less than 1% of the Contract shall be considered too detailed and shall not be accepted. Schedules lacking adequate detail, or unreasonably detailed, shall be rejected. Included within the Construction Schedule are the following: Notice to Proceed, Substantial Completion, and Final Completion. Contractor shall provide an updated, full project schedule with each payment request. In addition, twice monthly, the Contractor shall provide an updated three-week forward-looking Construction Schedule. Acceptance of the Schedule by the Owner does not constitute agreement by the Owner as to the Contractor's sequencing, means, methods, or durations. Any positive difference between the Contractor's scheduled completion and the contract completion date is float owned by the Project. Use of the float shall be negotiated. In no case shall the Contractor make a claim for delays if the Work is completed within the Contract time but after Contractor's scheduled completion."
As indicated in the General Conditions of your contract(s) Section E.2.9, OSU requires that we gather MWESB (Minority, Women’s Emerging Small Business) Contractor/Subcontractor information. This is an Oregon State University requirement and the information will be gathered annually and at time of final payment.

- **You must do this step first or the report will not let you add any information:** In Row 1 Column B there is a drop down menu. You must select yearend (if the job has not been completed) or final (if the job is completed and you have submitted for retention). Once you choose yearend or final in the drop down menu there will be areas highlighted in light green and red. Those are the areas that you are required to fill out. If you did not use or planning to use any MWESB then the left side of the report (Light Green area) still needs to be filled out and the red area needs to remain blank.

- **If your agency is an MWESB or if you are using/used an MWESB subcontractor then you need to fill out the information in the report that is highlighted in light green and red (see instructions in the next bullet). If you are not an MWESB or used a Subcontractor that is an MWESB then you need to fill out the left side of the form (Light Green areas) and leave the red area blank.

- **In row 2 Column B there is another drop down menu, click the drop down menu and choose Fiscal Year 2015.**

- **In Row 4 Column B there is another drop down menu, click there and choose OSU.**
CapCon MWESB Subcontractor Report

Overall Project Data

<table>
<thead>
<tr>
<th>Reporting Period</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus</td>
<td></td>
</tr>
<tr>
<td>General Contractor’s Name</td>
<td></td>
</tr>
<tr>
<td>Contract Number</td>
<td></td>
</tr>
<tr>
<td>Project Name</td>
<td></td>
</tr>
<tr>
<td>Contract Execution Date (Date Contract was Signed by the Owner)</td>
<td></td>
</tr>
<tr>
<td>Date of Final Payment Application</td>
<td></td>
</tr>
<tr>
<td>Initial Total Contract Value</td>
<td></td>
</tr>
<tr>
<td>Total Contract Value billed within the fiscal year (July 1 - June 30)</td>
<td></td>
</tr>
<tr>
<td>Final Total Contract Value</td>
<td></td>
</tr>
<tr>
<td>Total Number of Subcontractors/Suppliers Used on Project</td>
<td></td>
</tr>
<tr>
<td>Total Number of First-Tier Subcontractors/Suppliers Used on Project</td>
<td></td>
</tr>
<tr>
<td>Number of First-Tier MWESB Subcontractors/Suppliers</td>
<td></td>
</tr>
</tbody>
</table>

Calculated Reporting Data (Self Calculating - No Data Entry)

Number of MWESB Subcontractors/Suppliers	0
% MWESB Subcontractors/Suppliers	
% First-Tier MWESB Subcontractors/Suppliers	

Certified MWESB Totals

Value Awarded to MWESB Contractors/Suppliers	$0.00
% Value Awarded to MWESB Contractors/Suppliers	
Value - minority-owned MWESB subcontractors/suppliers	$0.00
% - minority-owned MWESB subcontractors/suppliers	
Value - women-owned MWESB subcontractors/suppliers	$0.00
% - women-owned MWESB subcontractors/suppliers	
Value - emerging small business MWESB subcontractors/suppliers	$0.00
% - emerging small business MWESB subcontractors/suppliers	

Self-Identified or Other Certified MWESB Totals

| Value - self-identified or other certified subcontractors/suppliers | $0.00 |
| % - self-identified or other certified subcontractors/suppliers | |

Overall Project Contract History

| % Value Awarded to MWESB Contractors/Suppliers at Initial Contract | #DIV/0! |
| % Value Awarded to MWESB Contractors/Suppliers at Final Contract | #DIV/0! |

For Official Use Only:

- Date Received by the Campus
- Initials of Campus staff who checked the document
In compliance with Oregon Prevailing Wage Law, the following is incorporated into this Invitation to Bid:

The Contractor and all subcontractors shall comply with the provisions of ORS 279C.800 through 279C.870, relative to Prevailing Wage Rates as outlined in Sections C.1 and C.2 of the General Conditions. This Purchase Order is subject to the following BOLI wage rate requirements, which are incorporated herein by reference:

- April 1, 2019 PWR Apprenticeship Rates
- April 1, 2019 PWR Amendments
- January 1, 2019 Prevailing Wage Rates for Public Works Contracts in Oregon
- July 1, 2018 Definitions of Covered Occupations for Public Works Contracts in Oregon

These BOLI wage rates are available online at: http://www.boli.state.or.us/BOLI/WHD/PWR/pwr_state.shtml
SECTION 01 11 00

SUMMARY OF WORK

PART 1 GENERAL

1.01 SUMMARY OF WORK

A. The Work consists of the following:

1. Sitework:

 a. Construction of site improvements to provide an accessible route to and from the building, bicycle parking, screening of mechanical equipment and other improvements as shown on the Drawings.
 b. Development of new water service for the new fire suppression sprinkler system.

2. Structure:

 a. Creation of an inter-floor opening at the north end of the south wing of Merryfield Hall to install an accessible exit stair and elevator.
 b. Construction of a concrete masonry unit with modular brick veneer stair and elevator tower located on the south side of the two-story portion of Merryfield Hall.
 c. Removal of the existing interior second floor access stair and infill of the opening in the second floor structure.
 d. Demolition of existing partitions attic structure and finishes in the single story laboratory south wing.
 e. Development of five new laboratories in the single story laboratory south wing.

3. Interiors:

 a. Construction of interior gypsum board faced partitions, solid railings, ceiling assemblies, openings trim and finishes within the two-story and southern wing of Merryfield Hall to create a defined exit system, laboratories, classroom, offices and accessible lavatories as shown on Drawings.
 b. Construction of modifications and additions to the existing commercial grade electrical power, lighting and communication systems within the remodel and addition areas of the project.
 c. Construction of modifications and additions to the existing commercial grade mechanical and plumbing systems within the remodel and addition areas of the project.
 d. Installation of a NFPA 13 compliant fire suppression sprinkler system throughout all areas of Merryfield Hall.
4. Building Exteriors:
 a. Removal of efflorescence and cleaning of all exterior surfaces of the existing brick masonry structure.
 b. Preparation and priming of existing and new wood windows, doors and trim. Finish coats of paint to be applied separately by Owner's work forces.
 c. Removal of existing mechanical equipment, grilles and vents with patching of the remaining wall or roof surfaces as described on documents.
 d. Modification of existing wood window assemblies to integrate mechanical grilles as shown on the Drawings.
 e. Modification and patching of existing metal cladding and composition roofing where mechanical equipment penetrations are added, removed or modified.

B. Work shall be started within ten (10) calendar days after signing of Contract on behalf of Oregon State University. The Contract may not be signed prior to approval of the Contractor's Certificate of Insurance by Construction Contract Administration (CCA), Oregon State University. Work shall be completed within One hundred-Eighty (180) calendar days.

1.02 CONTRACTORS USE OF PREMISES

A. Contractor shall limit use of the Premises for work and storage to allow for:
 1. Owner occupancy, day and night.
 2. Public use, day and night.
 4. Safe entry and exit for vehicles and pedestrians.
 5. Fire egress.

B. Coordinate all operations with the Owner's Authorized Representative during the construction period. A 96 hour notification is required prior to scheduled utility shutdowns or street closures, but more lead time is often required to schedule around other critical activities.

C. Limit Contractor's employee parking to locations designated at the Pre-construction Conference.

1.03 OWNER OCCUPANCY

A. The Owner will occupy the Premises during the entire period of construction for the conduct of normal operations. Cooperate with Owner's Authorized Representative in construction operations to minimize conflict and to facilitate the Owner's usage especially in the following areas:
 1. Restricted access and parking.
 2. Use of stairs.

Merryfield Hall Renovation – Re-Bid
April 2019
3. Storage space availability.

B. Conduct operations in such a way to ensure the least inconvenience to the general public, including:
 1. Limitations and easements.
 2. Emergency vehicle access.
 3. Building access to the public, day and night.

1.04 ASBESTOS AND OTHER HAZARDOUS MATERIAL

A. The Owner has made a reasonable attempt to locate and identify asbestos or other hazardous material that may be encountered during the course of the Work.

B. If the Contractor observes or suspects the existence of asbestos, polychlorinated biphenyl (PCB) or other hazardous materials in the structure or components of the building, the Contractor shall immediately stop work and notify the Owner’s Authorized Representative.

C. The Owner will arrange for the removal of asbestos, polychlorinated biphenyl (PCB) or other hazardous materials as required by Facilities Services personnel or by separate contract.

D. Schedule ten (10) days of slack or "down" time for the removal of hazardous materials without penalty to Owner for the delay of the Contract.

1.05 LEAD BASED PAINT

A. The Owner may have tested existing paint in the project area and if levels are found the following conditions apply.

B. Contractor shall remove paint as specified for surface preparation and capture removed material for disposal.

C. Contractor shall follow OSHA guidelines involving exposure to workers.

D. Owner will provide containers for Contractor’s use at project site.

E. Contractor shall comply with the requirements of DEQ and EPA and shall submit a lead abatement plan.

F. Contractor shall separate lead contaminated material from effluent and water.

G. Owner will dispose of lead paint and effluent resulting from stripping operation.

H. Soil contaminated by stripping operations shall be replaced with topsoil.

END OF SECTION
ALTERNATES

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. The alternates described in this Section may be exercised at the option of the Owner within 60 days of the execution of the Contract.

B. It is generally the practice of the Owner to exercise alternates in numerical order.

C. The Owner reserves the right to accept the alternates without regard to order or sequence; but, such acceptance shall not impair the selection of a low, responsible and responsive bidder to whom the Contract may be awarded under an equitable bid procedure.

1.02 QUALITY ASSURANCE

A. For each alternate which is accepted, coordinate the work of the various trades involved, and modify surrounding work as required to complete the project as intended.

B. In the change-in-price figure for each alternate, include incidental costs which are attributable to adjustments in the work of other trades which may be required to achieve the contemplated and final conditions.

C. Questions:
 1. If there is a question regarding the extent, scope, nature, or intent of the alternates, contact the Owner’s Authorized Representative for clarification.
 2. Failure on the part of the Contractor to clarify any unclear items shall not relieve the Contractor of the responsibility for performing the selected alternates in accordance with the intent and requirements of the Project Manual and Drawings.
 3. The description of the alternates hereinafter is qualitative and not quantitative; the Contractor shall determine the quantities of labor and materials and the extent of same required to execute the selected alternates in accordance with the intent and requirements of the Project Manual and Drawings.
 4. The applicable Sections of the Specifications apply to the work under each alternate.

1.03 LIST OF ALTERNATES

A. Item M1: Deletion: Sheets M3A, M4A, M5A, M6A, M7A, M8A: Deleted new VRF fan coil systems serving Labs A, B, C, D, and E. This includes deleting the heat pumps, refrigerant piping, ductwork, diffusers, return grilles, and DDC controls associated with the fan coils. This also includes
deleting the economizer outside air ducts, relief ducts, motorized dampers, and DDC controls associated with fan coil FC-4A.

Item M2: Addition: Sheets M1A, M3A: Added the removal and replacement of the existing steam and condensate piping in the crawl space under the area of work. This includes confirming the size of the existing steam and condensate piping in the crawl space.

Item M3: Addition: Sheets M3A, M4A, M5A, M6A, M7A, M8A, M11A: Added new steam reheat coils for the supply air valves serving Labs A, B, C, D, and E. This includes adding new steam piping to serve the new steam reheat coils. This also includes adding associated DDC controls.

Item M4: Change: Sheets M4A, M6A: Increased the capacity of AHU-1 since it will now be cooling and partially heating Labs A, B, C, D, and E instead of just providing neutral outside air to the spaces.

Item M5: Addition: Sheet M3A, M5A, M7A: Increased size of heat pump (adding second unit) serving AHU-1 due to the increased capacity of AHU-1.

Item E1: Deletion: Sheets E4A, E5A, E11A: Deleted the electrical power for the fan coils and VRF heat pumps serving Labs A, B, C, D, and E. This includes deleting associated circuit breakers, wiring, and disconnects.

Item E2: Change: Sheets E11A: Increased the wire size for AHU-1 due to the increased capacity of AHU-1.

Item E3: Addition: Sheet E4A, E11A: Added electrical power for HP-AHU-1 due to the increased capacity of AHU-1. This includes adding associated circuit breaker, wiring, and disconnect.

END OF SECTION
SECTION 01 24 76

APPLICATIONS FOR PAYMENT

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Work of this Section includes forms and procedures for progress payments.

B. Related work specified elsewhere.
 1. For the primary discussion of payments, refer to OSU General Conditions, Section E, as supplemented.
 2. In compliance with OSU General Conditions, Section K, no payments beyond 75% will be made by the Owner before two complete copies of the draft Operation and Maintenance Manuals have been received for review by the Owner.

1.02 APPLICATION FORMS

A. For applications for payment, use sample contract payment request on company letterhead, or AIA Document G702, supported by AIA Document G703, Continuation Sheet, or similar document.

B. Prepare the Schedule of Values in such a manner that each major item of Work and each subcontracted item of Work is shown as a line item broken down in terms of material and labor costs on AIA Document G703, Application Certification of Payment, Continuation Sheet or similar format. The sample continuation sheet shall be the minimum Schedule of Values breakdown.

C. The Schedule of Values shall be submitted for review by the Owner prior to the first application for payment; and may be used when, and only when, accepted in writing by the Owner.

D. Payment request is to include the Contractor's Federal Tax Identification number and return address.

1.03 PAYMENTS

A. The Owner will make progress payments on account of the Contract once monthly for the scheduled duration of the project (i.e. three (3) payments on a three-month project), based on the value of work accomplished or materials on the job site, as stated in the Schedule of Values on the Application and Certificate Payment.

B. Notwithstanding the foregoing, as this project is scheduled to take Six (6) months to complete, Owner will only make six (6) payments, plus a final retainage payment, as applicable.

C. Complete and forward Application to the Owner on or about the 15th day of

Merryfield Hall Renovation – Re-Bid
April 2019
each month for work performed the previous month and include certified payroll statements as specified in the OSU General Conditions.

D. Submit one (1) copy of forms requesting payment to the Owner.

E. Payments will be made on protected materials on hand at the job site properly stored, protected, and insured.

F. Estimated quantities shall be subject to the Owner's review and judgment.

1.04 EARLY PURCHASE AND PAYMENT OF MATERIALS AND EQUIPMENT

A. Order materials and equipment requiring a long lead or waiting time early so as not to delay progress of the Work.

B. The Contractor will be reimbursed for early order materials or equipment upon receipt and verification of quality and quantity against submittals and shipping documents by the Owner's Authorized Representative.

C. Receipt shall be to the job site or stored at Owner's other premises in an orderly and safe manner, secured from normal weather damage.

D. Security remains the responsibility of the Contractor.

END OF SECTION
CONTRACT PAYMENT REQUEST

DATE: ______________

TO: Administrative Services Accounting
Oregon State University
3015 SW Western Blvd
Corvallis, OR 97333

Payment Request No. _____ Contract No. _____ Period from _______ to _______

Project: __

Original Contract Amount... $_____________

Change Orders (Net Amount) ... $_____________

Contract Total to Date ... $_____________

Total Completed and Stored to Date ... $____________

Less Retainage (5%), if applicable .. $____________

Total Earned, Less Retainage (if applicable) ... $____________

Less Previous Payments .. $____________

Net Amount Due this Request ... $____________

The undersigned Contractor certifies that, to the best of his/her knowledge, information, and belief, the Work covered by this request has been completed in accordance with the Contract Documents, that all amounts have been paid for Work for which previous applications for Payment were issued and payments received from the Owner, and that the amount shown herein is now due.

Contractor:__

By: ________________________________ Date: __________________________

Federal Tax ID Number:__

Address:__
NOTES:

Amounts are stated to the nearest penny.

Use Column I on Contracts where variable retainage for line items may apply, or if retainage is required.

Change Orders are usually listed as the last items of the basic schedule.
SECTION 01 25 00

PRODUCT SUBSTITUTION PROCEDURES

PART 1 GENERAL

1.01 SECTION INCLUDES

A. General requirements for the Work in relation to substitutions and product options.

B. Submit to the Owner’s property insurance carrier shop drawings, samples, and product data (such as manufacturer’s standard schematic drawings and other literature) when required by individual Specifications sections.

C. Related Work Specified Elsewhere
 1. Instructions to Bidders.
 2. OSU General Conditions.

1.02 REQUESTS FOR SUBSTITUTIONS

A. Requests for substitution of products in place of those specified shall be in accordance with Instructions to Bidders, and as specified herein.

1.03 CONTRACTOR’S RESPONSIBILITIES

A. Investigate proposed products and determine that they are equal or superior in all respects to products specified.

B. Provide same guarantee for accepted substitutions as for products specified.

C. Coordinate installation of accepted substitutions into the Work, making such changes as may be required for the Work to be complete in all respects.

1.04 SUBSTITUTIONS DURING BIDDING

A. Submit two (2) copies of the following information with each request to the Owner:
 1. CSI substitution request form.
 2. Comparison of proposed substitution with product, material or system specified.
 3. Complete data, substantiating compliance of proposed substitution with the Contract Documents.
 4. Test numbers and supporting reports, indicating compliance with referenced standards.
 5. Evidence that warranty requirements are acceptable.
 6. Details indicating specific deviations proposed for the substitution.
 7. Reference and applicable Specification sections.
 8. Applicable product samples.

B. All substitution requests shall be received in the Owner’s office no less than ten (10) calendar days before bid opening. Requests received after this date will not be considered.

Merryfield Hall Renovation – Re-Bid
April 2019
1.05 SUBSTITUTIONS DURING CONSTRUCTION

A. Substitutions will normally not be considered after date of Contract except when required due to unforeseen circumstances.

B. Within a period of thirty (30) days after date of Contract, the Owner may, at its option, consider formal written requests for substitution of products in place of those specified, when submitted in accordance with the requirements stipulated herein.

C. One or more of the following conditions must be documented in any such request:
 1. Required for compliance with final interpretation of code or insurance requirements.
 2. Required due to unavailability of a specified product.
 3. Required because of the inability of the specified product to perform properly or to fit in the designated space.
 4. Substitution would be substantially in the best interest of the Owner in terms of cost, time, or other considerations.

1.06 SUBSTITUTIONS NOT PERMITTED

A. If implied on submittals without first requesting approval thereof.

B. If acceptance will require substantial revision of the Contract Documents.

END OF SECTION
SUBSTITUTION REQUEST FORM

TO: ___

PROJECT: ___

SPECIFIED ITEM: __

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Paragraph</th>
<th>Description</th>
</tr>
</thead>
</table>

The undersigned requests consideration of the following:

PROPOSED SUBSTITUTION: ______________________________________

Attached data includes product description, specifications, drawings, photographs, performance and test data adequate for evaluation of the request; applicable portions of the data are clearly identified.

Attached data also includes description of changes to Contract Documents which proposed substitution will require for its proper installation.

The undersigned states that the following paragraphs, unless modified on attachments, are correct:

1. The proposed substitution does not affect dimensions shown on Drawings.
2. The undersigned will pay for changes to the building design, including engineering design, detailing and construction costs caused by the requested substitution.
3. The proposed substitution will have no adverse effect on other trades, the construction schedule, or specified warranty requirements.
4. Maintenance and service parts will be locally available for the proposed substitution.

The undersigned further states that the function, appearance and quality of the Proposed Substitution are equivalent or superior to the Specified Item.

Submitted by:

Signature __________________________________ For use by Design Consultant:

Firm __ □ Accepted □ Accepted as noted

Address ____________________________________ □ Not Accepted □ Received too late

__ By _______________________________________

Date _______________________________________ Date _____________________________________

Telephone _________________________________ Remarks __________________________________

Attachments:
SECTION 01 31 19

PROJECT MEETINGS

PART 1 GENERAL

1.01 PRE-CONSTRUCTION MEETING

A. Architect/Engineer/Designer, Contractor and Owner will meet prior to start of the Work (within seven (7) days after notice to proceed) to discuss at least the following topics and any others of mutual interest.
 1. Schedule of Values
 2. Permit Status/tree protection/erosion control
 3. List of sub-contractors
 4. Job inspections.
 5. Early purchase of, and/or lead time requirements for material and equipment/prepurchase of equipment
 6. Monthly payment date/SOP for pay requests
 7. Portion of site to be occupied by construction.
 8. Parking/Staging areas
 9. Non-smoking campus requirements
 10. Maintenance of access and safety.
 11. Processing of field decisions and change orders
 12. Labor provisions/labor rates for subs
 13. Material submittals/deferred submittals
 14. Owner access during construction.
 15. Review of Contract Documents/review ADA requirements/cross-slopes
 16. Coordination procedures and separate contracts.
 17. Progress schedules.
 19. Safety and emergency procedures/24 hour contact numbers
 22. Progress meetings.

B. Location of Meeting: Project site

1.02 PROGRESS MEETINGS

A. The Contractor will schedule and administer progress meetings and will:
 1. Prepare agendas.
 2. Schedule progress meetings, frequency, time and day to be determined during pre-construction meeting.
 3. Make physical arrangements for and preside at meetings.
 4. Record minutes and include decisions.
 5. Distribute copies of minutes to participants within four (4) days after meetings.
B. Location of Meetings: Project site.

C. Attendance:
 1. The Owner or Owner’s Authorized Representative.
 2. Contractor.
 3. Subcontractors affected by agenda.
 4. Project Architect/Engineer/as necessary.
 5. Owner will attend meeting to ascertain Work is expedited consistent with progress schedule and with Contract Documents.

D. Minimum Agenda:
 1. Review and approve minutes from previous meeting.
 2. Review Work progress since previous meeting.
 3. Discuss field observations, and problems.
 4. Review delivery schedules, construction schedule, and identify problems which impede planned progress.
 5. Review proposed changes.
 7. Note all new subcontractors performing Work at the job site.

END OF SECTION
SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, SAMPLES

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Submit to the Owner shop drawings, samples, and product data (such as manufacturer’s standard schematic drawings and other literature) when required by individual Specifications sections.

B. Related Work Specified Elsewhere
 1. Instructions to Bidders.
 2. OSU General Conditions.

1.02 SUBMITTAL SCHEDULING

A. For items requiring review by the Owner only, submittals shall be sent to the Owner at least 15 calendar days before the date each is required for fabrication or installation.

B. Submittals to be reviewed by Owner’s consultants shall be sent to the Owner at least 20 calendar days before the date each is required for fabrication or installation.

C. Submittals to be reviewed by Owner’s property insurance carrier shall be sent to Owner as directed in individual specification sections.

D. Submittals involving Substitution requests or other modifications requiring review by the Owner and/or the Owner's consultants shall be sent to the Owner at least 20 calendar days before the date each is required for fabrication or installation.

1.03 SUBMITTAL CONTENT AND FORMAT

A. General Requirements:
 1. Shop Drawings: Submit in electronic format and, if requested by Owner’s Authorized Representative, submit one reproducible transparency and 1 print of each drawing.
 2. Product Data: Submit electronically, and if requested by Owner's Authorized Representative, up to 6 hard copies.
 3. Samples: Submit the number and type stated in each Specification Section. Submit a minimum of three sets of color samples where color selection is required.
 4. Submittals shall include:
 a. Date and revision dates return date requested.
 b. Project title and number.
 c. The names of the Contractor, subcontractor, supplier, and manufacturer.
d. Identification of product or material, with Specification Section number.
e. Relation to adjacent critical features of work or materials.
f. Field dimensions, clearly identified as such.
g. Applicable standards, such as ASTM number or Federal Specification.
h. Identification of deviations from Contract Documents, and for products accompanied by Substitution request as required by Section 01 25 00.
i. Contractor’s stamp legibly signed, essentially as follows:
 1) The undersigned, acting on behalf of the Contractor, certifies that this submittal has been reviewed and is approved; products have been verified as being as specified, field measurements and field construction criteria have been or will be coordinated, and the submittal is in compliance with Contract Documents.

5. Re-submission Requirements:
a. Revise initial drawings as required and resubmit as specified for initial submittal.
b. Indicate on drawings any changes which have been made other than those requested by the Owner or the owner’s consultants.

6. The Owner may return without review any submittal not meeting the requirements listed above.

B. Shop Drawings:
1. Present data in a clear and thorough manner.
2. Details shall be identified by reference to sheet and detail, schedule or room numbers shown on Contract Documents.
3. Structural items shall be identified by location in the completed structure. Identify details by reference to contract sheet and detail numbers.
4. Minimum sheet Size: 8 ½ x 11”.

C. Product Data:
1. Manufacturer’s catalog sheets, brochures, diagrams, schedules, performance charts, illustrations and other standard descriptive data:
 a. Clearly mark each copy to identify pertinent product or models.
 b. Show dimensions, weights, and clearances required.
 c. Show performance data consisting of capabilities, ROM, KW, pressure drops, design characteristics and consumption; conforming as closely as possible to the test methods referenced in the Plans and Specifications.
 d. Show wiring or piping diagrams and controls.
2. Manufacturer’s standard schematic drawings and diagrams:
 a. Modify to delete information which is not applicable.
 b. Supplement standard information to provide information specifically applicable to the Work.

D. Samples:
1. Insure that samples are of sufficient size to indicate the general visual effect or color.

Merryfield Hall Renovation – Re-Bid
April 2019
2. Where samples must show a range of color, texture, finish, graining, or other property, submit sets of pairs illustrating the full scope of this range.
3. One (1) sample or one (1) set of approved samples will be retained by the Owner; final work will be measured against approved samples.

1.04 QUALITY ASSURANCE
 A. Process submittals in ample time for review, as applicable, so as to not delay the Work. All submittals shall be received by the Owner within ten (10) days after pre-construction.

1.05 DEFINITIONS
 A. The Owner will mark reviewed materials as follows:
 1. “No Exception Taken,” which means fabrication, manufacture and/or installation may proceed.
 2. “Make Revisions Noted,” which means fabrication, manufacture and/or installation may proceed with revisions as noted.
 3. “Revise and Resubmit,” which means that fabrication, manufacture and/or installation may not proceed.
 4. “Rejected,” which means do not proceed; make arrangements for the review of the proposed Work with the Owner as soon as possible.

1.06 PROCESSING
 A. Review submittals, make necessary corrections, and become familiar with the content of the submittals.
 B. Mark each item with Contractor’s stamp.
 C. Accompany submittals with a transmittal letter bearing the project name, Contractor’s name, number of items, and other pertinent data.
 D. Keep one copy of each reviewed submittal on the job site at all times.
 E. Be responsible for obtaining and distributing prints of shop drawings to the various suppliers, and the Owner once review process has been completed. Make prints of reviewed shop drawings only from transparencies which carry the appropriate stamp and endorsement.

END OF SECTION
Abbreviations and Symbols

PART 1 GENERAL

1.01 REQUIREMENTS INCLUDED

A. Words which may be found elsewhere in the Project Manual and Drawings are abbreviated in accordance with the standards set forth in the following table:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C</td>
<td>air conditioning</td>
</tr>
<tr>
<td>AB</td>
<td>anchor bolt</td>
</tr>
<tr>
<td>AC</td>
<td>asphaltic concrete</td>
</tr>
<tr>
<td>ACT</td>
<td>acoustical tile</td>
</tr>
<tr>
<td>AD</td>
<td>area drain</td>
</tr>
<tr>
<td>ADD</td>
<td>addendum</td>
</tr>
<tr>
<td>ADD'L</td>
<td>additional</td>
</tr>
<tr>
<td>ADH</td>
<td>adhesive</td>
</tr>
<tr>
<td>AFF</td>
<td>above finish floor</td>
</tr>
<tr>
<td>AGG</td>
<td>aggregate</td>
</tr>
<tr>
<td>AL</td>
<td>aluminum</td>
</tr>
<tr>
<td>ALLOW</td>
<td>allowable</td>
</tr>
<tr>
<td>ALT</td>
<td>alternate</td>
</tr>
<tr>
<td>ANOD</td>
<td>anodized</td>
</tr>
<tr>
<td>AP</td>
<td>access panel</td>
</tr>
<tr>
<td>APPRX</td>
<td>approximate</td>
</tr>
<tr>
<td>ARCH</td>
<td>architect(ural)</td>
</tr>
<tr>
<td>ASPH</td>
<td>asphalt</td>
</tr>
<tr>
<td>AUTO</td>
<td>automatic</td>
</tr>
<tr>
<td>AVE</td>
<td>avenue</td>
</tr>
<tr>
<td>BD</td>
<td>board</td>
</tr>
<tr>
<td>BIT</td>
<td>bituminous</td>
</tr>
<tr>
<td>BLDG</td>
<td>building</td>
</tr>
<tr>
<td>BLKG</td>
<td>blocking</td>
</tr>
<tr>
<td>BM</td>
<td>bench mark, beam(s)</td>
</tr>
<tr>
<td>BOT</td>
<td>bottom</td>
</tr>
<tr>
<td>BRZ</td>
<td>bronze</td>
</tr>
<tr>
<td>BS</td>
<td>both side</td>
</tr>
<tr>
<td>CB</td>
<td>catch basin</td>
</tr>
<tr>
<td>CEM</td>
<td>cement</td>
</tr>
<tr>
<td>CF</td>
<td>cubic foot</td>
</tr>
<tr>
<td>CFOI</td>
<td>contractor furnished owner installed</td>
</tr>
<tr>
<td>CG</td>
<td>corner guard</td>
</tr>
<tr>
<td>CH</td>
<td>ceiling height</td>
</tr>
<tr>
<td>CI</td>
<td>cast iron</td>
</tr>
<tr>
<td>CJ</td>
<td>control joint</td>
</tr>
<tr>
<td>CKBD</td>
<td>chalkboard</td>
</tr>
<tr>
<td>CL</td>
<td>centerline</td>
</tr>
<tr>
<td>CLG</td>
<td>ceiling</td>
</tr>
<tr>
<td>CLR</td>
<td>clear(ance)</td>
</tr>
<tr>
<td>CM</td>
<td>construction manager</td>
</tr>
<tr>
<td>CMT</td>
<td>ceramic mosaic (tile)</td>
</tr>
<tr>
<td>CMU</td>
<td>concrete masonry unit</td>
</tr>
<tr>
<td>COL</td>
<td>column</td>
</tr>
<tr>
<td>COM</td>
<td>communications</td>
</tr>
<tr>
<td>CONC</td>
<td>concrete</td>
</tr>
<tr>
<td>CONST</td>
<td>construction</td>
</tr>
<tr>
<td>CONT</td>
<td>continuous or continue</td>
</tr>
<tr>
<td>CONTR</td>
<td>contract(or)</td>
</tr>
<tr>
<td>CPT</td>
<td>carpet</td>
</tr>
<tr>
<td>CRS</td>
<td>course(s)</td>
</tr>
<tr>
<td>CS</td>
<td>countersink</td>
</tr>
<tr>
<td>CSMT</td>
<td>casement</td>
</tr>
<tr>
<td>CT</td>
<td>ceramic tile</td>
</tr>
<tr>
<td>CTR</td>
<td>center</td>
</tr>
<tr>
<td>CVG</td>
<td>clear vertical grain</td>
</tr>
<tr>
<td>CW</td>
<td>cold water</td>
</tr>
</tbody>
</table>

Merryfield Hall Renovation – Re-Bid
April 2019
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWT</td>
<td>ceramic wall tile</td>
</tr>
<tr>
<td>CY</td>
<td>cubic yard</td>
</tr>
<tr>
<td>D</td>
<td>depth</td>
</tr>
<tr>
<td>DEMO</td>
<td>demolish, demolition</td>
</tr>
<tr>
<td>DEP</td>
<td>depressed</td>
</tr>
<tr>
<td>DF</td>
<td>drinking fountain</td>
</tr>
<tr>
<td>DIA</td>
<td>diameter</td>
</tr>
<tr>
<td>DIAG</td>
<td>diagonal</td>
</tr>
<tr>
<td>DIM</td>
<td>dimension</td>
</tr>
<tr>
<td>DISP</td>
<td>dispenser</td>
</tr>
<tr>
<td>DIV</td>
<td>division</td>
</tr>
<tr>
<td>DL</td>
<td>dead load</td>
</tr>
<tr>
<td>DMT</td>
<td>demountable</td>
</tr>
<tr>
<td>DN</td>
<td>down</td>
</tr>
<tr>
<td>DP</td>
<td>dampproofing</td>
</tr>
<tr>
<td>DR</td>
<td>door</td>
</tr>
<tr>
<td>DS</td>
<td>downspout</td>
</tr>
<tr>
<td>DT</td>
<td>drain tile</td>
</tr>
<tr>
<td>DTL</td>
<td>detail</td>
</tr>
<tr>
<td>DW</td>
<td>dumbwaiter</td>
</tr>
<tr>
<td>DWG</td>
<td>drawing(s)</td>
</tr>
<tr>
<td>DWR</td>
<td>drawer</td>
</tr>
<tr>
<td>EA</td>
<td>each</td>
</tr>
<tr>
<td>EB</td>
<td>expansion bolt</td>
</tr>
<tr>
<td>EF</td>
<td>each face</td>
</tr>
<tr>
<td>EJ</td>
<td>expansion joint</td>
</tr>
<tr>
<td>EL</td>
<td>elevation</td>
</tr>
<tr>
<td>ELEC</td>
<td>electric(al)</td>
</tr>
<tr>
<td>EMBED</td>
<td>embedment</td>
</tr>
<tr>
<td>EMER</td>
<td>emergency</td>
</tr>
<tr>
<td>ENCL</td>
<td>enclose(ure)</td>
</tr>
<tr>
<td>EP</td>
<td>electrical panel board</td>
</tr>
<tr>
<td>EQ</td>
<td>equal</td>
</tr>
<tr>
<td>EQUIP</td>
<td>equipment</td>
</tr>
<tr>
<td>EST</td>
<td>estimate</td>
</tr>
<tr>
<td>EVT</td>
<td>equiviscious temperature</td>
</tr>
<tr>
<td>EW</td>
<td>each way</td>
</tr>
<tr>
<td>EWC</td>
<td>electric water cooler</td>
</tr>
<tr>
<td>EX.EXIT</td>
<td>existing</td>
</tr>
<tr>
<td>EXH</td>
<td>exhaust</td>
</tr>
<tr>
<td>EXP</td>
<td>exposed</td>
</tr>
<tr>
<td>EXT</td>
<td>exterior</td>
</tr>
<tr>
<td>FA</td>
<td>fire alarm</td>
</tr>
<tr>
<td>FAF</td>
<td>fluid applied flooring</td>
</tr>
<tr>
<td>FARF</td>
<td>fluid applied resilient floor</td>
</tr>
<tr>
<td>FAS</td>
<td>fasten, fastener</td>
</tr>
<tr>
<td>FBD</td>
<td>fiberboard</td>
</tr>
<tr>
<td>FBT</td>
<td>finished blowing temperature</td>
</tr>
<tr>
<td>FD</td>
<td>floor drain, fire damper</td>
</tr>
<tr>
<td>FE</td>
<td>fire extinguisher</td>
</tr>
<tr>
<td>FEC</td>
<td>fire extinguisher cabinet</td>
</tr>
<tr>
<td>FF</td>
<td>factory finish</td>
</tr>
<tr>
<td>FGL</td>
<td>fiberglass</td>
</tr>
<tr>
<td>FHMS</td>
<td>flathead machine screw</td>
</tr>
<tr>
<td>FHWS</td>
<td>flathead wood screw</td>
</tr>
<tr>
<td>FIN</td>
<td>finish(ed)</td>
</tr>
<tr>
<td>FLCO</td>
<td>floor cleanout</td>
</tr>
<tr>
<td>FLR</td>
<td>floor(ing)</td>
</tr>
<tr>
<td>FLUR</td>
<td>fluorescent</td>
</tr>
<tr>
<td>FND</td>
<td>foundation</td>
</tr>
<tr>
<td>FOC</td>
<td>face of concrete</td>
</tr>
<tr>
<td>FOIC</td>
<td>furnished by owner/installed</td>
</tr>
<tr>
<td>FOIO</td>
<td>furnished by owner/installed</td>
</tr>
<tr>
<td>FOM</td>
<td>face of masonry</td>
</tr>
<tr>
<td>FOM</td>
<td>face of masonry</td>
</tr>
<tr>
<td>FPHB</td>
<td>freeze-proof hose bib</td>
</tr>
<tr>
<td>FR</td>
<td>fire resistive, fire rated</td>
</tr>
<tr>
<td>FRM</td>
<td>frame(d), (ing)</td>
</tr>
<tr>
<td>FS</td>
<td>full size</td>
</tr>
<tr>
<td>FSS</td>
<td>finished structural slab</td>
</tr>
<tr>
<td>FT</td>
<td>foot</td>
</tr>
<tr>
<td>FTG</td>
<td>footing</td>
</tr>
<tr>
<td>FTS</td>
<td>finished topping slab</td>
</tr>
<tr>
<td>GA</td>
<td>gage, gauge</td>
</tr>
<tr>
<td>GALV</td>
<td>galvanized</td>
</tr>
<tr>
<td>GB</td>
<td>grab bar or gypsum board</td>
</tr>
<tr>
<td>GC</td>
<td>general contractor</td>
</tr>
<tr>
<td>GI</td>
<td>galvanized iron</td>
</tr>
</tbody>
</table>

Merryfield Hall Renovation - Re-Bid
April 2019
ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL</td>
<td>glass, glazing</td>
</tr>
<tr>
<td>GLS</td>
<td>glass resin wall surfacing</td>
</tr>
<tr>
<td>GP</td>
<td>gypsum</td>
</tr>
<tr>
<td>HB</td>
<td>hose bib</td>
</tr>
<tr>
<td>HBD</td>
<td>hardboard</td>
</tr>
<tr>
<td>HC</td>
<td>hollow core</td>
</tr>
<tr>
<td>HD</td>
<td>heavy duty</td>
</tr>
<tr>
<td>HDR</td>
<td>header</td>
</tr>
<tr>
<td>HDW</td>
<td>hardware</td>
</tr>
<tr>
<td>HM</td>
<td>hollow metal</td>
</tr>
<tr>
<td>HOR</td>
<td>horizontal</td>
</tr>
<tr>
<td>HP</td>
<td>high point</td>
</tr>
<tr>
<td>HR</td>
<td>hour</td>
</tr>
<tr>
<td>HT</td>
<td>height</td>
</tr>
<tr>
<td>HTG</td>
<td>heating</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilating, air conditioning</td>
</tr>
<tr>
<td>HWD</td>
<td>hardwood</td>
</tr>
<tr>
<td>HWH</td>
<td>hot water heater</td>
</tr>
<tr>
<td>ID</td>
<td>inside diameter, identification</td>
</tr>
<tr>
<td>IN</td>
<td>inch</td>
</tr>
<tr>
<td>INCIN</td>
<td>incinerator</td>
</tr>
<tr>
<td>INCL</td>
<td>include(d), ion)</td>
</tr>
<tr>
<td>INT</td>
<td>interior</td>
</tr>
<tr>
<td>INV</td>
<td>invert</td>
</tr>
<tr>
<td>JB</td>
<td>junction box</td>
</tr>
<tr>
<td>JC</td>
<td>janitor’s closet</td>
</tr>
<tr>
<td>JT</td>
<td>joint</td>
</tr>
<tr>
<td>KD</td>
<td>kiln dried</td>
</tr>
<tr>
<td>KCP</td>
<td>Keene’s cement plaster</td>
</tr>
<tr>
<td>KO</td>
<td>knockout</td>
</tr>
<tr>
<td>KP</td>
<td>kick plate</td>
</tr>
<tr>
<td>LAB</td>
<td>laboratory</td>
</tr>
<tr>
<td>LAM</td>
<td>laminate(d)</td>
</tr>
<tr>
<td>LAV</td>
<td>lavatory</td>
</tr>
<tr>
<td>LBS</td>
<td>pounds</td>
</tr>
<tr>
<td>LH</td>
<td>left hand</td>
</tr>
<tr>
<td>LL</td>
<td>live load</td>
</tr>
<tr>
<td>LONGIT</td>
<td>longitudinal</td>
</tr>
<tr>
<td>LP</td>
<td>low point</td>
</tr>
<tr>
<td>LW</td>
<td>lightweight</td>
</tr>
<tr>
<td>MAX</td>
<td>maximum</td>
</tr>
<tr>
<td>MB</td>
<td>machine bolt</td>
</tr>
<tr>
<td>M. MECH</td>
<td>mechanic(al)</td>
</tr>
<tr>
<td>MFR</td>
<td>manufacture(r)</td>
</tr>
<tr>
<td>MH</td>
<td>manhole</td>
</tr>
<tr>
<td>Min</td>
<td>minimum, minute</td>
</tr>
<tr>
<td>MISC</td>
<td>miscellaneous</td>
</tr>
<tr>
<td>MO</td>
<td>masonry opening</td>
</tr>
<tr>
<td>MO#</td>
<td>model number</td>
</tr>
<tr>
<td>MOD</td>
<td>modular</td>
</tr>
<tr>
<td>MPH</td>
<td>miles per hour</td>
</tr>
<tr>
<td>MS</td>
<td>machine screw</td>
</tr>
<tr>
<td>MTL</td>
<td>metal</td>
</tr>
<tr>
<td>MULL</td>
<td>mullion</td>
</tr>
<tr>
<td>MWP</td>
<td>membrane waterproofing</td>
</tr>
<tr>
<td>NAT</td>
<td>natural, natural finish</td>
</tr>
<tr>
<td>NIC</td>
<td>not in contract</td>
</tr>
<tr>
<td>NO</td>
<td>number</td>
</tr>
<tr>
<td>NOM</td>
<td>nominal</td>
</tr>
<tr>
<td>NTS</td>
<td>not to scale</td>
</tr>
<tr>
<td>OA</td>
<td>overall</td>
</tr>
<tr>
<td>OBS</td>
<td>obscure</td>
</tr>
<tr>
<td>OC</td>
<td>on center(s)</td>
</tr>
<tr>
<td>OD</td>
<td>outside diameter</td>
</tr>
<tr>
<td>OF</td>
<td>overflow</td>
</tr>
<tr>
<td>OFCI</td>
<td>owner furnished contractor installed</td>
</tr>
<tr>
<td>OFOI</td>
<td>owner furnished owner</td>
</tr>
<tr>
<td>OHMS</td>
<td>ovalhead machine screw</td>
</tr>
<tr>
<td>OHWS</td>
<td>ovalhead wood screw</td>
</tr>
<tr>
<td>OPG</td>
<td>opening</td>
</tr>
<tr>
<td>OPP</td>
<td>opposite</td>
</tr>
</tbody>
</table>

Merryfield Hall Renovation – Re-Bid
April 2019
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OZ</td>
<td>ounce(s)</td>
</tr>
<tr>
<td>P</td>
<td>paint(ed)</td>
</tr>
<tr>
<td>PB</td>
<td>push button</td>
</tr>
<tr>
<td>PCF</td>
<td>pounds per cubic foot</td>
</tr>
<tr>
<td>PCP</td>
<td>putting coat plaster</td>
</tr>
<tr>
<td>PERF</td>
<td>perforate(d)</td>
</tr>
<tr>
<td>PL</td>
<td>plate, property line</td>
</tr>
<tr>
<td>PLAM</td>
<td>plastic laminate</td>
</tr>
<tr>
<td>PLAS</td>
<td>plaster</td>
</tr>
<tr>
<td>PNL</td>
<td>panel</td>
</tr>
<tr>
<td>PP</td>
<td>push plate</td>
</tr>
<tr>
<td>PR</td>
<td>pair</td>
</tr>
<tr>
<td>PREP</td>
<td>prepare</td>
</tr>
<tr>
<td>PSF</td>
<td>pounds per square foot</td>
</tr>
<tr>
<td>PSI</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PT</td>
<td>point, pressure treated</td>
</tr>
<tr>
<td>PTN</td>
<td>partition</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>PWD</td>
<td>plywood</td>
</tr>
<tr>
<td>QT</td>
<td>quarry tile</td>
</tr>
<tr>
<td>R</td>
<td>rise</td>
</tr>
<tr>
<td>RA</td>
<td>return air</td>
</tr>
<tr>
<td>RAD</td>
<td>radius</td>
</tr>
<tr>
<td>RCP</td>
<td>reflected ceiling plan</td>
</tr>
<tr>
<td>RD</td>
<td>roof drain</td>
</tr>
<tr>
<td>REF</td>
<td>reference</td>
</tr>
<tr>
<td>REFR</td>
<td>refrigerator</td>
</tr>
<tr>
<td>REINF</td>
<td>reinforce(ing)</td>
</tr>
<tr>
<td>REQ</td>
<td>required</td>
</tr>
<tr>
<td>RET'G</td>
<td>retaining</td>
</tr>
<tr>
<td>REV</td>
<td>revision(s), revised</td>
</tr>
<tr>
<td>RH</td>
<td>right had</td>
</tr>
<tr>
<td>RM</td>
<td>room</td>
</tr>
<tr>
<td>RO</td>
<td>rough opening</td>
</tr>
<tr>
<td>RSF</td>
<td>resilient sheet flooring</td>
</tr>
<tr>
<td>SC</td>
<td>solid core</td>
</tr>
<tr>
<td>SCHED</td>
<td>schedule</td>
</tr>
<tr>
<td>SEC</td>
<td>section</td>
</tr>
<tr>
<td>SF</td>
<td>square feet (foot)</td>
</tr>
<tr>
<td>SHT</td>
<td>sheet</td>
</tr>
<tr>
<td>SHTHG</td>
<td>sheathing</td>
</tr>
<tr>
<td>SIM</td>
<td>similar</td>
</tr>
<tr>
<td>SL</td>
<td>sleeve</td>
</tr>
<tr>
<td>SOG</td>
<td>slab on grade</td>
</tr>
<tr>
<td>SPEC</td>
<td>specification(s)</td>
</tr>
<tr>
<td>SQ</td>
<td>square</td>
</tr>
<tr>
<td>SS</td>
<td>storm sewer</td>
</tr>
<tr>
<td>S4S</td>
<td>finished 4 sides</td>
</tr>
<tr>
<td>SD</td>
<td>storm drain</td>
</tr>
<tr>
<td>ST</td>
<td>steel, street</td>
</tr>
<tr>
<td>ST ST</td>
<td>stainless steel</td>
</tr>
<tr>
<td>STD</td>
<td>standard</td>
</tr>
<tr>
<td>STR</td>
<td>structural</td>
</tr>
<tr>
<td>SUPP</td>
<td>supplement</td>
</tr>
<tr>
<td>SUPT</td>
<td>support</td>
</tr>
<tr>
<td>SUSP</td>
<td>suspended</td>
</tr>
<tr>
<td>SV</td>
<td>sheet vinyl</td>
</tr>
<tr>
<td>T</td>
<td>tread</td>
</tr>
<tr>
<td>TBM</td>
<td>top bench mark</td>
</tr>
<tr>
<td>T&G</td>
<td>tongue and groove</td>
</tr>
<tr>
<td>TB</td>
<td>towel bar</td>
</tr>
<tr>
<td>TC</td>
<td>top of curb</td>
</tr>
<tr>
<td>TEL</td>
<td>telephone</td>
</tr>
<tr>
<td>TEMP</td>
<td>tempered</td>
</tr>
<tr>
<td>THK</td>
<td>thickness</td>
</tr>
<tr>
<td>TKBD</td>
<td>tackboard</td>
</tr>
<tr>
<td>TO</td>
<td>top of</td>
</tr>
<tr>
<td>TP</td>
<td>top of paving</td>
</tr>
<tr>
<td>TRANS</td>
<td>transverse</td>
</tr>
<tr>
<td>TS</td>
<td>top of slab</td>
</tr>
<tr>
<td>TV</td>
<td>television</td>
</tr>
<tr>
<td>TW</td>
<td>top of wall</td>
</tr>
<tr>
<td>TYP</td>
<td>typical</td>
</tr>
<tr>
<td>UNO</td>
<td>unless noted otherwise</td>
</tr>
<tr>
<td>VAT</td>
<td>vinyl asbestos tile</td>
</tr>
<tr>
<td>VB</td>
<td>vapor barrier</td>
</tr>
<tr>
<td>VCT</td>
<td>Vinyl Composition Tile</td>
</tr>
<tr>
<td>ABBREVIATIONS AND SYMBOLS</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>01 42 13 - 5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERT</td>
<td>vertical</td>
</tr>
<tr>
<td>VG</td>
<td>vertical grain</td>
</tr>
<tr>
<td>VIF</td>
<td>verify in field</td>
</tr>
<tr>
<td>VWC</td>
<td>vinyl wall covering</td>
</tr>
<tr>
<td>W</td>
<td>width, wide, water</td>
</tr>
<tr>
<td>W/</td>
<td>with</td>
</tr>
<tr>
<td>W/O</td>
<td>without</td>
</tr>
<tr>
<td>WC</td>
<td>water closet</td>
</tr>
<tr>
<td>WD</td>
<td>wood, wood finish</td>
</tr>
<tr>
<td>WP</td>
<td>waterproof(ing)</td>
</tr>
<tr>
<td>WNS</td>
<td>wainscot</td>
</tr>
<tr>
<td>WR</td>
<td>water resistant</td>
</tr>
<tr>
<td>WS</td>
<td>waterstop</td>
</tr>
<tr>
<td>WW</td>
<td>window wall</td>
</tr>
<tr>
<td>WWC</td>
<td>wood wall covering</td>
</tr>
<tr>
<td>WWF</td>
<td>woven wire fabric</td>
</tr>
</tbody>
</table>
B. Words which may be found elsewhere in the Project Manual and Drawings are abbreviated in accordance with the standards set forth in the following table:

& and
\(\lambda \) angle
@ at
\(\iota \) diameter, round
" inches
:\ is, shall b
\' feet
\(\zeta \) perpendicular
/ per
\% percent
pound, number
X by (as in 2 by 4)

END OF SECTION
SECTION 01 42 16

DEFINITIONS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Words which may be found elsewhere in the Contract Documents are defined in accordance with the standards set forth in the following table:

Approve:

Where used in conjunction with Architect's response to submittals, requests, applications, inquiries, reports and claims by Contractor, the meaning of term "approved" will be limited to the Architect's responsibilities and duties as specified in General and Supplementary Conditions. In no case will "approval" by Architect be interpreted as a release of Contract requirements.

As Detailed, As Shown:

Where "as detailed", "as shown" or words of similar importance are used, it shall be understood that reference to the Drawings accompanying the Specifications is made unless otherwise stated.

As Directed, As Required, As Authorized, As Reviewed, As Accepted:

Where "as directed", "as required", "as authorized", "as reviewed", "as accepted" or words of similar importance are used, it shall be understood that the direction, requirement, permission, authorization, review, or acceptance of the Architect is intended, unless otherwise stated.

As Indicated:

Where "as indicated" is used it shall be understood that reference to Drawings and/or Specifications is made unless otherwise stated.

Directed, Requested, etc.:

Terms such as "directed," "requested," "authorized," "selected," will be understood as "directed by Architect," "requested by Architect," and similar phrases shall not be interpreted to extend Architect's responsibility into Contractor's responsibility for construction supervision.

Furnish:

Except as otherwise defined in greater detail the term "furnish" is used to mean supply and deliver to project site, ready for unloading, unpacking, assembly, installation, etc., as applicable in each instance.

Indicated:

The term "indicated" is a cross-reference to graphic representations, notes or Merryfield Hall Renovation – Re-Bid
April 2019
schedules on drawings, to other paragraphs or schedules in the specifications and to similar means of recording requirements in Contract Documents. Where terms such as "shown," "noted," "scheduled," and "specified" are used in lieu of "indicated," it is for purpose of helping reader locate cross-reference and no limitation of location is intended except as specifically noted.

Install:

Except as otherwise defined in greater detail, the term "install" is used to describe operations at project site including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning and similar operations, as applicable in each instance.

Installer:

The term "installer" is defined as the entity (person or firm) engaged by Contractor, or its subcontractor or sub-subcontractor for performance of a particular unit of Work at project site, including installation, erection, application and similar required operations. It is a general requirement that such entities (Installers) be expert in operations they are engaged to perform.

Provide:

Except as otherwise defined in greater detail, term "provide" means furnish and install, complete and ready for intended use, as applicable in each instance.
SECTION 01 42 19

REFERENCE STANDARDS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Quality Assurance.
B. Location of References.
C. Schedule of References.

1.02 QUALITY ASSURANCE

A. For products or quality of work specified by association, trade, or federal standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.
B. Conform to reference standard by date of issue current on date of Contract Documents.
C. General Applicability of Standards: Except where Contract Documents include more stringent requirements, applicable standards of the construction industry have the same force and effect as if bound or copied directly into Contract Documents.
D. Such standards are made a part of the Contract Documents by reference.
E. Individual sections indicate which codes and standards the Contractor must keep at the project site, available for reference.
F. Referenced industry standards take precedence over standards which are not referenced but recognized in industry as applicable.
G. Non-referenced standards are not directly applicable to the Work, except as a general requirement of whether the Work complies with standards recognized in the construction industry.

1.03 LOCATION OF REFERENCES

A. Valley Library, Oregon State University.

1.04 SCHEDULE OF REFERENCED ASSOCIATIONS

AIA American Institute of Architects
AISC American Institute of Steel Construction
WWW.AISC.ORG

AISI American Iron and Steel Institute
WWW.STEEL.ORG

ANSI American National Standards Institute
WWW.ANSI.ORG

APA American Plywood Association
WWW.APAWOOD.ORG

ASHRAE American Society of Heating, Refrigerating, and Air Conditioning Engineers
WWW.ASHRAE.ORG

ASTM American Society for Testing and Materials
WWW.ASTM.ORG

AWPA American Wood Protection Association
WWW.AWPA.COM

AWS American Welding Society
WWW.AWS.ORG

BIA Masonry Institute of America
WWW.MASONRYINSTITUTE.ORG

BOLI Oregon Bureau of Labor and Industries
WWW.BOLI.STATE.OR.US

CCB Construction Contractors Board
WWW.OREGON.GOV.CCB/

CDA Copper Development Association
WWW.COPPER.ORG

CISPI Cast Iron Soil Pipe Institute
WWW.CISPI.ORG

CSI Construction Specification Institute
WWW.CSINET.ORG

DEQ Department of Environmental Quality (Oregon)
WWW.OREGON.GOV/DEQ/
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHI</td>
<td>Door and Hardware Institute</td>
<td>WWW.DHI.ORG</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
<td>WWW.DOT.GOV</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
<td>WWW.EPA.GOV</td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual System</td>
<td>WWW.FMGLOBAL.COM</td>
</tr>
<tr>
<td>FS</td>
<td>Federal Specification General Services Administration Specifications and Consumer Information Distribution Section (WFSIS)</td>
<td>WWW.GSA.GOV/PORTAL/CONTENT/103856</td>
</tr>
<tr>
<td>IBC</td>
<td>International Building Code</td>
<td>WWW.ICCSAFE.ORG</td>
</tr>
<tr>
<td>ICBO</td>
<td>International Conference of Building Officials</td>
<td>PUBLICCODES.CITATION.COM/ICOD/IBG/INDEX.HTM</td>
</tr>
<tr>
<td>IRS</td>
<td>Internal Revenue Service</td>
<td>WWW.IRS.GOV</td>
</tr>
<tr>
<td>ISA</td>
<td>Instrumentation Systems and Automation Society</td>
<td>WWW.ISA.ORG</td>
</tr>
<tr>
<td>NAAMM</td>
<td>National Association of Architectural Metal Manufacturers</td>
<td>WWW.NAAMM.ORG</td>
</tr>
<tr>
<td>NBFU</td>
<td>National Board of Fire Underwriters</td>
<td>WWW.NFPA.ORG</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electric Code</td>
<td>WWW.NECPLUS.ORG</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers' Association</td>
<td>WWW.NEMA.ORG</td>
</tr>
<tr>
<td>NESC</td>
<td>National Electrical Safety Code</td>
<td>WWW.IEEE.ORG</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
<td>WWW.NFPA.ORG</td>
</tr>
</tbody>
</table>

Merryfield Hall Renovation – Re-Bid
April 2019
<table>
<thead>
<tr>
<th>Reference Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRCA</td>
<td>National Roofing Contractors' Association WWW.NRCA.NET</td>
</tr>
<tr>
<td>OAR</td>
<td>Oregon Administrative Rules ARCWEB.SOS.STATE.OR.US/404.HTML</td>
</tr>
<tr>
<td>ORS</td>
<td>Oregon Revised Statutes LANDRU.LEG.STATE.OR.US/ORS/</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration WWW.OSHA.GOV</td>
</tr>
<tr>
<td>PS</td>
<td>Product Standard STANDARDS.GOV/STANDARDS.CFM</td>
</tr>
<tr>
<td>SDI</td>
<td>Steel Door Institute WWW.STEELDOOR.ORG</td>
</tr>
<tr>
<td>SMACNA</td>
<td>Sheet Metal and Air Conditioning Contractors' National Association WWW.SMACNA.ORG</td>
</tr>
<tr>
<td>SPRI</td>
<td>Single Ply Roofing Institute WWW.SPRI.ORG</td>
</tr>
<tr>
<td>SSPC</td>
<td>Steel Structures Painting Council WWW.SSPC.ORG</td>
</tr>
<tr>
<td>SWRI</td>
<td>Sealing, Waterproofing and Restoration Institute WWW.SWIRONLINE.ORG</td>
</tr>
<tr>
<td>UBC</td>
<td>Uniform Building Code (See ICBO) WWW.UBC.COM</td>
</tr>
<tr>
<td>UFC</td>
<td>Uniform Fire Code WWW.NFPA.ORG</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters' Laboratories, Inc. WWW.UL.COM</td>
</tr>
<tr>
<td>UMC</td>
<td>Uniform Mechanical Code WWW.UBC.COM</td>
</tr>
<tr>
<td>Reference Standard</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UPC</td>
<td>Uniform Plumbing Code</td>
</tr>
<tr>
<td>WHL</td>
<td>Warnock Hersey Laboratories</td>
</tr>
<tr>
<td>WCLIB</td>
<td>West Coast Lumber Inspection Bureau</td>
</tr>
<tr>
<td>WWPA</td>
<td>Western Wood Products Association</td>
</tr>
</tbody>
</table>

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Codes, regulations and permits.
B. Procedures for quality control.

1.02 OWNER RESPONSIBILITIES

A. Owner will employ and pay for services of an independent testing laboratory to perform inspection, sampling and testing as required by local building authority.
B. Owner’s Authorized Representative will provide on-site observation during construction.

1.03 CODES, REGULATIONS AND PERMITS

A. All Work shall conform with the Oregon Structural Specialty Code (OSSC) based on the International Building Code (IBC), as amended by the State of Oregon Building Codes Division and the edition designated by the governing authority.
B. Contractor shall comply with all applicable state and local construction codes.
C. References to codes, Specifications and standards referred to in the Contract Documents shall mean, and are intended to be, the latest edition, amendment or revision of such reference standard in effect as of the date of these Contract Documents.
D. The Owner shall be responsible for all permits and City of Corvallis plan review fees; the Contractor shall be responsible for all licenses and associated fees required for the Project.
E. Contractor shall arrange and attend all required permit inspections and furnish evidence of approved City inspection reports per Section 01 77 00.

1.04 QUALITY OF WORK

A. It is the true and specific intent of these Specifications that quality of Work on all phases of the construction and embracing all the trade sections shall be of high quality performed by workers skilled in their trade and performing their Work only according to the standard of best practice of the trade.
B. All manufactured articles, materials, and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned in accordance with manufacturer’s directions unless otherwise specified.
C. If Work is required in a manner to make it impossible to produce first quality Work, or should discrepancies appear among Contract Documents, request
interpretation from Architect before proceeding with Work.
D. Failure to secure interpretation may cause rejection by Architect or owner of installation.

1.05 LAYOUT
A. Be responsible for properly laying out the Work and for lines and measurements for the Work.
B. Verify the figures shown on the drawings before laying out the Work and report errors or inaccuracies to the Architect before commencing Work.
C. Strict compliance with maximum slopes is required. Accessible parking spaces and adjacent access aisles with slope exceeding 2% in any direction, as determined by OSU, shall be removed and replaced by the contractor at their expense.
D. Strict compliance with maximum slopes is required. New sidewalks exceeding 1:20 slope or with cross slope exceeding 2%, as determined by OSU, shall be removed and replaced by the contractor at their expense. Ramps exceeding 1:16 slope or with cross slope exceeding 2%, as determined by OSU, shall be removed and replaced by the contractor at their expense.

1.06 SUPERVISION
A. The Contractor shall maintain effective supervision on the project at all times Work is being performed.
B. The superintendent shall be the same person throughout the project and shall attend the preconstruction conference.

1.07 INSPECTIONS AND TESTING
A. Contractor shall notify the Owner at least twenty-four (24) hours in advance of any required progress inspection or final inspection including final punch list inspection.
B. Cooperate with laboratory personnel, provide access to Work and furnish incidental equipment material and labor required for field testing and sample taking.

1.08 EVALUATION OF TESTS AND INSPECTIONS
A. Results of laboratory and/or field control tests and inspections shall be the principal basis upon which satisfactory completion of Work shall be judged.
B. If results of tests and inspections indicate Work is below requirements of Contract Documents, that portion of Work is subject to rejection.

1.09 ADJUSTMENTS
A. Remove and replace Work so rejected at Contractor’s expense including costs of subsequent tests and inspections until Work meets requirements of Contract
Documents.

B. The Owner reserves the right to perform any testing as may be required to determine compliance with the Contract Documents.

C. Costs for such testing will be the Owner’s responsibility unless testing indicates noncompliance. Cost for such testing indicating noncompliance shall be borne by the Contractor.

D. Noncomplying Work shall be corrected and testing will be repeated until the Work complies with the Contract Documents.

E. Contractor will pay costs for retesting noncomplying Work.

END OF SECTION
SECTION 01 51 00

CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. This Section specifies requirements for temporary services and facilities, including utilities, construction and support facilities, security and protection.

1.02 REQUIREMENTS OF REGULATORY AGENCIES

A. Regulations: Comply with industry standards and applicable laws and regulations of authorities having jurisdiction.

C. Electrical Service: Comply with NEMA, NEC and UL standards and regulations for temporary electric service; install service in compliance with National Electric Code (NFPA 70).

D. Inspections: Arrange for authorities having jurisdiction to inspect and test each temporary utility before use; obtain required certifications and permits if required.

1.03 PROTECTION

A. Protect sidewalks, asphalt paving, concrete, trees, shrubs, and lawn areas at all times from damage resulting from construction activities.

B. Prevent materials from clogging catch basins and yard drains; leave drains clean and in proper working condition.

C. Protect Existing Irrigation Systems:
 1. In the event damage occurs to an underground irrigation system as a direct result of a Contractor's activities, the Contractor shall repair/replace or be assessed a charge at the discretion of the Owner.
 2. If repairs are to be made by the Contractor, the repairs will be inspected by the Owner’s Authorized Representative prior to backfilling.
 3. Any galvanized pipe that requires repair shall be repaired at a threaded coupling, not by use of a compression coupling.

D. Protect Existing Air Handling Systems:
 1. Contractor shall be responsible for protection of the cleanliness of the existing air handling system at all times. This protection shall include:
 a. During site work or building demolition, prefilters shall be provided and maintained on all building outside air intakes at all times throughout the construction duration.
 b. During any interior work that may create dust in the interior space and...
adjacent corridor/hallways, air filters shall be provided and maintained on all affected air return and exhaust grilles. Where air flow in or out of the space is not required, all air duct openings shall be temporarily blanked off with plywood or sheet metal.

c. Prior to starting any work, the Contractor shall record and submit to the Owner’s Authorized Representative, pressure readings across all existing air handler air filter banks before installation of new prefilters.
d. Upon completion of all Work affecting existing air handling systems, the Contractor shall remove all temporary filters, covers and associated parts and restore the system to its original operating condition unless otherwise stated elsewhere in the Contract Documents.

E. Clean, repair, resurface, or restore existing surfaces to their original, or better, condition, or completely replace such surfaces to match existing, where damaged by construction operations.

F. Security is the responsibility of the Contractor.

G. Construction Debris:
1. Debris shall not be allowed to remain around the buildings during performance of Work, but shall be disposed of as rapidly as it accumulates.
2. On completion of Work, the buildings and grounds shall be left in a condition that is equal to or better than original condition.
3. In case of failure to do so, the Owner may remove rubbish and charge the cost to the Contractor.

H. The Contractor shall manage a safe job environment for both the safety of all the people around the Work site as well as the safety of the Owner's and general public's property.

I. The Contractor shall provide and maintain suitable barricades, shelters, lights, and danger signals during the progress of the Work; they shall meet the requirements of the local building code and OSHA.

1.04 DRAINAGE

A. Verify that all rain drains in the construction areas are in working order and notify the Owner’s Authorized Representative in writing of any rain drains that are plugged, prior to the start of the Work.

B. Start of Work will be considered as acknowledgment that all drains are clear and in good working order.

C. All drains shall be left in a clean and proper working condition.

1.05 CONSTRUCTION PROJECT SAFETY FORM

A. Contractor shall submit to the Owner, prior to signing the Contract, the completed "Construction Project Safety Form", which is provided with instructions at the end of this Section.
1.06 TEMPORARY UTILITIES

A. Temporary Utilities:
 1. Prepare a schedule indicating dates for implementation and termination of each temporary utility.
 2. At the earliest feasible time, when acceptable to the Owner, change over from use of temporary service to use of the permanent service.

B. Conditions of Use:
 1. Keep temporary services and facilities clean and neat in appearance.
 2. Operate in a safe and efficient manner.
 3. Take necessary fire prevention measures.
 4. Do not overload facilities or permit them to interfere with progress.
 5. Do not allow hazardous, dangerous or unsanitary conditions, or public nuisances to develop or persist on the site.

C. Electrical Service:
 1. Service limited to 20 amp 120V circuits will be paid for by the Owner.
 2. Connection to the service shall be the responsibility of the Contractor, with the Owner’s approval.
 3. Coordinate with the Owner’s Authorized Representative.

D. Water Service:
 1. Service in reasonable quantities for the Project will be paid for by the Owner.
 2. Connection to the service shall be the responsibility of the Contractor, with the Owner’s approval.
 3. Coordinate with the Owner’s Authorized Representative.

1.07 TEMPORARY SUPPORT FACILITIES

A. Temporary Sanitary Facilities:
 1. Provide and maintain an adequate number of facilities for the use of all persons employed on the Work during construction.
 2. Provide enclosed, weatherproof facilities with heat as required.
 3. Use of new or existing Owner’s facilities will not be permitted.

B. Temporary Heat and Ventilation:
 1. As necessary, provide temporary heat and ventilation required by construction activities, for curing or drying of completed installations or protection of installed construction from adverse effects of low temperatures or high humidity. Select safe equipment that will not have a harmful effect on completed installations or elements being installed. Coordinate ventilation requirements to produce the ambient condition required and minimize consumption of energy.

C. Telephone Equipment: Provide telephone communications at project site.

D. Existing Services:
 1. Do not interrupt any existing service.
2. Prior request and approval of the Owner’s Representative will enable the Owner to shut down any utility required by the Work.
3. Contractor shall not shut down utilities.

1.08 TEMPORARY BARRIERS AND ENCLOSURES

A. Provide barriers and fencing to prevent unauthorized entry to construction areas and to protect existing facilities and adjacent properties from damage.
B. Provide Commercial grade chain link fence construction.
C. Provide 6 foot high fence around construction site as directed by Owner’s Authorized Representative; equip with vehicular and pedestrian gates with lock.
D. Exterior Closures: Provide temporary secured, weather-tight closures at exterior openings, to permit acceptable working conditions and protection of the Work.
E. Interior Closures:
 1. Provide temporary floor to ceiling partitions (not plastic sheeting) and ceilings as required to separate work areas from Owner occupied areas, to prevent penetration of dust and moisture into Owner occupied areas, to reduce construction noise, and to prevent damage to existing materials and equipment.
 2. Paint surfaces exposed to view from Owner occupied areas.

1.09 ODORS

A. Work that causes excessive odors shall be performed only after coordination with the Owner’s Authorized Representative. Filtering of air intakes to units may be required to prevent odors and vapors from entering the buildings.
B. Contractor shall provide 7 days advance notice to the Owner’s Authorized Representative in order for advance notice to be forwarded to building occupants. Work stoppage may occur if advance notification has not been coordinated or odors and vapors from the work are found to generate complaints from building occupants.

1.10 FIRE SAFETY

A. Ensure that required exit routes remain unobstructed while building is occupied.
B. Abide by all fire safety requirements for buildings under construction, alteration or demolition as required by Article 87, of the Uniform Fire Code as adopted by the State of Oregon.
C. An emergency telephone shall be provided on site. Cellular telephone equipment is acceptable.
D. Fire Suppression Equipment:
 1. Install and maintain temporary fire protection facilities of the types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 10 "Standard for Portable Fire Extinguishers", and NFPA 241 "Standard for Safeguarding Construction, Alterations and..."
Demolition Operations”.
2. Maintain equipment in working condition with current inspection certificate attached to each.
3. Locate fire extinguishers where convenient and effective for their intended purpose, but not less than one extinguisher on each floor at or near each usable stairwell.
4. Store combustible materials in containers in fire-safe locations.
5. Maintain unobstructed access to fire extinguishers, fire hydrants, temporary fire protection facilities, stairways, and other access routes for fighting fires.
6. Provide continual supervision of welding operations, combustion type temporary heating units, and similar sources of fire ignition.
7. When possible, relocate hot work to a designated hot work area.
8. If the materials or equipment cannot be relocated to a designated hot work area, use the least hazardous form of hot work that will get the job done and prepare the area properly.
9. Manage mobile hot work using the formal hot work permit system. (mentioned in the next bullet point and also a directive in the OSU Hot Work Safety Program)
10. Make sure both fire protection and hot work equipment work properly.
11. Train all personnel involved in hot work operations and activities so that they have the understanding, knowledge, and skills necessary to safely perform their jobs.

1.11 CONSTRUCTION AIDS

A. Scaffolding: comply with applicable OSHA requirements.
B. Material Handling Equipment:
 1. Provide necessary cranes, hoists, towers, or other lifting devices.
 2. Use only experienced operators.
 3. Remove equipment as soon as possible after task is ended.
 4. Coordinate placement of such equipment with Owner’s Authorized Representative.
 5. Obtain required permits and meet requirement of governing authorities regarding applicable regulations.
C. Materials or debris shall not be allowed to free fall from building.
D. The use of chutes or conveyors must be approved by Owner.

1.12 TEMPORARY CONTROLS

A. Water Control:
 1. Maintain excavations free of water.
 2. Provide, operate, and maintain necessary pumping equipment.
B. Protection:
 1. Protect installed Work and provide special protection where specified in individual specification sections.
 2. Prohibit traffic or storage upon waterproofed or roofed surfaces.
CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS

C. Security:
 1. Provide security and facilities to protect Work and existing facilities and Owner’s operations from unauthorized entry, vandalism, or theft.
 2. Coordinate operations with Owner’s Authorized Representative.

D. Temporary Traffic Control /Pedestrian Accessibility
 1. A continuous route for all pedestrians, including persons with disabilities and bicyclists, shall be maintained at all times. When existing pedestrian facilities are disrupted, closed, or relocated in a construction zone, temporary pedestrian facilities shall be provided.
 2. Temporary pedestrian facilities should be safe and accessible. There should be no curbs or abrupt changes in grade that could cause tripping or be a barrier to wheelchair use.
 3. Signage shall be provided directing people to the temporary accessible route. The signage shall include the International Symbol of Accessibility.
 4. Contractors shall not block temporary walkways with vehicles, equipment, construction materials, signs, trash, or other objects that might prohibit pedestrian passage.
 5. Construction equipment and equipment operation must be separated from any open walkways. At construction zones, pedestrian fences or other protective barriers shall be provided to prevent access into the construction zone.

1.13 PROJECT SIGNAGE

A. Contractor is permitted to post only one project identification sign based on the following example:
1.14 PREPARATION
A. Consult with Owner to review jobsite areas required for field offices, material storage and stockpiles, equipment storage, access to different locations, etc.

1.15 PERFORMANCE
A. Confine equipment, apparatus, and storage of material to work limits. The Owner will not be responsible for protection of materials and equipment from damage, pilfering, etc.
B. Install temporary facilities in such a manner that the installed work will not be damaged.
C. Do not use facilities of existing building unless authorized in writing by the Owner.
D. Effective September 1, 2012, OSU became a non-smoking campus and smoking is prohibited on all Campus property.
E. Keep facilities well maintained.
F. Relocate temporary facilities as required during job progress.

Merryfield Hall Renovation – Re-Bid
April 2019
G. At Substantial Completion, clean and renovate permanent facilities that have been used during the construction period, including but not limited to:
1. Replace air filters and clean inside of ductwork and housings.
2. Replace significantly worn parts and parts that have been subject to unusual operating conditions.
3. Replace lamps that are burned out or noticeably dimmed by substantial hours of use.

END OF SECTION
Oregon State University Construction and Maintenance Safety Requirements
EH&S, 130 Oak Creek Building, Corvallis, OR 97331-7405, (541) 737-2505,
FAX (541) 737-9090

Complete OSU Construction and Maintenance Safety Form - Send completed
documents (including Site Safety Plan and all separate answer pages) to Construction Contract
Administration along with the signed contract and bonds.

Project Isolation - All construction and remodeling activities regardless of size and/or scope
must be fenced, barricaded, or otherwise protected to restrict entrance and to ensure the safety
of those in the general area. See isolation requirements.

Site Safety Plan - A site safety plan will be required and will address:
 o General Information
 o Emergency Information
 o Key Organization Personnel
 o Hazard Evaluation/Facility Impact
 o Emergency Procedures
 o Work Zones
 o Security Measures
 o Fire Protection

A model plan is attached. This form can be used if another plan has not already been prepared.
Contact OSU Environmental Health & Safety for more information 737-2505.

Isolation Requirements

General: All construction, maintenance, and remodeling activities, regardless of size or scope, must
be fenced, barricaded, or otherwise isolated to restrict entrance and to ensure the safety of those in
the general area.

Outdoor Activities: Outdoor projects require the following perimeter isolation:
 • A six foot chain-link fence, with controlled access points, extending in all directions around the
 excavation or building site such that no area of the construction is accessible to pedestrians or
 unauthorized personnel or vehicles.
 • Isolation area will include vehicle loading and unloading areas.
 • At the University's option, other barricading plans may be accepted. These may apply to projects
 such as road resurfacing, parking lot striping, exterior building water proofing, deliveries, etc.
 Contact EH&S regarding other barricading plans.

Overnight: Any excavation across or adjacent to sidewalks or pathways which must be left open
overnight, must be identified with working, blinking construction lights in addition to solid
barricades

Indoor Activities: Indoor construction or maintenance projects which will create dust, potentially
hazardous fumes or vapors, or offensive odors are subject to the following isolation:
• Areas where existing doors can provide isolation will be labeled "Construction Area--Authorized Personnel Only".
• All other areas will be isolated by a solid barrier. The minimum barrier allowed is 4 mil poly sheeting sealed to prevent migration of dust.
• Mechanical ventilation may be required.
• A solid wall is required if building envelope is opened to the outside.

Contractor Responsibilities
• The contractor will provide all barricading, isolation, and fencing material. OSU will not provide any materials.
• The contractor will also provide all appropriate warning and detour signs when sidewalks, exits, or roads are closed.
• Contractor will provide all other construction area signs.
OSU Construction and Maintenance Safety Form

Send completed safety documents to Construction Contract Administration with contract and bonds.

Date: ___________________ Project: ___________________
Start Date: ___________________ Completion date: ___________________
Contractor: ___________________ Contact: ___________________
 Work # ___________________ 24 hr #: ___________________
OSU Project Mgr: ___________________ Work / 24hr #'s: ___________________
Dept Contact: ___________________ OSU EH&S Contact: ___________________
Preconstruction meeting? Y N Date/Time/Location: ___________________

For the following items, prepare answers on a separate sheet for all items marked “Yes”. Precede each answer with the appropriate item number. All boxes need to be checked

<table>
<thead>
<tr>
<th>Y</th>
<th>N</th>
<th>For This Project</th>
<th>If YES, then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Will any confined spaces be accessed?</td>
<td>Describe location of entry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specify location of permit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Notify EH&S prior to entry See SAF 209</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Will hot work be performed (welding, cutting, brazing, etc.)?</td>
<td>Provide min. 5# 2A10BC extinguisher within 10 ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If indoors - provide and describe ventilation See SAF 214</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Any products brought to campus?</td>
<td>Provide MSDS on site prior to first use; Make available to OSU on request</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Will lead paint be impacted?</td>
<td>Describe plan to limit contamination</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Will asbestos-containing-material be impacted?</td>
<td>Coordinate with OSU asbestos manager</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Will any materials (construction debris, soil, water, etc) be removed from campus?</td>
<td>Describe in detail identity and disposition of material (how, where)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Any open trenches or holes?</td>
<td>Describe isolation procedures (see Page 1)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Will a crane be used?</td>
<td>Describe crane safety plan (include plan to prevent loads above occupied areas)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Is this project building a new facility, a major remodel?</td>
<td>Provide Site Safety plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Describe isolation procedures (see Page 1)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Is this a minor remodeling project?</td>
<td>Provide, or fill out model Site Safety Plan form (see Page 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Describe isolation procedures (see Page 1)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Will air contamination be produced (e.g. dust, CO, solvent vapors, VOCs, odors)?</td>
<td>Describe project ventilation and isolation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicate position of building air intake(s)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Will there be noise > 85 dB?</td>
<td>Describe noise minimization plan</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Will this project use a scaffold or an external chute?</td>
<td>Describe isolation, dust control, installation</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Will this project involve a working surface >6’ above a lower level</td>
<td>Describe fall protection</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Will any “blind” saw-cuts or penetrations be made in existing foundations, floors, ceilings and/or walls?</td>
<td>Describe plan for detecting and protecting power lines or other building utility lines.</td>
</tr>
</tbody>
</table>

EH&S Review: ___________________ Date: ___________________
1. **General Information**

Contractor name \\
Address \\
City, State, Zip \\
Site Safety Officer \\
Project Dates \\
Project Name \\

2. **Emergency Information**

<table>
<thead>
<tr>
<th>Emergency Response</th>
<th>911</th>
<th>OSU EH&S and OSU Facilities Services must be notified in the event of an emergency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Materials Spill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSDS on-site location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSU EH&S</td>
<td>(541) 737-2505</td>
<td></td>
</tr>
<tr>
<td>Facilities Services</td>
<td>(541) 737-2969</td>
<td></td>
</tr>
</tbody>
</table>

3. **Contractor Key Personnel**

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Emergency Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Supervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Safety Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Responsible Individual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Hour Notification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of employees on site \\

4. **Hazard Evaluation/ Facility Impact**

<table>
<thead>
<tr>
<th>Physical</th>
<th>Yes / No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Equipment</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td></td>
</tr>
<tr>
<td>Radiation Materials</td>
<td></td>
</tr>
<tr>
<td>Excavations</td>
<td></td>
</tr>
<tr>
<td>Underground Utilities</td>
<td></td>
</tr>
<tr>
<td>Confined Spaces</td>
<td></td>
</tr>
<tr>
<td>Fire Prevention</td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
</tr>
</tbody>
</table>

5. **Emergencies**

Services

Evacuation Route

First Aid Location

Hazardous Materials Spill Procedure

6. **Work Zones**

Material Storage

Parking locations

Individuals with OSU keys

Access issues

7. **Security measures**

8. **Fire protection**

Merryfield Hall Renovation – Re-Bid
April 2019
SECTION 01 56 39

TREE AND PLANTING PROTECTION

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Section includes temporary fencing, barricades, and guards to protect trees, plants and groundcovers not indicated to be removed, as necessary and required to prevent damage above and below grade.

1.02 DEFINITIONS

A. Dripline: Outer perimeter of branches of any tree or plant.
B. Groundcover: Includes but not limited to plants and grass.

1.03 PERFORMANCE REQUIREMENTS

A. The Contractor shall exercise utmost care to protect existing trees and plants designated to remain and shall comply with all protection requirements provided by Owner and City of Corvallis as conveyed through the Owner’s Authorized Representative.

B. The Contractor shall install tree protection fencing as detailed and shall prevent damage to shrubs, groundcover, trees, root systems, soil, bark, foliage, branches and limbs due to construction activities, including but not limited to:
 1. Soil contamination, erosion, and compaction.
 2. Excessive wetting, and ponding due to storm water, and construction run-off.
 3. Alteration of grade, stockpiling of soil, debris, and materials.
 4. Damage to soil, roots, bark, trunk, limbs, branches, and foliage.
 5. Prevent unauthorized cutting, breaking, skinning and bruising of roots, branches, and bark.

1.04 SUBMITTALS

A. Procedural proposal for tree and plant protection, describe methods of protection, and stabilization, provide drawings and supporting documentation as directed.

B. Contractor’s Condition Inspection; include written report and color photographs.

1.05 PROJECT CONDITIONS

A. Install protection during initial mobilization at the Work site, and maintain until substantial completion.

B. If, in the opinion of the Owner’s arborist, additional protection is required, the Contractor shall install additional fencing as directed and without cost to the Owner.

Merryfield Hall Renovation – Re-Bid
April 2019
C. The location and requirements for additional fencing shall be determined by the Owner's arborist prior to, and at any time during the course of the Work.

D. Fencing:
 1. Fencing shall be installed at the tree and plant protection areas as detailed on Plans, or as directed by the Owner’s Authorized Representative.
 2. Tree and plant protection fences shall remain in place until all Work is completed and shall not be removed or relocated without the approval of the Owner’s Authorized Representative.

E. Driving and Parking:
 1. Not permitted off paved surfaces without the approval of the Owner’s Authorized Representative.
 2. When approved, the Contractor shall place plywood of sufficient thickness and width to support vehicles and prevent rutting on the area to be driven on.
 3. Care shall also be taken with respect to existing lawn sprinkler systems.

F. Storage of materials and Debris: Not permitted off paved surfaces.

PART 2 PRODUCTS

2.01 MANUFACTURED COMPONENTS

A. Chain Link Fencing: 11 gage galvanized chain link, six feet tall, and 1.5 inch inside diameter galvanized steel line posts and 2.5 inch inside diameter corner posts, provide lockable gates as necessary.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verification of Conditions: Inspect trees, plants, and groundcovers, document existing conditions prior to installation of protection.

3.02 EXECUTION

A. Pruning and Cutting of Roots, Branches and Foliage:
 1. Review conditions with Architect or Owner prior to need for work, and proceed as directed.
 2. All pruning to be done by Owner’s landscape maintenance personnel or ISA Certified arborist under the direction of Owner’s Landscape Management Department.
 3. Perform pruning and cutting with sharp instruments intended for the purpose; do not break or chop.

B. Root Cuttings:
1. Carefully and cleanly cut roots and branches of trees indicated to be left standing where such roots and branches obstruct new construction.
2. Protect exposed roots with wet burlap until they can be covered with soil.

C. Excavation and Trenching Within Drip Lines:
1. Permitted where indicated, and at other specifically approved locations.
2. Tunnel under or around roots by hand digging or boring.
3. Do not cut main lateral roots and tap roots over one inch diameter; cut smaller roots which interfere with installation of new Work.
4. Do not allow exposed roots to dry out before permanent backfill is placed; provide temporary earth cover, or pack with peat moss and wrap with burlap.
5. Water and maintain roots in moist condition and temporarily support and protect from damage until permanently relocated and covered with backfill.

D. Existing Grading: Maintain within drip line of trees and plants unless otherwise indicated on the drawing and approved by the Owner’s Authorized Representative.

E. Tree Protection:
1. Provide temporary fence complying with Section 01 51 00 for protection of trees to remain.
2. Extend fencing ten feet beyond dripline, except where greater distance is required for protection of Elm trees.
3. Prevent entry into protected areas except as authorized in writing by the Owner’s Authorized Representative.

3.03 REPAIR AND REPLACEMENT OF TREES AND PLANTS

A. Repair trees or shrubs damaged by construction operations as directed by the Owner.

B. Make repairs promptly after damage occurs to prevent progressive deterioration of damaged trees.

C. Damaged Trees, Shrubs and Groundcover:
1. Replace where Owner's Authorized Representative determines restoration to normal growth pattern is not possible; plant and maintain as directed.
2. Replacement trees up to 13 inches caliper and shrubs up to 4 feet tall: Same size as damaged tree or shrub, species selected by the Owner’s Authorized Representative.
3. Trees over 13 inch caliper and shrubs greater than 4 feet tall: Compensate Owner as determined by an acceptable consulting arborist registered with the American Society of Consulting Arborists.
4. Replacement groundcovers: Same size and quality as damaged species selected by Owner's Authorized Representative.
END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Summary:
 1. Product options.
 2. Owner-furnished products.
 3. Product delivery, storage and handling.

1.02 PRODUCTS

A. Products:
 1. New material, machinery, components, equipment, fixtures, and systems forming the Work, but does not include machinery and equipment used for preparation, fabrication, conveying and erection of the Work.
 2. Products may also include existing materials or components specifically identified for reuse.

B. Use interchangeable components of the same manufacture for similar components.

C. Unless otherwise specified, all material and equipment shall be new; free from defects impairing strength, durability, and appearance; of current manufacture.

D. Items specified shall be considered minimum as to quality, function, capacity, and suitability for application intended.

E. Items incorporated into the Work shall conform to applicable specifications and standards designated, and shall be of size, make, type, and quality specified.

F. Design, fabricate, and assemble in accordance with current best engineering, industry, and shop practices.

G. Manufacture like parts of duplicate units to standard size and gauge to make them interchangeable.

H. Two or more items of the same kind shall be identical and made by the same manufacturer.

1.03 PRODUCT OPTIONS

A. Products Specified by Reference Standards or by Description Only: Any product meeting those standards or description.

B. Products Specified by Naming One or More Manufacturers with a Provision for Substitutions: Submit a request for substitution for any manufacturer not named.

C. Products Specified by Naming One [or More] Manufacturer[s]: Products of
manufacturer[s] named and meeting specifications, no options or substitutions allowed.

D. Substitution Procedure: Under Section 01 25 00.

1.04 REUSE OF EXISTING PRODUCTS

A. Except as specifically indicated or specified, materials and equipment removed from existing construction shall not be used in the completed Work.

B. For material and equipment specifically indicated or specified to be reused in the Work:
 1. Use care in removal, handling, storage, and reinstallation to assure proper function in the completed Work.
 2. Arrange for transportation, storage, and handling of products which require off-site storage, restoration, or renovation.
 3. Remove and reinstall mechanical units, vents, guys, antennae, and electrical and grounding wires or conduits.

1.05 OWNER FURNISHED PRODUCTS

A. Designate delivery dates of Owner-furnished items in the construction schedule.

B. Receive, unload, store and handle Owner-furnished items at the site; protect from damage.

1.06 DELIVERY, STORAGE AND HANDLING

A. Transport, handle, store and protect products in accordance with manufacturer's instructions.

B. Arrange deliveries in accordance with construction schedules; coordinate to avoid conflict with Work and site conditions.

C. Deliver and store products in undamaged condition in manufacturer's original containers or packaging with identifying labels intact and legible.

D. Inspect shipments to assure compliance with Contract Documents and reviewed submittals, and that products are undamaged.

E. Prevent soiling or damage to products or packaging.

F. Interior Storage: Maintain required temperature and humidity ranges. Verify that Owner furnished storage meets product manufacturer's requirements.

G. Exterior Storage:
 1. Store materials above ground to prevent soiling and/or moisture infiltration.
 2. Cover materials with waterproof breathable sheet coverings; provide adequate ventilation.
 3. All storage locations to be approved in advance by the Owner.

H. Arrange storage to provide access for inspection.
I. Coordinate with Owner’s Authorized Representative all on-site storage activities.

J. Provide for security of stored products.

END OF SECTION
SECTION 01 73 29

CUTTING AND PATCHING

PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Requirements and limitations for cutting and patching of Work.

1.02 RELATED SECTIONS
 A. Section 01 25 00, Product Substitution Procedures.
 B. Section 01 33 23, Shop Drawings, Product Data, Samples

1.03 SUBMITTALS
 A. Submit written request in advance of cutting or alteration which affects:
 1. Structural integrity of any element of the Work.
 2. Efficiency, maintenance, or safety of any operational element.
 4. Work of Owner or separate contractor.
 B. Include in request:
 1. Identification of project.
 2. Location and description of affected work.
 3. Necessity for cutting or alteration.
 4. Description of proposed work, and products to be used.
 5. Alternatives to cutting and patching.
 6. Effect on work of Owner or separate contractor.
 7. Written permission of affected separate contractor.
 8. Date and time work will be executed.

PART 2 PRODUCTS

2.01 MATERIALS
 A. Primary Products: Those required for original installation.
 B. Product Substitution: For any proposed change in materials, submit request for substitution under provisions of Section 01 25 00.

PART 3 EXECUTION

3.01 EXAMINATION
 A. Inspect existing conditions prior to commencing Work, including elements subject to damage or movement during cutting and patching.

Merryfield Hall Renovation – Re-Bid
April 2019
B. After uncovering existing work, inspect conditions affecting performance of Work.
C. Beginning of cutting or patching means acceptance of existing conditions.

3.02 PREPARATION
A. Provide temporary supports to ensure structural integrity of the Work.
B. Provide devices and methods to protect other portions of the Work from damage.
C. Provide protection from elements for areas which may be exposed by uncovering work.

3.03 CUTTING AND PATCHING
A. Execute cutting, fitting and patching to complete work.
B. Fit products together, to integrate with other work.
C. Remove and replace defective or non-conforming work.
D. Provide openings in the work for penetration of mechanical and electrical work.

3.04 PERFORMANCE
A. Execute work by methods to avoid damage to other Work, and which will provide appropriate surfaces to receive patching and finishing.
B. Cut rigid materials using masonry saw or core drill. Pneumatic tools are not allowed without prior approval from Owner’s Authorized Representative.
C. Restore work with new products in accordance with requirements of Contract Documents.
D. At penetrations of fire rated walls, partitions, ceiling or floor construction, completely seal voids with approved fire rated material, to full thickness of the penetrated element.
E. Refinishing:
 1. Refinish surfaces to match adjacent finish.
 2. For continuous surfaces, refinish to nearest intersection or natural break.
 3. For an assembly, refinish entire unit.

END OF SECTION
SECTION 01 74 00

CLEANING

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Related requirements specified elsewhere, cleaning for specific products or work: Specification section for that work.

B. Maintain premises and public properties free from accumulations of waste, debris, and rubbish, caused by operations.

C. At completion of Work remove waste materials, rubbish, tools, equipment, machinery and surplus materials, and clean all sight-exposed surfaces; leave project clean and ready for occupancy.

1.02 QUALITY ASSURANCE

A. Standards: Maintain project in accord with applicable safety and insurance standards.

B. Hazard Control:
 1. Store volatile wastes in covered metal containers.
 2. Provide adequate ventilation during use of volatile or noxious substances.

1.03 MATERIALS

A. Use only cleaning materials recommended by manufacturer of surface to be cleaned.

B. Use cleaning materials only on surfaces recommended by cleaning material manufacturer.

1.04 DURING CONSTRUCTION:

A. Wet down dry materials and rubbish to lay dust and prevent blowing dust.

B. At reasonable intervals during progress of Work clean site and public properties, and dispose of waste materials, debris and rubbish.

C. Provide on-site containers for collection of waste materials, debris and rubbish.

D. Remove waste materials, debris and rubbish from site and legally dispose of at public or private dumping areas off Owner's property.

E. Vacuum clean interior building areas when ready to receive finish painting, and continue vacuum cleaning on an as-needed basis until project is ready for Substantial Completion or occupancy.

F. Handle materials in a controlled manner with as few handlings as possible; do not drop or throw materials from heights.

Merryfield Hall Renovation – Re-Bid
April 2019
1.05 FINAL CLEANING

A. Employ experienced workers, or professional cleaners, for final cleaning.

B. In preparation for Substantial Completion or occupancy, conduct final inspection of sight-exposed interior and exterior surfaces, and of concealed spaces.

C. Remove grease, dust, dirt, stains, labels, and other foreign materials from exposed interior and exterior finished surfaces.

D. Remove putty, paint, labels, lubricants, etc., from windows, mirrors, and sash, and then polish, taking care not to scratch glass.

E. Vacuum carpeting (shampoo where required), removing debris and excess nap.

F. Repair, patch and touch up marred surfaces to specified finish, to match adjacent surfaces.

G. Replace air filters where units were operated during construction.

H. Maintain cleaning until project, or portion thereof, is occupied by Owner.

END OF SECTION
SECTION 01 77 00

CONTRACT CLOSEOUT

PART 1 GENERAL

1.01 DESCRIPTION

A. The requirements specified in this section relate to all Contractors individually performing under these Contract Documents:
 1. Project Record Documents.
 2. Final review and payment.

B. Related work specified elsewhere:
 1. OSU General Conditions.
 2. Shop Drawings, Product Data and Samples, Section 01 33 23.

1.02 PROJECT RECORD DOCUMENTS

A. The Project Record Documents shall be organized to include the following information:
 1. Table of Contents
 2. Project Team List
 3. Specifications (Including Addenda and Change Orders)
 4. Drawings
 5. Inspection Reports, as applicable
 6. Signed Warranty(ies)
 7. Maintenance Instructions

B. Two sets of the Project Record Documents shall be submitted for review upon 75% completion of the Work.

C. Project Record Documents shall be submitted electronically to the Owner. Hard copies will not be accepted.

D. The project team list shall include the name, address, and phone number of the Owner, Contractor, Inspector, Subcontractors, and the materials manufacturers.

E. Legibly mark each Specification section to indicate actual as-built condition indicating changes in the Work made by addenda or change order or actual materials used and actual manufacturer(s) used.

F. Maintain current and accurate as-built mark-ups during construction and make available to Owner's Authorized Representative upon request.

G. Legibly mark the drawings to indicate actual as-built conditions indicating changes in the Work made by addenda or change order or actual conditions which differ from the drawings.

H. Redraw or provide new drawings as required for a complete as-built set of drawings. The Contractor shall maintain current and accurate as-built mark-ups during construction and make available to Owner's Authorized Representative.
I. Include inspection reports if applicable.

J. Include, in a single section, all copies of the Project's labor and material warranties clearly marked to identify the Owner's responsibilities under the terms of each warranty and the section of Work that each warranty covers. One set must be clearly marked as containing original documents.

K. In the case of an elevator installation, the Contractor's and manufacturer's warranty shall provide for the Owner's right to respond to emergency/car failure situations for the purpose of extricating individuals trapped in the elevator.

L. Include maintenance instructions complete with technical information and name, address, and phone number of the Contractor(s) and manufacturer(s) of each material and product.

1.03 FINAL REVIEW AND PAYMENT

A. Prior to completion, the Contractor shall inspect the Work and make a Punch-list noting all items that are incomplete and/or incorrect.

B. The Contractor shall notify all Subcontractors in writing of incomplete and/or incorrect items. Notify far enough in advance of the completion date that the Work can be completed on schedule. Said Work shall be immediately corrected.

C. Should conditions prevail which prohibit some elements of the Work from being accomplished, but the work-in-place will perform the primary function (i.e., painting cannot be completed due to high moisture content of masonry walls,) the Contractor shall record the reason with this Punch-list item requesting temporary delay in completion from the Owner in writing.

D. Notify the Owner in writing that all items are completed and ready for final review or else that the Work product is fully usable, but some listed deficiencies remain to be completed. Submit all record documents at this time.

E. The Owner will review all documents. When the documents include a Contractor's request for delay in completion, the Owner will review all Work which is certified as complete to the best knowledge of the Contractor. The Owner will also review the listed incomplete Work and assign a value to such uncompleted work.

F. The Contractor shall make the required corrections to the Work expeditiously. A letter will be addressed to the Contractor informing the Contractor of the project status.

G. When Contract closeout procedures are completed and all Punch-list deficiencies have been corrected, provide Owner with final corrected Project Record Documents based on Owner's preliminary review. Correct Project Record Documents shall be in electronic format.

H. Final Completion by the Owner will be documented and the Contractor will receive written notice of acceptance of the Work and notification that final
payment may be billed and released.

I. All warranties shall commence and become effective beginning on the date of Substantial Completion.

END OF SECTION
SPECIFICATIONS FOR CONSTRUCTION OF
OSU COLLEGE OF ENGINEERING
MERRYFIELD HALL
RENOVATION PROJECT

MERRYFIELD HALL
OSU CAMPUS
CORVALLIS, OREGON

BENCHMARK ARCHITECTURAL SERVICES
2897 FIRWOOD PLACE S.E., ALBANY, OREGON 97322 PHONE/FAX: (541) 704-0619

April 12, 2019
OSU COLLEGE OF ENGINEERING
MERRYFIELD HALL RENOVATION PROJECT

The following specifications have been organized under the format of the Construction Specification Institute (CSI) – 2004 with the exception of Division 0 and Division 1 requirements which are Oregon State University Standard Documents. Section numbers listed are merely for identification, and may not be consecutive. The Contractor shall check his copy of the specifications against the Table of Contents to be sure his copy is complete.

SPECIFICATIONS TABLE OF CONTENTS

DIVISION 0. BIDDING AND CONTRACT REQUIREMENTS
Advertisement for Bid
Instructions to Bidders
Supplemental Instructions to Bidders
Bid Form
Bid Bond
Agreement
Performance Bond
Payment Bond
General Conditions
Supplemental General Conditions
OUS MWESB Form Instructions
OUS MWESB Form
BOLI Prevailing Wage Rate Notification

DIVISION 1. GENERAL REQUIREMENTS
Section 01 10 00 Summary of Work
Section 01 24 76 Application for Payment
 Sample Contract Payment Request Form
 Continuation Sheet
Section 01 25 00 Product Substitution Procedures
 Sample Substitution Request Form
Section 01 31 19 Project Meetings
Section 01 33 23 Shop Drawings, Product Data, Samples
Section 01 42 13 Abbreviations and Symbols
Section 01 42 16 Definitions
Section 01 42 19 Reference Standards
Section 01 45 00 Quality Control
Section 01 51 00 Construction Facilities & Temporary Controls
 Construction and Maintenance Safety Requirements
 Construction and Maintenance Safety Form
 Construction and Maintenance Isolation Requirements
 Model Site Safety Plan
Section 01 56 39 Tree and Plant Protection
Section 01 60 00 Product Requirements
Section 01 73 29 Cutting and Patching
Section 01 74 00 Cleaning
Section 01 77 00 Contract Closeout
DIVISION 2, SITE CONDITIONS

Section 02 41 00 Demolition
Section 02 75 10 Portland Cement Concrete Pavement

DIVISION 3, CONCRETE

Section 03 11 00 Concrete Formwork
Section 03 20 00 Concrete Reinforcement
Section 03 30 00 Cast-In-Place Concrete
Section 03 48 43 Precast Concrete Trim
Section 03 54 13 Cementitious Underlayment

DIVISION 4, MASONRY

Section 04 06 00 Mortar and Grout
Section 04 21 13 Brick Masonry
Section 04 22 00 Concrete Masonry Units
Section 04 50 00 Masonry Cleaning

DIVISION 5, METALS

Section 05 12 00 Structural Steel

DIVISION 6, WOOD, PLASTICS AND COMPOSITES

Section 06 05 73 Wood Treatment
Section 06 10 00 Rough Carpentry
Section 06 17 30 Prefabricated Structural Wood
Section 06 20 00 Finish Carpentry
Section 06 41 00 Custom-Built Casework and Shelving
Section 06 61 00 Solid Surfacing
Section 06 64 00 Plastic Laminate

DIVISION 7, THERMAL AND MOISTURE PROTECTION

Section 07 11 50 Air Barrier and Moisture Retarder
Section 07 13 30 Pre-Applied Waterproof Membrane
Section 07 13 50 Self-Adhering Waterproof Membrane
Section 07 20 00 Thermal Insulation
Section 07 31 00 Shingle Roofing
Section 07 51 00 Membrane Roofing
Section 07 60 00 General Sheetmetal
Section 07 80 00 Fire and Smoke Protection
Section 07 92 00 Joint Sealants
Section 07 95 13 Expansion Joints

DIVISION 8, OPENINGS

Section 08 11 00 Hollow Metalwork
Section 08 14 00 Wood Doors
Section 08 32 13 Aluminum Doors
Section 08 46 00 Power Door Operators
Section 08 52 00 Wood Windows
Section 08 71 00 Finish Hardware
Section 08 80 00 Glazing

DIVISION 9, FINISHES

Section 09 20 00 Gypsum Drywall
Section 09 51 00 Acoustic Ceilings
Section 09 65 00 Resilient Flooring
Section 09 68 00 Carpet
Section 09 81 00 Acoustic Insulation
Section 09 90 00 Painting and Finishing

DIVISION 10, SPECIALTIES

Section 10 10 00 Information Specialties
Section 10 14 00 Signage
Section 10 28 00 Toilet Accessories
Section 10 70 00 Exterior Specialties
Section 10 90 10 Miscellaneous Specialties

DIVISION 11, EQUIPMENT

Section 11 33 00 Retractable Stairs
Section 11 61 00 Fume Hoods

DIVISION 12, FURNISHINGS

Section 12 20 00 Window Treatment
Section 12 36 53 Laboratory Work Surfaces

DIVISION 13, COMPOSITE CONSTRUCTION

No Specification

DIVISION 14, CONVEYING SYSTEMS

Section 14 20 00 Hydraulic Elevator

DIVISION 21 – FIRE SUPPRESSION

Section 21 05 17 Sleeves and Sleeve Seals for Fire-Suppression Piping
Section 21 05 18 Escutcheons for Fire-Suppression Piping
Section 21 05 23 General-Duty Valves for Fire Protection Piping
Section 21 05 29 Hangers and Supports for Fire Supression Piping And Equipment
Section 21 05 33 Heat Tracing for Fire-Suppression Piping
Section 21 05 48 Vibration and Seismic Controls for Fire-Suppression Piping and Equipment
Section 21 07 00 Fire-Suppression Systems Insulation
Section 21 11 19 Fire Department Connections
Section 21 13 13 Wet-Pipe Sprinkler Systems

DIVISION 22 – PLUMBING
<table>
<thead>
<tr>
<th>Section Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 05 17</td>
<td>Sleeves And Sleeve Seals For Plumbing Piping</td>
</tr>
<tr>
<td>22 05 18</td>
<td>Escutcheons For Plumbing Piping</td>
</tr>
<tr>
<td>22 05 19</td>
<td>Meters And Gages For Plumbing Piping</td>
</tr>
<tr>
<td>22 05 23.12</td>
<td>Ball Valves For Plumbing Piping</td>
</tr>
<tr>
<td>22 05 23.14</td>
<td>Check Valves For Plumbing Piping</td>
</tr>
<tr>
<td>22 05 29</td>
<td>Hangers And Supports For Plumbing Piping And Equipment</td>
</tr>
<tr>
<td>22 05 33</td>
<td>Heat Tracing For Plumbing Piping</td>
</tr>
<tr>
<td>22 05 48</td>
<td>Vibration And Seismic Controls For Plumbing Piping And Equipment</td>
</tr>
<tr>
<td>22 05 53</td>
<td>Identification For Plumbing Piping And Equipment</td>
</tr>
<tr>
<td>22 07 19</td>
<td>Plumbing Piping Insulation</td>
</tr>
<tr>
<td>22 11 16</td>
<td>Domestic Water Piping</td>
</tr>
<tr>
<td>22 11 19</td>
<td>Domestic Water Piping Specialties</td>
</tr>
<tr>
<td>22 13 16</td>
<td>Sanitary Waste And Vent Piping</td>
</tr>
<tr>
<td>22 13 19</td>
<td>Sanitary Waste Piping Specialties</td>
</tr>
<tr>
<td>22 13 19.13</td>
<td>Sanitary Drains</td>
</tr>
<tr>
<td>22 13 23</td>
<td>Sanitary Waste Interceptors</td>
</tr>
<tr>
<td>22 32 00</td>
<td>Domestic Water Filtration Equipment</td>
</tr>
<tr>
<td>22 33 00</td>
<td>Electric, Domestic-Water Heaters</td>
</tr>
<tr>
<td>22 42 13.13</td>
<td>Commercial Water Closets</td>
</tr>
<tr>
<td>22 42 16.13</td>
<td>Commercial Lavatories</td>
</tr>
<tr>
<td>22 42 16.16</td>
<td>Commercial Sinks</td>
</tr>
<tr>
<td>22 45 00</td>
<td>Emergency Plumbing Fixtures</td>
</tr>
<tr>
<td>22 47 13</td>
<td>Drinking Fountains</td>
</tr>
<tr>
<td>22 61 13</td>
<td>Compressed-Air Piping For Laboratory And Healthcare Facilities</td>
</tr>
<tr>
<td>22 61 19</td>
<td>Compressed-Air Equipment For Laboratory And Healthcare Facilities</td>
</tr>
<tr>
<td>22 62 13</td>
<td>Vacuum Piping For Laboratory And Healthcare Facilities</td>
</tr>
<tr>
<td>22 62 19</td>
<td>Vacuum Equipment For Laboratory And Healthcare Facilities</td>
</tr>
<tr>
<td>22 63 13</td>
<td>Gas Piping For Laboratory And Healthcare Facilities</td>
</tr>
<tr>
<td>22 66 00</td>
<td>Chemical-Waste Systems For Laboratory And Healthcare Facilities</td>
</tr>
<tr>
<td>22 67 00</td>
<td>Processed Water Systems For Laboratory And Healthcare Facilities</td>
</tr>
</tbody>
</table>

DIVISION 23 – HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)

<table>
<thead>
<tr>
<th>Section Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 05 13</td>
<td>Common Motor Requirements For HVAC Equipment</td>
</tr>
<tr>
<td>23 05 17</td>
<td>Sleeves And Sleeve Seals For HVAC Piping</td>
</tr>
<tr>
<td>23 05 18</td>
<td>Escutcheons For HVAC Piping</td>
</tr>
<tr>
<td>23 05 29</td>
<td>Hangers And Supports For HVAC Piping And Equipment</td>
</tr>
<tr>
<td>23 05 48</td>
<td>Vibration And Seismic Controls For HVAC</td>
</tr>
<tr>
<td>23 05 53</td>
<td>Identification For HVAC Piping And Equipment</td>
</tr>
<tr>
<td>23 07 13</td>
<td>Duct Insulation</td>
</tr>
<tr>
<td>23 07 16</td>
<td>HVAC Equipment Insulation</td>
</tr>
<tr>
<td>23 07 19</td>
<td>HVAC Piping Insulation</td>
</tr>
<tr>
<td>23 09 23</td>
<td>Direct Digital Control (DDC) System for HVAC</td>
</tr>
<tr>
<td>23 09 23.12</td>
<td>Control Dampers</td>
</tr>
<tr>
<td>23 09 23.27</td>
<td>Temperature Instruments</td>
</tr>
<tr>
<td>23 09 93.11</td>
<td>Sequence Of Operations for HVAC DDC</td>
</tr>
<tr>
<td>23 23 00</td>
<td>Refrigerant Piping</td>
</tr>
<tr>
<td>23 31 13</td>
<td>Metal Ducts</td>
</tr>
<tr>
<td>23 33 00</td>
<td>Air Duct Accessories</td>
</tr>
<tr>
<td>23 33 46</td>
<td>Flexible Ducts</td>
</tr>
<tr>
<td>23 34 16</td>
<td>Centrifugal HVAC Fans</td>
</tr>
<tr>
<td>23 34 23</td>
<td>HVAC Power Ventilators</td>
</tr>
<tr>
<td>23 37 13.13</td>
<td>Air Diffusers</td>
</tr>
<tr>
<td>23 37 13.23</td>
<td>Registers And Grilles</td>
</tr>
</tbody>
</table>
DIVISION 26 – ELECTRICAL

Section 26 05 19 Low-Voltage Electrical Power Conductors and Cables
Section 26 05 23 Control-Voltage Electrical Power Cables
Section 26 05 26 Grounding and Bonding for Electrical Systems
Section 26 05 29 Hangers and Supports for Electrical Systems
Section 26 05 33 Raceways and Boxes for Electrical Systems
Section 26 05 44 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
Section 26 05 48.16 Seismic Controls for Electrical Systems
Section 26 05 53 Identification for Electrical Systems
Section 26 05 73.13 Short-Circuit Studies
Section 26 05 73.16 Coordination Studies
Section 26 05 73.19 Arc-Flash Hazard Analysis
Section 26 09 23 Lighting Control Devices
Section 26 24 16 Panelboards
Section 26 25 00 Enclosed Bus Assemblies
Section 26 27 26 Wiring Devices
Section 26 28 13 Fuses
Section 26 28 16 Enclosed Switches and Circuit Breakers
Section 26 29 13.03 Manual and Magnetic Motor Controllers
Section 26 43 13 Surge Protection for Low-Voltage Electrical Power Circuits
Section 26 51 19 Led Interior Lighting
Section 26 52 13 Emergency and Exit Lighting

DIVISION 27 – COMMUNICATIONS

Section 27 10 01 Structured Cabling General Requirements
Section 27 11 00 Communications Equipment Room Fittings

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

Section 28 13 00 Access Control
Section 28 46 21.11 Addressable Fire-Alarm System

DIVISION 31 – EARTHWORK

Section 31 20 00 Earth Moving

DIVISION 33 – SITE IMPROVEMENTS

Section 33 11 00 Water Distribution Piping

SPECIFICATIONS TABLE OF CONTENTS

A0 VICINITY PLAN, EXISTING BUILDING PLANS, PROJECT DATA
A1 DEMOLITION PLANS
A2 PROJECT FLOOR PLANS
A3 PARTIAL FLOOR PLANS (OFFICES, CLASSROOM, LAVS.)
A4 PARTIAL FLOOR PLANS (NORTH LABORATORIES)
END OF SECTION
DIVISION 01, GENERAL REQUIREMENTS

01 10 00 SUMMARY OF WORK

PART 1 - GENERAL

1.01 WORK COVERED BY CONTRACT DOCUMENTS

A. In general the scope of this contract comprises the construction of the following Project (actual work includes all work described in the construction and bidding documents whether or not listed in this section):

1. Sitework:
 a. Construction of site improvements to provide an accessible route to and from the building, bicycle parking, screening of mechanical equipment and other improvements as shown on the Drawings.
 b. Development of new water service for the new fire suppression sprinkler system.

2. Structure:
 a. Creation of an inter-floor opening at the north end of the south wing of Merryfield Hall to install an accessible exit stair and elevator.
 b. Construction of a concrete masonry unit with modular brick veneer stair and elevator tower located on the south side of the two-story portion of Merryfield Hall.
 c. Removal of the existing interior second floor access stair and infill of the opening in the second floor structure.
 d. Demolition of existing partitions attic structure and finishes in the single story laboratory south wing.
 e. Development of five new laboratories in the single story laboratory south wing.

3. Interiors:
 a. Construction of interior gypsum board faced partitions, solid railings, ceiling assemblies, openings trim and finishes within the two-story and southern wing of Merryfield Hall to create a defined exit system, laboratories, classroom, offices and accessible lavatories as shown on Drawings.
 b. Construction of modifications and additions to the existing commercial grade electrical power, lighting and communication systems within the remodel and addition areas of the project.
 c. Construction of modifications and additions to the existing commercial grade mechanical and plumbing systems within the remodel and addition areas of the project.
 d. Installation of a NFPA 13 compliant fire suppression sprinkler system throughout all areas of Merryfield Hall.

4. Building Exteriors:
 a. Removal of efflorescence and cleaning of all exterior surfaces of the existing brick masonry structure.
 b. Preparation and priming of existing and new wood windows, doors and trim. Finish coats of paint to be applied separately by Owner's work forces.
 c. Removal of existing mechanical equipment, grilles and vents with patching of the remaining wall or roof surfaces as described on documents.
d. Modification of existing wood window assemblies to integrate mechanical grilles as shown on the Drawings.

e. Modification and patching of existing metal cladding and composition roofing where mechanical equipment penetrations are added, removed or modified.

END OF SECTION
DIVISION 01, GENERAL REQUIREMENTS
01 23 00 ALTERNATES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes administrative and procedural requirements for alternates.

1.03 DEFINITIONS

A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the bidding requirements that may be added to or deducted from the base bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.

1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.04 PROCEDURES

A. Coordination: Revise or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.

1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.
2. Referenced specification sections stipulate pertinent requirements for products and methods to achieve the work stipulated in each alternate. Coordinate pertinent related work and modify surrounding work as required to integrate (functionally and visually) the work of each alternate, and to provide complete structurally sound and weather tight construction required by contract documents.

B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated revisions to alternates.

C. Execute accepted alternates under the same conditions as other work of the Contract.

D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

PART 2 - PRODUCTS (Not Used)
PART 3 - EXECUTION

3.01 SCHEDULE OF ALTERNATES

A. The following changes, deletions, additions and/or alterations to the Bidding Documents shall apply to all proposals made for the execution of the various parts of the work affected by them.

B. Careful note of these alternate bid items shall be taken by all parties of interest, so that proper allowance is made in all computations, estimates and contracts and all trades affected shall be fully advised in the performance of work that will be required of them.

C. These alternate bid items supersede the requirements of portions of the issued base bid documents and instructions pertaining to those items.

MECHANICAL ALTERNATE BID ITEMS

Item M1: Deletion: Sheets M3A, M4A, M5A, M6A, M7A, M8A: Deleted new VRF fan coil systems serving Labs A, B, C, D, and E. This includes deleting the heat pumps, refrigerant piping, ductwork, diffusers, return grilles, and DDC controls associated with the fan coils. This also includes deleting the economizer outside air ducts, relief ducts, motorized dampers, and DDC controls associated with fan coil FC-4A.

Item M2: Addition: Sheets M1A, M3A: Added the removal and replacement of the existing steam and condensate piping in the crawl space under the area of work. This includes confirming the size of the existing steam and condensate piping in the crawl space.

Item M3: Addition: Sheets M3A, M4A, M5A, M6A, M7A, M8A, M11A: Added new steam reheat coils for the supply air valves serving Labs A, B, C, D, and E. This includes adding new steam piping to serve the new steam reheat coils. This also includes adding associated DDC controls.

Item M4: Change: Sheets M4A, M6A: Increased the capacity of AHU-1 since it will now be cooling and partially heating Labs A, B, C, D, and E instead of just providing neutral outside air to the spaces.

Item M5: Addition: Sheet M3A, M5A, M7A: Increased size of heat pump (adding second unit) serving AHU-1 due to the increased capacity of AHU-1.

ELECTRICAL ALTERNATE BID ITEMS

Item E1: Deletion: Sheets E4A, E5A, E11A: Deleted the electrical power for the fan coils and VRF heat pumps serving Labs A, B, C, D, and E. This includes deleting associated circuit breakers, wiring, and disconnects.

Item E2: Change: Sheets E11A: Increased the wire size for AHU-1 due to the increased capacity of AHU-1.

Item E3: Addition: Sheet E4A, E11A: Added electrical power for HP-AHU-1 due to the increased capacity of AHU-1. This includes adding associated circuit breaker, wiring, and disconnect.

END OF SECTION
DIVISION 2, SITE CONDITIONS
02 41 00 DEMOLITION

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying Drawings.

1.02 EXTENT OF WORK

A. In general the project scope includes cutting openings in existing unreinforced brick masonry walls to create new openings using gas-powered concrete sawing equipment as well as removal of non-load bearing partitions. Perform all demolition and removal required to complete all modifications indicated on Drawings and described in Specifications.

B. The Owner's separate abatement contractor will remove hazardous materials prior to the beginning of construction.

1.03 SALVAGE

A. All salvage shall become the property of the Demolition Contractor unless noted otherwise on drawings. Carefully remove any items that shall be reused in the Work or salvaged to Owner. Carefully remove any items that shall remain the property of the Owner and store in a secure, dry on-site location for pick-up by Owner.

B. Prior to starting demolition the Contractor shall meet with the Owner's Authorized Representative who shall designate items to remain the property of the Owner.

1.04 REQUIREMENTS OF REGULATORY AGENCIES

A. Comply with governing laws, codes, and regulations if more restrictive than requirements specified herein. Notify Architect of differences prior to starting Work.

1.05 TRAFFIC CONTROL

A. Unless otherwise approved by governing authorities, provide necessary barricades, detours, warning devices, flag persons, and equipment movement to maintain safety for vehicle and pedestrian traffic on public streets, access to private walks, drives, and parking areas.

1.06 PROTECTION

A. Existing Utilities: Existing utilities shown on drawings are located according to best available information, but accuracy is not guaranteed. Protect active pipes encountered; notify persons owning same. Repair or replace utility lines damaged by Work of this section.

B. Existing Plants and Trees: Protect against damage.

C. Street Cleaning: Maintain public streets and walkways clean and free from obstructions at all times. Maintain street drains and sewers open for free drainage at all times.

D. Dust Control: Protect persons and property against damage and discomfort caused by dust. Manage cutting so that no dust leaves the enclosed Work area.
E. Adjacent Spaces: Protect neighboring spaces, occupants of said spaces, customers, visitors, and passersby against damage, injury or discomfort.

F. Other Work: Protect other Work against damage and discoloration caused by Work of this section.

G. Objectionable Noise: Do Work requiring air hammers and other noisy equipment only during hours approved by the Owner’s Authorized Representative.

1.07 QUALITY ASSURANCE

A. Concrete Cutting Contractor: A firm experienced in mechanized concrete cutting and boring.

B. Comply with the following CSDA (Concrete Sawing & Drilling Association) standards:
 1. CSDA-C-101 Core Drilling
 2. CSDA-W-104 Track Mounted Wall Sawing
 3. CSDA-HS-108 Hand Sawing
 4. CSDA-CS-109 Chain Sawing

C. Comply with OSHA safety standards.

D. Saw at exposed surfaces so that there are no visible over run kerfs or chipped edges.

1.08 COORDINATION

A. Coordinate with other trades affecting and affected by Work of this section.

PART 2 - PRODUCTS

2.01 MATERIALS

A. General: Use only sound material of appropriate size and thickness to satisfy installation and use conditions.

B. Wheeling Equipment: Use only pneumatic-tired equipment.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that the utilities in areas where systems and structures are to be demolished are not active. Do not start Work until conditions are satisfactory.

3.02 DEMOLITION SCHEDULE

A. All concrete structure demolition shall be completed during evening or weekend hours when classes are not in session. Hours of operation and demolition schedule shall be approved by the Owner’s Authorized Representative prior to initiation of demolition Work.

3.03 SAW-CUTTING METHODOLOGY

A. Provide sealed enclosures or wet saw to completely contain dust.
B. Use track mounted assembly for long horizontal wall cutting.

C. Use full dimension core drill bits for horizontal floor borings.

D. Use hand saws or chain saws for miscellaneous concrete trim and demolition.

3.04 SAW CUTTING PREPARATION

A. Clearly mark all cut lines. Secure Owner’s approval prior to start of any cutting operation.

B. Provide all plastic sheeting, scaffolding, storage for water and slurry and a sump pump (if required) prior to starting cutting operations.

C. Follow saw manufacturer’s instructions for anchoring the wall saw rails and/or track. Follow anchor manufacturer’s installation instructions for temporary wall anchors.

D. Inspect and clean all sawing equipment, air lines, hydraulic lines, water lines, power cords, etc. prior to starting cutting operations.

E. Inspect diamond blades and/or bits prior to each sawing operation.

3.05 SAW CUTTING & BORING

A. Perform core drilling work to CSDA-C-101.

B. Perform track-mounted wall sawing work to CSDA-W-104.

C. Perform hand sawing work to CSDA-HS-108.

D. Perform chain sawing work to CSDA-CS-109.

3.06 PROTECTION

A. Protect concrete cuts from damage during other construction.

B. Repair any damage to adjacent materials caused by concrete cutting.

C. Protect existing interior improvements and furnishings from deleterious construction dust, debris, contaminated water or slurry.

3.07 CLEANING AND REPAIRING

A. Dispose of all concrete cutting debris, water and slurry in a safe and legal manner away from the project site.

B. On completion, remove all covers, tools and equipment. Remove temporary anchors and patch holes.

C. Including Work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by Work of this section. Remove debris from project premises upon Work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

B. Local jurisdiction standards for public works construction.

1.02 SUMMARY

A. This Section applies to exterior cement concrete pavement for all walkways.

1.03 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, expansive hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume.

1.04 SUBMITTALS

A. Product Data: For each type of manufactured material and product indicated.

B. Design Mixes: For each concrete pavement mix. Include alternate mix designs when characteristics of materials, project conditions, weather, test results, or other circumstances warrant adjustments.

C. Material Certificates: Signed by manufacturers certifying that each of the following materials complies with requirements:

1. Cementitious materials and aggregates.
2. Curing compounds.
3. Applied finish materials.
4. Bonding agent or adhesive.
5. Joint fillers.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed pavement work similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

B. Manufacturer Qualifications: Manufacturer of ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.
1. Manufacturer must be certified according to the National Ready Mix Concrete Association's Plant Certification Program.

C. Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 to conduct the testing indicated, as documented according to ASTM E 548.

D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant and each aggregate from one source.

F. All ramp sections that are constructed with slopes exceeding 2% (1:48) cross slope, 8.33% (1:12) running slope or other more restrictive requirement shown on drawings shall be replaced at the contractor's expense. Determinations of non-compliant slopes will be at the discretion of OSU Authorized Representative, measured using a 2-foot. digital level.

1.06 PROJECT CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

PART 2 - PRODUCTS

1.1 2.01 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, smooth exposed surfaces.

1. Use flexible or curved forms for curves of a radius 100 feet (30.5 m) or less.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

2.02 STEEL REINFORCEMENT

A. Provide 6x6, 10/10 WWM reinforcement at all new concrete walkways.

2.03 CONCRETE MATERIALS

A. General: Use the same brand and type of cementitious material from the same manufacturer throughout the Project.

B. Portland Cement: ASTM C 150, Type I or II.

1. Fly Ash: ASTM C 618, Class F or C.
2. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
PORTLAND CEMENT CONCRETE PAVEMENT Page 02 75 10 - 3

C. Aggregate: ASTM C 33, uniformly graded, from a single source, with coarse aggregate as follows:

1. Maximum Aggregate Size: 1-1/2 inches (38 mm) nominal.
2. Do not use fine or coarse aggregates containing substances that cause spalling.

D. Water: ASTM C 94.

E. Compressive strength: 3000 psi at 28-days.

2.04 ADMIXTURES

A. General: Admixtures certified by manufacturer to contain not more than 0.1 percent water-soluble chloride ions by mass of cement and to be compatible with other admixtures.

2.05 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.

E. Clear Solvent-Borne Liquid-Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

F. Clear Waterborne Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

G. White Waterborne Membrane-Forming Curing Compound: ASTM C 309, Type 2, Class B.

H. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

1. Evaporation Retarder:
 a. Cimfilm; Axim Concrete Technologies.
 b. Finishing Aid Concentrate; Burke Group, LLC (The).
 c. Spray-Film; ChemMasters.
 d. Aquafilm; Conspec Marketing & Manufacturing Co., Inc.
 e. Sure Film; Dayton Superior Corporation.
 f. Eucobar; Euclid Chemical Co.
 g. Vapor Aid; Kaufman Products, Inc.
 h. Lambco Skin; Lambert Corporation.
 i. E-Con; L&M Construction Chemicals, Inc.
 j. Confilm; Master Builders, Inc.
 k. Waterhold; Metalcrete Industries.
 l. Rich Film; Richmond Screw Anchor Co.
PORTLAND CEMENT CONCRETE PAVEMENT Page 02 75 10 - 4

2. Clear Solvent-Borne Liquid-Membrane-Forming Curing Compound:
 a. AH Curing Compound #2 DR; Anti-Hydro International, Inc.
 b. Res-X Cure All Resin; Burke Group, LLC (The).
 c. RX Cure; Conspec Marketing & Manufacturing Co., Inc.
 d. Day-Chem Rez Cure; Dayton Superior Corporation.
 e. Kurez DR; Euclid Chemical Co.
 f. Nitocure S; Fosroc.
 g. #64 Resin Cure; Lambert Corporation.
 h. L&M Cure DR; L&M Construction Chemicals, Inc.
 i. 3100-Clear; W. R. Meadows, Inc.
 j. Seal N Kure FDR; Metalcrete Industries.
 k. Rich Cure; Richmond Screw Anchor Co.
 l. Resi-Chem C309; Symons Corporation.
 m. Horncure 30; Tamms Industries Co., Div. of LaPorte Construction Chemicals North America, Inc.
 n. Uni Res 150; Unitex.
 o. Certi-Vex RC; Vexcon Chemicals, Inc.

3. Clear Waterborne Membrane-Forming Curing Compound:
 a. AH Curing Compound #2 DR WB; Anti-Hydro International, Inc.
 b. Aqua Resin Cure; Burke Group, LLC (The).
 c. Safe-Cure Clear; ChemMasters.
 d. W.B. Resin Cure; Conspec Marketing & Manufacturing Co., Inc.
 e. Day Chem Rez Cure (J-11-W); Dayton Superior Corporation.
 f. Nitocure S; Fosroc.
 g. Aqua Kure-Clear; Lambert Corporation.
 h. L&M Cure R; L&M Construction Chemicals, Inc.
 i. 1100 Clear; W. R. Meadows, Inc.
 j. Resin Cure E; Nox-Crete Products Group, Kinsman Corporation.
 k. Rich Cure E; Richmond Screw Anchor Co.
 l. Resi-Chem Clear Cure; Symons Corporation.
 m. Horncure 100; Tamms Industries Co., Div. of LaPorte Construction Chemicals North America, Inc.
 n. Hydro Cure; Unitex.
 o. Certi-Vex Enviocure; Vexcon Chemicals, Inc.

4. White Waterborne Membrane-Forming Curing Compound:
 a. AH Curing Compound #2 WB WP; Anti-Hydro International, Inc.
 b. Aqua Resin Cure; Burke Group, LLC (The).
 c. W.B. Resin Cure; Conspec Marketing & Manufacturing Co., Inc.
 d. Thinfilm 450; Kaufman Products, Inc.
 e. Aqua Kure-White; Lambert Corporation.
 f. L&M Cure R-2; L&M Construction Chemicals, Inc.
 g. 1200-White; W. R. Meadows, Inc.
 h. White Pigmented Resin Cure E; Nox-Crete Products Group, Kinsman Corporation.
i. Rich Cure White E; Richmond Screw Anchor Co.
 j. Resi-Chem High Cure; Symons Corporation.
 k. Horncure 200-W; Tamms Industries Co., Div. of LaPorte Construction Chemicals North America, Inc.
 l. Hydro White 309; Unitex.

2.06 RELATED MATERIALS

2.07 CONCRETE MIXING

A. Ready-Mixed Concrete: Comply with requirements and with ASTM C 94.

PART 3 - EXECUTION

3.01 PREPARATION

A. Proof-roll prepared subbase surface to check for unstable areas and verify need for additional compaction. Proceed with pavement only after nonconforming conditions have been corrected and subgrade is ready to receive pavement.

B. Remove loose material from compacted subbase surface immediately before placing concrete.

3.02 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides for pavement to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form release agent to ensure separation from concrete without damage.

3.03 JOINTS

A. General: Construct construction, isolation, and contraction joints and tool edgings true to line with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline, unless otherwise indicated.

 1. When joining existing pavement, place transverse joints to align with previously placed joints, unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of pavement and at locations where pavement operations are stopped for more than one-half hour, unless pavement terminates at isolation joints.

C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, walks, other fixed objects, and where indicated.
D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with groover tool to the following radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover marks on concrete surfaces. Radius: 1/4 inch (6 mm).

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3-mm-) wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.

E. Edging: Tool edges of pavement, gutters, curbs, and joints in concrete after initial floating with an edging tool to the following radius. Repeat tooling of edges after applying surface finishes. Eliminate tool marks on concrete surfaces. Radius: 1/4 inch (6 mm).

3.04 CONCRETE PLACEMENT

A. Inspection: Before placing concrete, inspect and complete formwork installation, reinforcement steel, and items to be embedded or cast in. Notify other trades to permit installation of their work.

B. Remove snow, ice, or frost from subbase surface and reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at the time concrete is placed. Do not place concrete around manholes or other structures until they are at the required finish elevation and alignment.

D. Comply with requirements and with recommendations in ACI 304R for measuring, mixing, transporting, and placing concrete.

E. Do not add water to concrete during delivery, at Project site, or during placement.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Screed pavement surfaces with a straightedge and strike off. Commence initial floating using bull floats or darbies to form an open textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading dry-shake surface treatments.

H. Curbs and Gutters: Automatic machine placement not permitted. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing as specified for formed concrete.

I. Cold-Weather Placement: Comply with ACI 306.1. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
J. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R.

3.05 CONCRETE FINISHING

A. General: Wetting of concrete surfaces during screeding, initial floating, or finishing operations is prohibited.

B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and the concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats, or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots, and fill low spots. Refloat surface immediately to uniform granular texture.

1. Medium-to-Coarse-Textured Broom Finish (Sidewalks): Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch (1.6 to 3 mm) deep with a stiff-bristled broom, perpendicular to line of traffic.

3.06 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and follow recommendations in ACI 305R for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq ft x h (1 kg/sq m x h) before and during finishing operations. Apply according to manufacturer’s written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Begin curing after finishing concrete, but not before free water has disappeared from concrete surface.

D. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
3.07 PAVEMENT TOLERANCES

A. Comply with tolerances of ACI 117 and as follows:

1. Elevation: 1/4 inch (6 mm).
2. Thickness: Plus 3/8 inch (9 mm), minus 1/4 inch (6 mm).
3. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed 1/4 inch (6 mm).
4. Joint Spacing: 3 inches (75 mm).
5. Contraction Joint Depth: Plus 1/4 inch (6 mm), no minus.
6. Joint Width: Plus 1/8 inch (3 mm), no minus.

3.08 REPAIRS AND PROTECTION

A. Remove and replace concrete pavement that is broken, damaged, or defective, or does not meet requirements in this Section.

B. Protect concrete from damage. Exclude traffic from pavement for at least 14 days after placement. When construction traffic is permitted, maintain pavement as clean as possible by removing surface stains and spillage of materials as they occur.

C. Maintain concrete pavement free of stains, discoloration, dirt, and other foreign material. Sweep concrete pavement not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION
PART 1 – GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 of the General Contract in addition to this Specification and accompanying drawings.

1.02 SECTION INCLUDES

A. Formwork for cast-in-place concrete, with shoring, bracing and anchorage.
B. Openings for other work.
C. Form accessories.
D. Form stripping.

1.03 RELATED REQUIREMENTS

A. Section 03 20 00 - Concrete Reinforcing.
B. Section 03 30 00 - Cast-in-Place Concrete.
C. Section 05 12 00 - Structural Steel: Placement of embedded steel anchors and plates in cast-in-place concrete.

1.04 REFERENCE STANDARDS

B. ACI 301 - Specifications for Structural Concrete for Buildings; American Concrete Institute; 2010.
C. ACI 318 - Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute; 2011.
D. ACI 347 - Guide to Formwork for Concrete; American Concrete Institute; 2004.
E. PS 1 - Structural Plywood; 2009.

1.05 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide data on void form materials and installation requirements.
PART 2 - PRODUCTS

2.01 FORMWORK – GENERAL

A. Provide concrete forms, accessories, shoring, and bracing as required to accomplish cast-in-place concrete work.

B. Design and construct to provide resultant concrete that conforms to design with respect to shape, lines, and dimensions.

C. Comply with applicable state and local codes with respect to design, fabrication, erection, and removal of formwork.

D. Comply with relevant portions of ACI 347, ACI 301, and ACI 318.

2.02 WOOD FORM MATERIALS

A. Softwood Plywood: PS 1, APA B-B Plyform grade, Class 1. Thickness as required by concrete placement rate.

2.03 REMOVABLE PREFABRICATED FORMS

A. Preformed Steel Forms: Minimum 16 gage matched, tight fitting, stiffened to support weight of concrete without deflection detrimental to tolerances and appearance of finished surfaces.

B. Preformed Plastic Forms: Thermoplastic polystyrene form liner, tight fitting, stiffened to support weight of concrete without deflection detrimental to tolerances and appearance of finished surfaces.

C. Glass Fiber Fabric Reinforced Plastic Forms: Matched, tight fitting, stiffened to support weight of concrete without deflection detrimental to tolerances and appearance of finished concrete surfaces.

2.04 FORMWORK ACCESSORIES

A. Form Ties: Removable type, galvanized metal, fixed length, cone type, with waterproofing washer, 3/4 inch back break dimension, free of defects that could leave holes larger than 1 inch in concrete surface.

B. Form Release Agent: Capable of releasing forms from hardened concrete without staining or discoloring concrete or forming bugholes and other surface defects, compatible with concrete and form materials, and not requiring removal for satisfactory bonding of coatings to be applied.

C. Filler Strips for Chamfered Corners: Rigid plastic type; 3/4 x 3/4 inch size; maximum possible lengths.

D. Flashing Reglets: Galvanized steel, 22 gage thick, longest possible lengths, with alignment splines for joints, foam filled, release tape sealed slots, anchors for securing to concrete formwork.

E. Nails, Spikes, Lag Bolts, Through Bolts, Anchorages: Sized as required, of sufficient strength and character to maintain formwork in place while placing concrete.

F. Embedded Anchor Shapes, Plates, Angles and Bars: As specified in Section 05 12 00.
PART 3 – EXECUTION

3.01 EXAMINATION

A. Verify lines, levels and centers before proceeding with formwork. Ensure that dimensions agree with drawings.

3.02 EARTH FORMS

A. Hand trim sides and bottom of earth forms. Remove loose soil prior to placing concrete.

3.03 ERECTION – FORMWORK

A. Erect formwork, shoring and bracing to achieve design requirements, in accordance with requirements of ACI 301.

B. Provide bracing to ensure stability of formwork. Shore or strengthen formwork subject to overstressing by construction loads.

C. Arrange and assemble formwork to permit dismantling and stripping. Do not damage concrete during stripping. Permit removal of remaining principal shores.

D. Align joints and make watertight. Keep form joints to a minimum.

E. Obtain approval before framing openings in structural members that are not indicated on drawings.

F. Coordinate this section with other sections of work that require attachment of components to formwork.

G. If formwork is placed after reinforcement, resulting in insufficient concrete cover over reinforcement, request instructions from Architect before proceeding.

3.04 APPLICATION - FORM RELEASE AGENT

A. Apply form release agent on formwork in accordance with manufacturer’s recommendations.

B. Apply prior to placement of reinforcing steel, anchoring devices, and embedded items.

C. Do not apply form release agent where concrete surfaces will receive special finishes or applied coverings that are affected by agent. Soak inside surfaces of untreated forms with clean water. Keep surfaces coated prior to placement of concrete.

3.05 INSERTS, EMBEDDED PARTS, AND OPENINGS

A. Provide formed openings where required for items to be embedded in passing through concrete work.

B. Locate and secure in place all items embedded or cast into concrete.

C. Coordinate with work of other sections in forming and placing openings, slots, reglets, recesses, sleeves, bolts, anchors, other inserts, and components of other work.

D. Install accessories in accordance with manufacturer’s instructions, so they are straight, level and plumb. Secure all items so they will not be disturbed during concrete placement.
E. Provide temporary ports or openings in formwork where required to facilitate cleaning and inspection. Locate openings at bottom of forms to allow flushing water to drain.

F. Close temporary openings with tight fitting panels, flush with inside face of forms, and neatly fitted so joints will not be apparent in exposed concrete surfaces.

3.06 FORM CLEANING

A. Clean forms as erection proceeds, to remove foreign matter within forms.

B. Clean formed cavities of debris prior to placing concrete.

1. Flush with water or use compressed air to remove remaining foreign matter. Ensure that water and debris drain to exterior through clean-out ports.

2. During cold weather, remove ice and snow from within forms. Do not use de-icing salts. Do not use water to clean out forms, unless formwork and concrete construction proceed within heated enclosure. Use compressed air or other means to remove foreign matter.

3.07 FORMWORK TOLERANCES

A. Construct formwork to maintain tolerances required by ACI 117, unless otherwise indicated.

3.08 FIELD QUALITY CONTROL

A. An independent testing agency will perform field quality control tests, as specified in Section 01 40 00.

B. Inspect erected formwork, shoring, and bracing to ensure that work is in accordance with formwork design, and to verify that supports, fastenings, wedges, ties, and items are secure.

C. Do not reuse wood formwork more than 3 times for concrete surfaces to be exposed to view. Do not patch formwork.

3.09 FORM REMOVAL

A. Do not remove forms or bracing until concrete has gained sufficient strength to carry its own weight and imposed loads.

B. Loosen forms carefully. Do not wedge pry bars, hammers, or tools against finish concrete surfaces scheduled for exposure to view.

END OF SECTION
PART 1 – GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 of the General Contract in addition to this Specification and accompanying drawings.

1.02 SECTION INCLUDES
 A. Reinforcing steel for cast-in-place concrete.
 B. Supports and accessories for steel reinforcement.

1.03 RELATED REQUIREMENTS
 A. Section 03 30 00 - Cast-in-Place Concrete.

1.04 REFERENCE STANDARDS
 A. ACI 301 – Specifications for Structural Concrete for Buildings; American Concrete Institute International; 2005.
 B. ACI SP-66 – ACI Detailing Manual; American Concrete Institute International; 2004.
 F. CRSI (DA4) – Manual of Standard Practice; Concrete Reinforcing Steel Institute; 2001.

1.05 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Shop Drawings: Comply with requirements of ACI SP-66. Include bar schedules, shapes of bent bars, spacing of bars, and location of splices.

1.06 QUALITY STANDARDS
 A. Perform work of this section in accordance with ACI 301.

PART 2 - PRODUCTS

2.01 REINFORCEMENT
 A. Reinforcing Steel: ASTM A615/A615M Grade 60 (420).
 1. Plain billet-steel bars.
2. Unfinished.

B. Reinforcing Steel: ASTM A706/A706M, deformed low-alloy steel bars.
 1. Unfinished.

 1. Flat Sheets.

D. Reinforcement Accessories:
 1. Tie Wire: Annealed, minimum 16 gage.
 2. Chairs, Bolsters, Bar Supports, Spacers: Sized and shaped for adequate support of reinforcement during concrete placement.
 3. Provide stainless steel components for placement within 1-1/2 inches of weathering surfaces.

2.02 FABRICATION

A. Fabricate concrete reinforcing in accordance with CRSI (DA4) - Manual of Standard Practice.

B. Welding of reinforcement is not permitted, unless indicated on drawings and reinforcing steel is ASTM A706.

C. Locate reinforcing splices not indicated on drawings at point of minimum stress.

PART 3 – EXECUTION

3.01 PLACEMENT

A. Place, support and secure reinforcement against displacement. Do not deviate from required position.

B. Do not displace or damage vapor barrier.

C. Accommodate placement of formed openings.

D. Maintain concrete cover around reinforcing as follows:
 1. Supported Slabs and Joists: 3/4 inch.
 2. Walls (exposed to weather or backfill): 1.5 inch.
 3. Footings and Concrete Formed Against Earth: 3 inch.
 4. Slabs on Fill: 2 inch.

E. Conform to applicable code for concrete cover over reinforcement.
3.02 FIELD QUALITY CONTROL

A. An independent testing agency, as specified in Section 01 40 00, will inspect installed reinforcement for conformance to contract documents before concrete placement.

END OF SECTION
PART 1 – GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 of the General Contract in addition to this Specification and accompanying drawings.

1.02 SECTION INCLUDES

A. Concrete for composite floor construction.
B. Floors and slabs on grade.
C. Joint devices associated with concrete work.
D. Miscellaneous concrete elements, including equipment pads, light pole bases, flagpole bases, thrust blocks, and manholes.

1.03 RELATED REQUIREMENTS

A. Section 03 10 00 - Concrete Forming and Accessories: Forms and accessories for formwork.
B. Section 03 20 00 – Concrete Reinforcing.

1.04 REFERENCE STANDARDS

A. ACI 117 - Standard Specifications for Tolerances for Concrete Construction and Materials; American Concrete Institute International; 2010.
B. ACI 211.1 - Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; American Concrete Institute International; 1991 (Reapproved 2002).
C. ACI 301 - Specifications for Structural Concrete for Buildings; American Concrete Institute International; 2010.
D. ACI 302.1R - Guide for Concrete Floor and Slab Construction; American Concrete Institute International; 2004 (Errata 2007).
E. ACI 304R - Guide for Measuring, Mixing, Transporting, and Placing Concrete; American Concrete Institute International; 2000.
F. ACI 305R - Hot Weather Concreting; American Concrete Institute International; 2010.
G. ACI 306R - Cold Weather Concreting; American Concrete Institute International; 2010.
H. ACI 308R - Guide to Curing Concrete; American Concrete Institute International; 2001 (Reapproved 2008).
I. ACI 318 - Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute International; 2011.

1.05 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Product Data: Submit manufacturers' data on manufactured products showing compliance with specified requirements and installation instructions.

C. Submit each concrete mix design representing all contents and quantities in accordance with ACI including historical performance data for each mix design.

D. LEED Submittal: If any fly ash, ground granulated blast furnace slag, silica fume, rice hull ash, or other waste material is used in mix designs to replace Portland cement, submit the total volume of concrete cast in place, mix design(s) used showing the quantity of portland cement replaced, reports showing successful cylinder testing, and temperature on day of pour if cold weather mix is used; use LEED New Product Content Form.

1.06 QUALITY STANDARDS

A. Perform work of this section in accordance with ACI 301 and ACI 318.

PART 2 - PRODUCTS

2.01 FORMWORK

A. Comply with requirements of Section 03 10 00.

2.02 REINFORCEMENT

A. Comply with requirements of Section 03 20 00.

2.03 CONCRETE MATERIALS

A. Cement: ASTM C150, Type I - Normal Portland type.
 1. Acquire all cement for entire project from same source.

 1. Acquire all aggregates for entire project from same source.

C. Fly Ash: ASTM C618, Class C or F.

D. Water: Clean and not detrimental to concrete.
2.04 CHEMICAL ADMIXTURES

A. Do not use chemicals that will result in soluble chloride ions in excess of 0.1 percent by weight of cement.

C. High Range Water Reducing and Retarding Admixture: ASTM C 494/C 494M Type G.

D. High Range Water Reducing Admixture: ASTM C 494/C 494M Type F.

2.05 ACCESSORY MATERIALS

A. Non-Shrink Cementitious Grout: Premixed compound consisting of non-metallic aggregate, cement, water reducing and plasticizing agents.

1. ASTM C1107/C1107M; Grade A, B, or C.

2. Minimum Compressive Strength at 48 Hours: 2,400 psi.

3. Minimum Compressive Strength at 28 Days: 7,000 psi.

2.06 BONDING AND JOINTING PRODUCTS

A. Latex Bonding Agent: Non-redispersable acrylic latex, complying with ASTM C1059 Type II.

C. Reglets: Formed steel sheet, galvanized, with temporary filler to prevent concrete intrusion during placement.

1. Size: As indicated on drawings.

2. Size: 1/2 inch throat, 1/2 inch deep.

D. Slab Isolation Joint Filler: 1/2 inch thick, height equal to slab thickness, with removable top section that will form 1/2 inch deep sealant pocket after removal.

3. Material: Closed-cell, non-absorbent, compressible polyethylene or polymer foam in sheet form.

E. Sealant and Primer: As specified in Section 07 90 05.

2.07 CURING MATERIALS

A. Curing and Sealing Compound, Low Gloss: Liquid, membrane-forming, clear, non-yellowing acrylic; complying with ASTM C309, Type 1.

3. VOC Content: OTC compliant.

2.08 CONCRETE MIX DESIGN

A. Proportioning Normal Weight Concrete: Comply with ACI 211.1 recommendations.

B. Concrete Strength: Establish required average strength for each type of concrete on the basis of field experience or trial mixtures, as specified in ACI 301.

C. Admixtures: Add acceptable admixtures as recommended in ACI 211.1 and at rates recommended by manufacturer.

D. Fiber Reinforcement: Add to mix at rate of 1.5 pounds per cubic yard, or as recommended by manufacturer for specific project conditions.

E. Normal Weight Concrete:
 1. Compressive Strength, when tested in accordance with ASTM C39/C39M at 28 days: as indicated on structural general notes.
 2. Fly Ash Content: Maximum 15 percent of cementitious materials by weight.
 3. Cement Content: Minimum 490 lb per cubic yard.
 4. Water-Cement Ratio: Maximum 46 percent by weight.
 5. Total Air Content: 4 percent, determined in accordance with ASTM C173/C173M.
 7. Maximum Aggregate Size: 1 1/2 inch.

2.09 CONCRETE MIX DESIGN

A. Transit Mixers: Comply with ASTM C94/C94M.

PART 3 – EXECUTION

3.01 EXAMINATION

A. Verify lines, levels, and dimensions before proceeding with work of this section.

3.02 PREPARATION

A. Where new concrete is to be bonded to previously placed concrete, prepare existing surface by cleaning with steel brush and applying bonding agent in accordance with manufacturer’s instructions.
 1. Use epoxy bonding system for bonding to damp surfaces, for structural load-bearing applications, and where curing under humid conditions is required.
 2. Use latex bonding agent only for non-load-bearing applications.

3.03 PLACING CONCRETE

A. Place concrete in accordance with ACI 304R.
B. Place concrete for floor slabs in accordance with ACI 302.1R.

C. Maintain records of concrete placement. Record date, location, quantity, air temperature, and test samples taken.

D. Ensure reinforcement, inserts, waterstops, embedded parts, and formed construction joint devices will not be disturbed during concrete placement.

E. Finish floors level and flat, unless otherwise indicated, within the tolerances specified below.

3.04 CONCRETE FINISHING

A. Repair surface defects, including tie holes, immediately after removing formwork.

B. Unexposed Form Finish: Rub down or chip off fins or other raised areas 1/4 inch or more in height.

C. Exposed Form Finish: Rub down or chip off and smooth fins or other raised areas 1/4 inch or more in height. Provide finish as follows:
 1. Smooth Rubbed Finish: Wet concrete and rub with carborundum brick or other abrasive, not more than 24 hours after form removal.

3.05 CURING AND PROTECTION

A. Comply with requirements of ACI 308R. Immediately after placement, protect concrete from premature drying, excessively hot or cold temperatures, and mechanical injury.

B. Maintain concrete with minimal moisture loss at relatively constant temperature for period necessary for hydration of cement and hardening of concrete.
 1. Normal concrete: Not less than 7 days.

C. Formed Surfaces: Cure by moist curing with forms in place for full curing period.

D. Surfaces Not in Contact with Forms:
 1. Slabs and Floors To Receive Adhesive-Applied Flooring: Curing compounds and other surface coatings are usually considered unacceptable by flooring and adhesive manufacturers. If such materials must be used, either obtain the approval of the flooring and adhesive manufacturers prior to use or remove the surface coating after curing to flooring manufacturer's satisfaction.
 2. Initial Curing: Start as soon as free water has disappeared and before surface is dry. Keep continuously moist for not less than three days by water ponding, water-saturated sand, water-fog spray, or saturated burlap.
 a. Ponding: Maintain 100 percent coverage of water over floor slab areas, continuously for 4 days.
 b. Spraying: Spray water over floor slab areas and maintain wet.
 c. Saturated Burlap: Saturate burlap-polyethylene and place burlap-side down over floor slab areas, lapping ends and sides; maintain in place.
3. Final Curing: Begin after initial curing but before surface is dry.
 a. Moisture-Retaining Sheet: Lap strips not less than 3 inches and seal with waterproof tape or adhesive; secure at edges.
 b. Curing Compound: Apply in two coats at right angles, using application rate recommended by manufacturer.

3.06 FIELD QUALITY CONTROL

A. An independent testing agency will perform field quality control tests, as specified in Section 01 40 00.

B. Provide free access to concrete operations at project site and cooperate with appointed firm.

C. Submit proposed mix design of each class of concrete to inspection and testing firm for review prior to commencement of concrete operations.

D. Tests of concrete and concrete materials may be performed at any time to ensure conformance with specified requirements.

E. Compressive Strength Tests: ASTM C39/C39M. For each test, mold and cure three concrete test cylinders. Obtain test samples for every 100 cu yd or less of each class of concrete placed.

F. Take one additional test cylinder during cold weather concreting, cured on job site under same conditions as concrete it represents.

G. Perform one slump test for each set of test cylinders taken, following procedures of ASTM C143/C143M.

3.07 DEFECTIVE CONCRETE

A. Test Results: The testing agency shall report test results in writing to Architect and Contractor within 24 hours of test.

B. Defective Concrete: Concrete not conforming to required lines, details, dimensions, tolerances or specified requirements.

C. Repair or replacement of defective concrete will be determined by the Architect. The cost of additional testing shall be borne by Contractor when defective concrete is identified.

D. Do not patch, fill, touch-up, repair, or replace exposed concrete except upon express direction of Architect for each individual area.

3.08 PROTECTION

A. Do not permit traffic over unprotected concrete floor surface until fully cured.

END OF SECTION
PART 1 – GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Related Sections include the following:

1. Section 04 21 13 Brick Masonry
2. Section 07 11 00 Dampproofing
3. Section 07 60 00 General Sheetmetal

1.03 REFERENCES

A. Precast/Prestressed Concrete Institute (PCI) Standards: Manual for Quality Control for Precast and Prestressed Concrete MNL – 116

B. American Concrete Institute: Building Code Requirements for Structural Concrete (ACI 318)

C. American Concrete Institute: Building Code Requirements for Masonry Structures (ACI 530)

1.04 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For the following:

C. Precast Sill Units: Show sizes, profiles and detailing.

D. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

1.06 QUALITY ASSURANCE

A. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Meetings."

B. Fabricators Qualifications: Units shall be fabricated by a firm engaged in the manufacturing of commercial precast and prestressed concrete trim for a minimum of 5 years. Fabricator shall have a quality assurance program that complies with the procedures of Manual 116 by the Precast/Prestressed Concrete Institute (PCI).

C. Plant records of production and quality control shall be kept in accordance with PCI recommendations and made available upon request from the Architect.
1.07 DELIVERY, STORAGE, AND HANDLING

A. Store precast units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

1.08 PROJECT CONDITIONS

A. Protection of existing masonry. During construction, cover tops of exposed masonry courses with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

1. Extend cover a minimum of 24 inches down both sides and hold cover securely in place.

B. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry. Immediately remove grout, mortar, and soil that come in contact with such masonry.

PART 2 - PRODUCTS

2.01 PRECAST CONCRETE SILLS

A. MANUFACTURER: Provide product from one of the listed manufacturers or an approved equal.

1. Wind Resistant Face style by CAST-CRETE® Corporation, PO Box 24567, Tampa, Florida, 33623. Toll Free (800) 999-4641. Website www.castcrete.com

2. Hurricane Resistant Sill style by Quality Precast Company, P.O. Box 11, Brandon, FL 33509-0011. Toll Free (800) 752-1730. Website www.qualityprecascom

B. MATERIALS

1. Concrete Materials
 a. Portland Cement: ASTM C150 Type I or III, gray color
 b. Aggregates: ASTM C33
 c. Water: potable
 d. Admixtures: Shall not contain calcium chloride or chloride ions

2. Reinforcing:
 a. Deformed Reinforcement: ASTM A615 Grade 40 or 60
 b. Prestressing Strand: ASTM A416 270 ksi LL

C. FABRICATION

1. Unless specified otherwise, conform to PCI MNL-116
2. All units shall be made of concrete with a minimum compressive strength of 3000 psi at 28 days.
3. All units shall have a sand block finish
4. Tolerances shall be per PCI MNL-116
5. Minor patching in plant is acceptable provided structural adequacy of units is not impaired and appearance of exposed surfaces is not marred.
PART 3 - EXECUTION

3.01 FLASHING

A. General: Install embedded sill flashing where indicated on drawings.

B. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.

3.02 INSTALLATION

A. Do not install cracked, broken, or chipped precast units. Use masonry saws to cut and fit exposed units with Owner’s Representative’s approval only. Lay plumb, true to line, and level, accurately placed within allowable tolerances. Adjust units to final position while mortar is soft and plastic. If units are displaced after mortar has stiffened, remove, clean joints and units of mortar and relay with fresh mortar. Protect walls from mortar drippings and other damage during construction. Remove misplaced mortar or grout immediately.

3.03 REPAIRING, POINTING, AND CLEANING

A. Remove and replace units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean precast sills and unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed precast concrete sills and masonry as follows: Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.

END OF SECTION
DIVISION 3, CONCRETE
03 54 13 CEMENTITIOUS UNDERLAYMENT

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and
 Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 06 10 00 - Rough Carpentry

1.03 ALLOWABLE FLATWORK TOLERANCES
 A. True within 1/8" per 10'-0"

1.04 QUALITY ASSURANCE
 A. Installer's Qualifications: Installation of Gyp-Crete 2000/3.2K shall be by an applicator
 authorized by the Maxxon Corporation using Maxxon approved mixing and pumping
 equipment.

1.05 DELIVERY, STORAGE AND HANDLING
 A. General Requirements: Materials shall be delivered in their original, unopened packages, and
 protected from exposure to the elements. Protect against deterioration, foreign matter
 intrusion, contamination, and dampness. Damaged or deteriorated materials shall be
 removed from the premises.

1.06 SITE CONDITIONS
 A. Environmental Requirements: Before, during and after installation of Gyp-Crete 2000/3.2K,
 building interior shall be enclosed and maintained at a temperature above 50 degrees F (10
 degrees C).

1.07 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.08 PROTECTION
 A. Protect work specified herein against damage and discoloration. Protect other work against
 damage and discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 MATERIALS
 A. Gypsum Cement: Floor underlayment Gyp-Crete 2000/3.2K gypsum cement as manufactured
 by the Maxxon Corporation, Hamel, MN. All others must receive prior approval.
B. Sand Aggregate: Sand shall be 1/8 inch (3 mm) or less, washed masonry or plaster sand, meeting requirements of Maxxon Corporation Sand Specifications 101.

C. Mix Water: Potable, free from impurities.

D. Subfloor Primer: Maxxon Floor Primer

E. Sealer: Maxxon Overspray

2.02 MIX DESIGNS

A. General Requirements: Mix proportions and methods shall be in strict accordance with product manufacturer recommendations.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that sheathing, and embedded items are accurately and securely placed, clean, and ready to received cementitious underlayment. Prior to starting work, notify contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 SURFACE PREPARATION AND PLACEMENT

A. Condition and Cleaning of Subfloor: Subfloor shall be structurally sound. General Contractor shall clean subfloor to remove mud, oil, grease, and other contaminating factors before the arrival of the Gyp-Crete 2000/3.2K underlayment crew.

B. Leak Prevention: Fill cracks and voids with a quick setting patching or caulking material or provide appropriate underlayment barrier where leakage of Gyp-Crete 2000/3.2K could occur.

C. Priming Subfloor: Prime the subfloor using the Maxxon Floor Primer. Priming instructions may vary according to the type of substrate, multiple coats may be necessary.

3.03 APPLICATION OF CEMENTITIOUS FLOORING

A. Scheduling: Application of Gyp-Crete 2000/3.2K shall not begin until the building is enclosed, including roof, windows, doors and other fenestration. Install after drywall installation unless tenant finish requirements identify partitioning after the pour.

B. Application: Place Gyp-Crete 2000/3.2K at 1 1/2 inch minimum over wood frame. Spread and screed Gyp-Crete 2000/3.2K to a smooth surface. Except at authorized joints, place Gyp-Crete 2000/3.2K as continuously as possible until application is complete so that no Gyp-Crete 2000/3.2K product slurry is placed against Gyp-Crete 2000/3.2K product that has obtained its initial set.

C. Drying: General Contractor shall provide continuous ventilation and adequate heat to rapidly remove moisture from the area until the Gyp-Crete 2000/3.2K is dry. General Contractor shall provide mechanical ventilation if necessary. To test for dryness, tape a 24 inch by 24 inch (609 mm by 609 mm) section of plastic or high density rubber mat to the surface of the underlayment. After 48-72 hours, if no condensation occurs, the underlayment shall be considered dry. Perform dryness test 5-7 days after pour.
3.04 PREPARATION FOR INSTALLATION OF GLUE DOWN FLOOR GOODS

A. Sealing: Seal all areas that receive glue down floor goods according to the Maxxon Corporation's specifications. Any floor areas where the surface has been damaged shall be cleaned and sealed regardless of floor covering to be used. Use Maxxon Overspray to seal the Gyp-Crete 2000/3.2K prior to installation of glue down floor goods. Where floor goods manufacturers require special adhesive or installation systems, their requirements supersede these recommendations.

B. Floor Goods Procedures: See the Maxxon Corporation's "Procedures for Attaching Finished Floor Goods to Maxxon Underlayments" brochure for guidelines for installing finished floor goods. This procedure is not a warranty and is to be used as a guideline only.

3.05 FIELD QUALITY CONTROL

A. Slump Test: Gyp-Crete 2000/3.2K mix shall be tested for slump as it's being pumped using a 2 inch by 4 inch (50 mm by 101 mm) cylinder resulting in a patty size of 8 inches (203 mm) plus or minus 1 inch (25 mm) diameter.

B. Field Samples: At least one set of 3 molded cube samples shall be taken from each day's pour during the Gyp-Crete 2000/3.2K application. Cubes shall be tested as recommended by the Maxxon Corporation in accordance with modified ASTM C 472. Test results shall be available to architect and/or contractor upon request from applicator.

3.06 PROTECTION

A. Protection From Heavy Loads: During construction, place temporary wood planking over Gyp-Crete 2000/3.2K wherever it will be subject to heavy wheeled or concentrated loads.

3.07 DEFECTIVE WORK

A. Remove and replace, when directed by Architect, loose topping, surfaces which show excessive cracks.

3.08 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
A. Section 04 21 13 – Brick Masonry
B. Section 04 22 00 – Concrete Masonry

1.03 REFERENCED SPECIFICATIONS
A. Except as modified herein, comply with the following:
 1. Unit Masonry Mortar: ASTM C-270.

1.04 OPTIONS
A. Contractor may, at his option, use masonry cement conforming to ASTM C-91 in lieu of lime and cement mixture.

1.05 SOURCE QUALITY CONTROL
A. If ready-mixed mortar is used, furnish certificate from mixing plant stating that delivered mortar conforms to specifications.

1.06 PRODUCT DELIVERY, STORAGE, AND HANDLING
A. Protect against damage, contamination and discoloration. Store unmixed materials off ground. Remove unacceptable materials from site immediately.

1.07 ENVIRONMENTAL CONDITIONS
A. Heat mixing water when air temperature is below 40 degrees F. and heat aggregates when air temperature is below 32 degrees F. to maintain mortar at 70 degrees to 120 degrees until used. Do not anti-freeze ingredients.

1.08 COORDINATION
A. Coordinate with other trades affecting or affected by work of this section.

1.09 PROTECTION
A. Protect other work against damage and discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 NATURAL CEMENT
A. Portland cement in conformance with ASTM C-150, type 1.

2.02 AGGREGATE

A. Columbia River sand conforming to ASTM C-44, and graded as follows:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>95-100</td>
</tr>
<tr>
<td>16</td>
<td>70-100</td>
</tr>
<tr>
<td>30</td>
<td>40-75</td>
</tr>
<tr>
<td>50</td>
<td>15-35</td>
</tr>
<tr>
<td>100</td>
<td>2-15</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
</tbody>
</table>

2.03 LIME

A. Hydrated type conforming to ASTM C-207, type s.

2.04 ACCELERATOR

A. Sonneborn "Trimix" or approved.

2.05 WATER

A. Clean and free of deleterious matter.

2.06 PROPORTIONS

A. Unit Masonry Mortar:

2. Parts by volume:
 a. Cement 1; 6 sacks per cubic yard, minimum.
 b. Lime 1/4 to 1/2.
 c. Aggregate 2-1/4 to 3 times cement and lime volume.

B. Grouting Mortar:

1. Minimum 28-day compressive strength = 3,000 psi.

C. Pointing Mortar:

1. Parts by volume:
 a. Cement 1
 b. Lime 1/4
 c. Aggregate 3

2.07 COLOR

A. Custom mix to dark gray color. Submit cured sample for Architect's approval.
PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that mortar mixing equipment, surfaces, and tools are clean and free of contaminates. Do not proceed with mixing until conditions are acceptable.

3.02 ADDING ADMIXTURES

A. Accelerator and Retardant: Add, in proportions recommended by manufacturer, to mixes where required by weather conditions.

3.03 MIXING

A. Measure materials by volume or equivalent weight. Do not measure by shovel. Mix proprietary mortars in accordance with manufacturer's directions. Mix all other mortars in mechanical batcher for 3 to 5 minutes. Use water necessary for desired workability and required compressive strength.

3.04 RETEMPERING

A. Retemper mortar only within 2-1/2 hours after initial mixing.

3.05 MORTAR APPLICATION

A. Refer to Section 04200, Unit Masonry.

3.06 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave surfaces ready for finishing specified in Section 09900. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 04 06 00 - Mortar and Grout
B. Section 07 60 00 – General Sheetmetal

1.03 EXTENT OF WORK

A. Work shall include construction of veneer wall cladding, exterior masonry piers and monument sign base structure.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Protect against damage, contamination and discoloration. Store unmixed materials off ground. Remove unacceptable materials from site immediately.

B. Store masonry units off ground to prevent contamination by mud, dust, or materials likely to cause staining or other defects. Cover as necessary to protect from elements.

1.05 WEATHER PROTECTION

A. In cold weather:

1. General:
 a. Perform no work unless approved means are provided for heating materials.
 b. Masonry is protected against frost until mortar has set.
 c. Anti-freeze ingredients not permitted.

2. When air temperature is between 40 degrees F. and 32 degrees F.:
 a. Heat mixing water to maintain mortar between 40 degrees F. and 120 degrees F.
 b. When wind velocity exceeds 15 mph, protect materials and completed work with windbreaker during working day and after work by canvas or polyethylene film to prevent wetting or freezing.

3. When air temperature is between 25 degrees F. and 20 degrees F.:
 a. In addition to the above requirements, maintain mortar on mortar boards above 40 degrees F., and,
 b. Maintain materials and completed work above freezing for a minimum of 16 hours by using auxiliary heat and/or insulated blankets.

4. When air temperature is below 20 degrees F.:
 a. Heat mixing water and sand to maintain mortar between 40 degrees F. and 120 degrees F., and
 b. Enclose materials and completed work and maintain above freezing for a minimum of 24 hours.

B. In rainy weather work on weather-exposed areas only under cover.
C. When work is not in progress, including shutdowns and between each day’s work, keep areas exposed to weather covered with non-staining waterproof covering. Extend minimum 2'-0" down each wall face and secure.

D. When work is resumed, clean top surfaces of loose mortar and wet if directed or required.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

1.07 PROTECTION

A. Protect other work against damage and discoloration caused by work of this section. Protect masonry against damage until mortar has set.

1.08 ALLOWABLE TOLERANCES

A. Unless otherwise specified, construct masonry work true within 1/8" in 10 feet. Accurately size masonry openings within 1/4" plus or minus.

PART 2 – PRODUCTS

2.01 STRUCTURAL-CLAY FACING TILE

B. Provide special shapes where required for corners to maintain running bond, jambs and other special conditions indicated, including applications that cannot be produced by sawing standard units. Provide square-edged units for outside corners, unless otherwise indicated.

C. Nominal Size: Solid modular brick

2.02 REINFORCEMENT

A. Furnish and install hereunder all reinforcement shown on drawings. Comply with Section 03 20 00.

2.03 ANCHORS

A. Provide Dur-O-Wal D/A 213 (14 ga. plate with 12 ga. steel seismic pintle) or approved. All ties shall have a hot-dip galvanized finish.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive masonry are accurately sized and located, solid, level, dry, clean and otherwise properly prepared. Prior to starting work notify General Contractor about defects requiring correction. Do not start work until conditions are satisfactory.

B. Verify field measurements prior to starting work. If field measurements differ slightly from drawing dimensions modify work as required for accurate fit. If measurements differ
substantially from drawings or result in exposed brick sections less than 4" in width, notify Architect prior to installation.

3.02 PREPARATION

A. When humidity reaches 30% or less, soak brick to reduce initial absorption.

B. Remove dirt, ice, loose rust and scale from reinforcement and embedded items prior to installation.

3.03 INSTALLATION

A. Do not install cracked, broken, or chipped masonry units exceeding ASTM allowances. Use masonry saws to cut and fit exposed units. Lay plumb, true to line, and with level courses accurately spaced within allowable tolerances. Do not furrow bed joints. Stop off horizontal runs by racking back in each course; toothing not permitted. Adjust units to final position while mortar is soft and plastic. If units are displaced after mortar has stiffened, remove, clean joints and units of mortar and relay with fresh mortar. When joining fresh masonry to set or partially set masonry: remove loose units and mortar. Clean and lightly wet exposed surface of set masonry prior to laying fresh masonry. Protect walls from mortar drippings and other damage during construction. Remove misplaced mortar or grout immediately.

B. Mortar Beds: Lay masonry unit with full mortar coverage on horizontal and vertical joints in all courses. Provide sufficient mortar on ends of block to fill head joints.

C. Joints: Construct horizontal and vertical face joints to uniform widths with a nominal thickness as indicated on plans. Compress all joints with a round tool.

D. Bond: Lay in running bond, alternating vertical joints at half-points of adjacent bricks.

E. Anchoring: Build in anchors and other embedded items as indicated. Anchors shall be spaced 16" o.c. vertically and horizontally. Fasten each anchor to CMU wall with (2) #12 x 1 1/2" masonry screws). Locate first horizontal row of anchors immediately above base course.

F. Flashing Installation: Provide at base of masonry veneer walls, and masonry window sills. Clean masonry surface smooth and free from projections which might puncture or otherwise damage flashing. Place flashing on mortar bed. Cover flashing with mortar. Lap seams minimum of 6". Turn up ends of flashings above and below window openings a minimum of 1" (into head joint). Flashing shall extend a minimum of 8" up surface of backing walls.

G. Weep Holes: Provide tube type weep holes at 12" o.c. at base of walls.

H. Sealant Joints: Provide 1/4" wide by 3/4" deep sealant joint over rope back-up at juncture with wood-framed wall surface.

I. Pointing: Upon Completion, point exposed work of this section. Fill holes and cracks. Remove loose mortar, cut-out defective work and repoint where directed. Remove mortar fins from joint junctions.

J. Backing Paper: Install over wall sheathing in locations indicated to receive masonry veneer. Apply in conformance with O.S.S.C. veneer requirements.

3.03 PRODUCT CLEANING AND REPAIRING
A. Remove mortar and grout stains from exposed masonry surfaces. Delay cleaning until masonry is dry. Prior to cleaning remove excess mortar by scraping using brass, nylon, or other non-ferrous devices only. Protect vegetation, metalwork and other materials damageable by cleaning agents. Prior to applying fluid cleaning agents saturate masonry with clean water. Unless otherwise approved, do not use muratic or other acid type cleaning solutions. Remove cleaning agents from masonry following cleaning. Follow manufacturer's instructions for application and removal of cleaning agents.

B. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Clean masonry upon completion with stiff brush and clean water. Leave surfaces ready for finishing specified in Section 09900. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 – GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes unit masonry assemblies consisting of the following:

1. Concrete masonry units (CMUs).
2. Mortar and grout.
3. Reinforcing steel.
4. Masonry joint reinforcement.
5. Ties and anchors.
6. Embedded flashing.
7. Miscellaneous masonry accessories.

B. Related Sections include the following:

1. Section 07 13 00 for water repellents applied to unit masonry assemblies.
2. Section 07 60 00 for sheet metal flashing.
3. Section 07 92 00 for sealing control and expansion joints in unit masonry.

1.03 DEFINITIONS

A. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.04 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths \(f_{cm} \) of 1500 psi at 28 days.

B. Determine net-area compressive strength \(f_{cm} \) of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to Tables 1 and 2 in ACI 530.1/ASCE 6/TMS 602.

1.05 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For the following:

1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
2. Reinforcing Steel: Detail bending and placement of unit masonry reinforcing bars. Comply with ACI 315, “Details and Detailing of Concrete Reinforcement.” Show elevations of reinforced walls.
3. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.
CONCRETE UNIT MASONRY 04 22 00 - 2

C. Material Certificates: Include statements of material properties indicating compliance with requirements including compliance with standards and type designations within standards. Provide for each type and size of the following:

1. Masonry units.
 a. Include material test reports substantiating compliance with requirements.
 b. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.

2. Cementitious materials. Include brand, type, and name of manufacturer.
3. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
4. Grout mixes. Include description of type and proportions of ingredients.
5. Reinforcing bars.
7. Anchors, ties, and metal accessories.

D. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.

1. Include test reports, per ASTM C 780, for mortar mixes required to comply with property specification.
2. Include test reports, per ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

E. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to Tables 1 and 2 in ACI 530.1/ASCE 6/TMS 602.

F. Cold-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with cold-weather requirements.

1.06 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency qualified according to ASTM C 1093 for testing indicated, as documented according to ASTM E 548.

B. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, through one source from a single manufacturer for each product required.

C. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from a single manufacturer for each cementitious component and from one source or producer for each aggregate.

D. Preconstruction Testing Service: Owner will engage a qualified independent testing agency to perform preconstruction testing indicated below. Payment for these services will be made by Owner. Retesting of materials that fail to meet specified requirements shall be done at Contractor's expense.

1. Concrete Masonry Unit Test: For each type of unit required, per ASTM C 140.
2. Mortar Test (Property Specification): For each mix required, per ASTM C 780.
3. Grout Test (Compressive Strength): For each mix required, per ASTM C 1019.
E. Fire-Resistance Ratings: Where indicated, provide materials and construction identical to those of assemblies with fire-resistance ratings determined per ASTM E 119 by a testing and inspecting agency, by equivalent concrete masonry thickness, or by other means, as acceptable to authorities having jurisdiction.

F. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1.07 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.

D. Deliver preblended, dry mortar mix in moisture-resistant containers designed for lifting and emptying into dispensing silo. Store preblended, dry mortar mix in delivery containers on elevated platforms, under cover, and in a dry location or in a metal dispensing silo with weatherproof cover.

E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.08 PROJECT CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

1. Extend cover a minimum of 24 inches down both sides and hold cover securely in place.
2. Where 1 wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches down face next to unconstructed wythe and hold cover in place.

B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least 3 days after building masonry walls or columns.

C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.

1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
2. Protect sills, ledges, and projections from mortar droppings.
3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with
ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged
by frost or by freezing conditions. Comply with cold-weather construction requirements
contained in ACI 530.1/ASCE 6/TMS 602.

E. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F
(4 deg C) and above and will remain so until masonry has dried, but not less than 7 days after
completing cleaning.

F. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in
ACI 530.1/ASCE 6/TMS 602.

PART 2 - PRODUCTS

2.01 MASONRY UNITS, GENERAL

A. Defective Units: Referenced masonry unit standards may allow a certain percentage of units
to exceed tolerances and to contain chips, cracks, or other defects exceeding limits stated in
the standard. Do not uses units where such defects, including dimensions that vary from
specified dimensions by more than stated tolerances, will be exposed in the completed Work
or will impair the quality of completed masonry.

2.02 CONCRETE MASONRY UNITS

A. Provide special shapes for lintels, cornes, jambs, sashes, movement joints, headers,
 bonding, and other special conditions. Provide square-edged units for outside corners, unless
 otherwise indicated.

2.03 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-
 weather construction. Provide natural color or white cement as required to produce
 mortar color indicated.

B. Hydrated Lime: ASTM C 207, Type S.

C. Mortar Cement: ASTM C 1329.

D. Aggregate for Mortar: ASTM C 144. For mortar that is exposed to view, use washed
 aggregate consisting of natural sand or crushed stone. Delete subparagraph below if not
 required. For joints less than 1/4 inch thick, use aggregate graded with 100 percent passing
 the No. 16 sieve.

E. Aggregate for Grout: ASTM C 404.

F. Epoxy Pointing Mortar: ASTM C 395, epoxy-resin-based material formulated for use as
 pointing mortar for structural-clay tile facing units (and approved for such use by manufacturer
 of units); in color indicated or, if not otherwise indicated, as selected by Architect from
 manufacturer's colors.

G. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with
 concrete masonry units, containing integral water repellent by same manufacturer.

H. Water: Potable.
I. Color: As selected by Architect.

2.04 REINFORCEMENT

A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60 (Grade 420).

B. Masonry Joint Reinforcement, General: ASTM A 951.

C. Wire Size for Side Rods: W1.7 or 0.148-inch diameter.

D. Wire Size for Cross Rods: W1.7 or 0.148-inch diameter.

E. Wire Size for Veneer Ties: W1.7 or 0.148-inch diameter.

F. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches o.c. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.

G. Masonry Joint Reinforcement for Single-Wythe Masonry: Either ladder or truss type with single pair of side rods.

H. Masonry Joint Reinforcement for Veneers Anchored with Seismic Masonry-Veneer Anchors: Single 0.188-inch diameter, hot-dip galvanized, carbon-steel continuous wire.

2.05 TIES AND ANCHORS

B. Wire Ties, General: Unless otherwise indicated, size wire ties to extend at least halfway through veneer but with at least 5/8-inch cover on outside face. Outer ends of wires are bent 90 degrees and extend 2 inches parallel to face of veneer.

C. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches wide.

D. Seismic Masonry-Veneer Anchors: Units consisting of a metal anchor section and a connector section designed to engage a continuous wire embedded in the veneer mortar joint.

E. Anchor Section: Rib-stiffened, sheet metal plate with screw holes top and bottom, 2-3/4 inches wide by 3 inches high; with projecting tabs having slotted holes for inserting vertical leg of connector section.

2.06 EMBEDDED FLASHING MATERIALS

A. Metal Flashing: Provide metal flashing, where flashing is exposed or partly exposed and where indicated, complying with Section 07 60 00 General Sheetmetal.

2.07 MISCELLANEOUS MASONRY ACCESSORIES

A. Bond-Breaker Strips: Asphalt-saturated, organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).

B. Weep/Vent Products: Use one of the following, unless otherwise indicated:

1. Round Plastic Weep/Vent Tubing: Medium-density polyethylene, 3/8-inch OD by 4
inches long.

4. Mesh Weep/Vent: Free-draining mesh; made from polyethylene strands, full height and width of head joint and depth 1/8 inch less than depth of outer wythe; in color selected from manufacturer's standard.

C. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity. Strips, not less than 1-1/2 inches thick and 10 inches wide, with dimpled surface designed to catch mortar droppings and prevent weep holes from being clogged with mortar.

2.08 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.

2.09 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures, unless otherwise indicated.

B. Do not use calcium chloride in mortar or grout.

C. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.

D. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

E. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Provide Type S.

F. Grout for Unit Masonry: Comply with ASTM C 476.

PART 3 - EXECUTION

3.01 INSTALLATION, GENERAL

A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated. Build chases and recesses to accommodate items specified in this and other Sections. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match the construction immediately adjacent to opening.

B. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp,
unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

C. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Subparagraph below is "means and methods" but helps ensure uniformity of blend. Mix units from several pallets or cubes as they are placed.

D. Comply with construction tolerances in ACI 530.1/ASCE 6/TMS 602 and with the following:

1. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2 inch maximum.

E. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet, or 1/2 inch maximum.

F. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2 inch maximum.

G. For exposed bed joints and head joints of stacked bond, do not vary from a straight line by more than 1/16 inch (1.5 mm) from one masonry unit to the next.

3.02 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less than nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Stopping and Resuming Work: Stop work by racking back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

D. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

3.03 MORTAR BEDDING AND JOINTING

A. Lay hollow concrete masonry units with face shells fully bedded in mortar and with head joints of depth equal to bed joints.

B. With webs fully bedded in mortar in all courses of piers, columns, and pilasters.

C. With webs fully bedded in mortar in grouted masonry, including starting course on footings.

D. With entire units, including areas under cells, fully bedded in mortar at starting course on footings where cells are not grouted.
E. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness, unless otherwise indicated.

F. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint), unless otherwise indicated.

3.04 MASONRY JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.

B. Space reinforcement not more than 16 inches o.c.

3.05 ANCHORING MASONRY VENEERS

A. Anchor masonry veneers to wall framing, concrete and masonry backup with seismic masonry-veneer anchors to comply with the following requirements:

B. Fasten seismic anchors through sheathing to wall framing and to concrete and masonry backup with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener. Insert slip-in anchors in metal studs as sheathing is installed. Provide one anchor at each stud in each horizontal joint between sheathing boards.

C. Space anchors as indicated, but not more than 16 inches o.c.

3.06 CONTROL AND EXPANSION JOINTS

A. General: Install control and expansion joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

3.07 FLASHING, WEEP HOLES, CAVITY DRAINAGE, AND VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels, ledges, other obstructions to downward flow of water in wall, and where indicated. Install vents at shelf angles, ledges, and other obstructions to upward flow of air in cavities, and where indicated.

B. Install flashing as follows, unless otherwise indicated:

C. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.

D. At masonry-veneer walls, extend flashing through veneer, across air space behind veneer, and up face of sheathing at least 8 inches; with upper edge tucked under building paper or building wrap, lapping at least 4 inches.

E. At lintels and shelf angles, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
G. Install reglets and nailers for flashing and other related construction where they are shown to be built into masonry.

H. Install weep holes in head joints in exterior wythes of first course of masonry immediately above embedded flashing and as follows:

1. Space weep holes 24 inches o.c., unless otherwise indicated.
2. Trim wicking material flush with outside face of wall after mortar has set.

3.08 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

B. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.

C. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other temporary loads that may be placed on them during construction.

D. Placing Reinforcement: Comply with requirements in ACI 530.1/ASCE 6/TMS 602.

E. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.

F. Comply with requirements in ACI 530.1/ASCE 6/TMS 602 for cleanouts and for grout placement, including minimum grout space and maximum pour height. Limit height of grout lifts to not more than 60 inches.

3.09 FIELD QUALITY CONTROL

A. Inspectors: Owner will engage qualified independent inspectors to perform inspections and prepare reports. Allow inspectors access to scaffolding and work areas, as needed to perform inspections.

B. Place grout only after inspectors have verified compliance of grout spaces and grades, sizes, and locations of reinforcement.

C. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections indicated below and prepare test reports. Payment for these services will be made by Owner.

D. Retesting of materials failing to comply with specified requirements shall be done at Contractor's expense.

E. Testing Frequency: One set of tests for each 5000 sq. ft. (465 sq. m) of wall area or portion thereof.

F. Mortar Test: For each mix provided, per ASTM C 780.

G. Grout Test (Compressive Strength): For each mix provided, per ASTM C 1019.
3.10 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows: Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.

E. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect’s approval of sample cleaning before proceeding with cleaning of masonry.

F. Protect adjacent stone and non-masonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.

G. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.

H. Clean brick by bucket-and-brush hand-cleaning method described in BIA Technical Notes 20. Clean masonry with a proprietary acidic cleaner applied according to manufacturer’s written instructions. Retain subparagraph above or first subparagraph below. Coordinate with products retained in Part 2. If high-pressure water cleaning or other methods are acceptable, delete or revise below and insert applicable requirements.

I. Clean concrete masonry by cleaning method indicated in NCMA TEK 8-2A applicable to type of stain on exposed surfaces.

J. Clean stone trim to comply with stone supplier’s written instructions.

3.11 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor’s property. At completion of unit masonry work, remove from Project site.

B. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above, and other masonry waste, and legally dispose of off Owner’s property.

END OF SECTION
DIVISION 4, MASONRY
04 50 00 MASONRY CLEANING

PART 1 GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

B. Work related to this Section is specified in other sections. Other sections of these Specifications also apply even though not described here.

1.02 DESCRIPTION OF WORK

A. Extent of masonry cleaning work is indicated on drawings. Note that the brick walls of the two-story portion of Merryfield Hall has been previously stained with a red wash. The project intent is to preserve this stained finish and not to remove it.

B. Masonry restoration work includes the following:

1. Brick cleaning of all masonry surfaces.

1.03 QUALITY ASSURANCE

A. Restoration Specialist: Work must be performed by a firm having not less than 5 years successful experience in comparable masonry restoration projects and employing personnel skilled in the restoration processes and operations indicated.

B. Provide a test cleaning example for the Owner's Representative's approval prior to beginning cleaning of the full building. Test area shall address stained brick and efflorescence stained areas with sufficient surface area to demonstrate that the surface can be cleaned without damage to the masonry or the stained brick finish.

1.04 SUBMITTALS

A. Product Data: Submit manufacturer's technical data for each product indicated including recommendations for their application and use. Include test reports and certifications substantiating that products comply with requirements.

B. Samples: Submit, for verification purposes, samples of the following:

1. Each type of chemical cleaning material data.

1.05 DELIVERY, STORAGE AND HANDLING

A. Deliver materials to site in manufacturer's original and unopened containers and packaging, bearing labels as to type and names of products and manufacturers.

B. Protect masonry restoration materials during storage and construction from wetting by rain, snow or ground water, and from staining or inter-mixture with earth or other types of materials.
1.06 PROJECT CONDITIONS

A. Do not clean masonry unless air temperatures are between 40 deg.F (4 deg.C) and 80 deg.F (27 deg.C) and will remain so for at least 48 hours after completion of work.

PART 2 PRODUCTS

2.01 MASONRY MATERIALS

A. CLEANING MATERIALS AND EQUIPMENT

1. Approved Manufactures
 a. EaCo Chem, Inc.
 b. PROSOCO Inc. (Used as specification standard)

2. Materials: For Brick Masonry
 a. PROSOCO Sure Klean Light Duty Restoration Cleaner, or
 b. EaCo Chem OneRestore

3. For spot problem stains where required
 a. Product: Subject to compliance with requirements, provide ProSoCo"Sure Klean White Scum Remover ", PROSOCO, Inc.

5. Brushes: Fiber bristle only.

6. Spray Equipment: Provide equipment for controlled spray application of water and chemical cleaners, if any, at rates indicated for pressure, measured at spray tip, and for volume.
 a. For spray application of chemical cleaners provide low-pressure tank or chemical pump suitable for chemical cleaner indicated, equipped with cone-shaped spray-tip.
 b. For spray application of water provide fan-shaped spray-tip which disperses water at angle of not less than 15 degrees.

PART 3 EXECUTION

3.01 MASONRY CLEANING

A. PREPARATION

1. General: Comply with recommendations of manufacturers of chemical cleaners for protecting building surfaces against damage from exposure to their products.
2. Protect persons, motor vehicles, surrounding surfaces of building whose masonry surfaces are being restored, building site, mask windows and window frames.
3. Prevent chemical cleaning solutions from coming into contact with pedestrians, motor vehicles, landscaping, buildings and other surfaces, which could be injured by such contact.
4. Do not clean masonry during winds of sufficient force to spread cleaning solutions to unprotected surfaces.
5. Dispose of run-off from cleaning operations by legal means and in manner which prevents soil erosion, undermining of paving and foundations, damage to landscaping, and water penetration into building interiors.
6. Erect temporary protection covers over pedestrian walkways and at points of entrance and exit for persons and vehicles, which must remain in operation during course of masonry restoration work.
7. Protect glass and unpainted metal trim from contact with chemical cleaners by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape. Apply masking agent to comply with manufacturer's recommendations. Do not apply liquid masking agent to painted or porous surfaces.
8. Prior to starting work notify General Contractor of conditions requiring correction.
9. Do not start work until conditions are satisfactory.

B. CHEMICAL CLEANER APPLICATION METHODS

1. General: Apply chemical cleaners to masonry surfaces to comply with chemical manufacturer's recommendations using brush or spray application methods, at Contractor's option, unless otherwise indicated. Do not allow chemicals to remain on surface for periods longer than that indicated or recommended by manufacturer.

C. CLEANING APPLICATION FOR BRICK MASONRY

1. Apply chemical cleaner with low pressure sprayer (100 psi)
2. Allow to remain on brick for 3 to 5 minutes.
3. Scrub tough stains with stiff bristle brush.
4. Rinse with high-pressure washer (500 to 1200 psi).

Note: during the entire applications process the lower masonry areas must be continuously rinsed to avoid rundown staining of adjacent brick masonry.

3.02 FINAL CLEANING

A. Thoroughly clean exposed masonry surfaces of foreign matter using stiff nylon or bristle brushes and clean water, spray applied at low pressure.

B. Use of metal scrapers or brushes will not be permitted.

C. Use of acid or alkali cleaning agents will not be permitted.

3.03 PROTECTION

A. Protect other work against damage or discoloration caused by work of this section.

END OF SECTION
DIVISION 5, METALS
05 12 00 STRUCTURAL STEEL

PART 1 – GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 of the General Contract in addition to this Specification and accompanying drawings.

1.02 SECTION INCLUDES

A. Structural steel framing members, support members, suspension cables, sag rods, and struts.
B. Base plates, shear stud connectors and expansion joint plates.
C. Grouting under base plates.

1.03 RELATED REQUIREMENTS

A. Section 03 30 00 – Cast-in-Place Concrete

1.04 REFERENCE STANDARDS

I. ASTM A500/A500M - Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes; 2010a.
K. AWS A2.4 - Standard Symbols for Welding, Brazing, and Nondestructive Examination; American Welding Society; 2012.
1.05 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Shop Drawings:
 1. Indicate profiles, sizes, spacing, locations of structural members, openings, attachments, and fasteners.
 2. Connections not detailed.
 3. Indicate cambers and loads.
 4. Indicate welded connections with AWS A2.4 welding symbols. Indicate net weld lengths.

C. Manufacturer's Mill Certificate: Certify that products meet or exceed specified requirements.

1.06 QUALITY STANDARDS

A. Fabricate structural steel members in accordance with AISC "Steel Construction Manual".

B. Comply with Section 10 of AISC "Code of Standard Practice for Steel Buildings and Bridges" for architecturally exposed structural steel.

PART 2 – PRODUCTS

2.01 MATERIALS

A. Steel Angles and Plates: ASTM A36/A36M.

B. Steel W Shapes and Tees: ASTM A992/A992M, Grade 50.

C. Cold-Formed Structural Tubing: ASTM A500, Grade B.

E. Shear Stud Connectors: Made from ASTM A 108 Grade 1015 bars.

F. Structural Bolts and Nuts: Carbon steel, ASTM A307, Grade A galvanized to ASTM A 153/A 153M, Class C.

G. High-Strength Structural Bolts, Nuts, and Washers: ASTM A325 (ASTM A325M), Type 1, medium carbon, galvanized.

H. Unheaded Anchor Rods: ASTM F1554, Grade 36, plain, with matching ASTM A563 or A563M nuts and ASTM F436 Type 1 washers.

J. Load Indicator Washers: Provide washers complying with ASTM F959 at all connections requiring high-strength bolts.

K. Welding Materials: AWS D1.1; type required for materials being welded.

L. Grout: Non-shrink, non-metallic aggregate type, complying with ASTM C1107/C1107M and capable of developing a minimum compressive strength of 7,000 psi at 28 days.
2.02 FABRICATION

A. Shop fabricate to greatest extent possible.
B. Space shear stud connectors at 6 inch increments to evenly distribute studs the length of steel member.
C. Continuously seal joined members by continuous welds. Grind exposed welds smooth.
D. Fabricate connections for bolt, nut, and washer connectors.
E. Develop required camber for members.

2.03 FINISH

A. Shop prime structural steel members. Do not prime surfaces that will be fireproofed, field welded, in contact with concrete, or high strength bolted.

PART 3 – EXECUTION

3.01 EXAMINATION

A. Verify that conditions are appropriate for erection of structural steel and that the work may properly proceed.

3.02 PREPARATION

A. Clean and strip primed steel items to bare metal where site welding is required.
B. Supply setting templates to the appropriate entities for steel items required to be cast into concrete or embedded in masonry.

3.03 INSTALLATION

A. Install items plumb and level, accurately fitted, free from distortion or defects.
B. Provide for erection loads, and for sufficient temporary bracing to maintain true alignment until completion of erection and installation of permanent attachments.
C. Field weld components indicated.
D. Perform field welding in accordance with AWS D1.1/D1.1M.
E. Obtain approval prior to site cutting or making adjustments not scheduled.
F. After erection, prime welds, abrasions, and surfaces to be in contact with concrete.

3.04 TOLERANCES

A. Maximum Variation From Plumb: 1/4 inch per story, non-cumulative.
B. Maximum Offset From True Alignment: 1/4 inch.
3.05 FIELD QUALITY CONTROL

A. An independent testing agency will perform field quality control tests, as specified in Section 01 40 00.

B. High-Strength Bolts: Provide testing and verification of field-bolted connections in accordance with AISC "Specification for Structural Joints Using ASTM A325 or A490 Bolts".

C. Welded Connections: Visually inspect all field-welded connections and test in accordance with 2010 OSSC.

END OF SECTION
DIVISION 6, WOOD, PLASTICS AND COMPOSITES
06 05 73 WOOD TREATMENT

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

B. Work related to this Section is specified in other sections. Other sections of these Specifications also apply even though not described here.

C. Treatment of wood products to increase their durability against decay or retard burning characteristics.

D. Products furnished but not installed under this section. Deliver to General Contractor sufficient preservative solution for field-cut treatments.

1.02 REFERENCES

A. Pressure Treatments specified hereunder refer to quality mark designations of American Wood Preservers Bureau, P.O. Box 5283, Springfield, Virginia 22150, and hereinafter referred to as AWPB. Specifications may be obtained from Bureau.

1.03 SUBMITTALS

A. Certification: Indicate moisture content of treated wood, chemical used, and retention obtained.

1.04 DELIVERY, STORAGE, AND HANDLING

A. Protect against damage, moisture, and discoloration.

1.05 EXTRA MATERIAL

A. Deliver to General Contractor sufficient brush treatment material for field-cut treatments.

1.06 COORDINATION

A. Protect other work against damage or discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 PRESERVATIVE TREATMENT

A. Provide AWPB CCA LP-2 treatment using water-borne preservative for wood in the following locations:

1. In contact with masonry
2. In contact with concrete
3. In contact with roofing
4. Elsewhere shown on drawings.

B. Minimum retention: .25 pcf.
2.02 BRUSH TREATMENT MATERIAL

A. Material: Recommended by preservative treatment manufacturer for application to field cut treated lumber.

B. Treat any field cuts to pressure-treated wood.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that material to receive treatment does not exceed moisture content specified for similar untreated wood.

B. Prior to starting work notify General Contractor of conditions requiring correction.

C. Do not start work until conditions are satisfactory.

3.02 APPLICATION

A. Follow referenced specifications.

B. Incise members prior to treatment.

3.03 FIELD CUTS AND BRUSH TREATMENT

A. Apply 2 liberal coats of brush treatment material to field cut surfaces.

3.04 PROTECTION

A. Protect other work against damage or discoloration caused by work of this section.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 of the General Contract in addition to this Specification and accompanying drawings.

1.02 SECTION INCLUDES

A. Types of work in this section include rough carpentry for:

1. Wood Framing
2. Timbers for posts and beams
3. Wood grounds, nailers and blocking
4. Wood furring
5. Sheathing
6. Sub-flooring

1.03 RELATED REQUIREMENTS

A. Section 06 20 00 Finish Carpentry.

1.04 SUBMITTALS

A. Wood Treatment Data: Submit chemical treatment manufacturer’s instructions for proper use of each type of treated material.

B. Preservative Treatment: For each type specified, include certification by treating plant stating type of preservative retained and conformance with applicable standards

1.05 PRODUCT STORAGE AND HANDLING

A. Delivery and Storage: Keep materials dry at all times. Protect against exposure to weather and contact with damp or wet surfaces. Stack lumber as well as plywood and other panels; provide for air circulation within and around stacks and under temporary coverings including polyethylene and similar materials.

PART 2 - PRODUCTS

2.01 LUMBER, GENERAL

A. Lumber Standards: Manufacture lumber to comply with PS 20 “American Softwood Lumber Standard” and with applicable grading rules of inspection agencies certified by American Lumber Standards Committee’s (ALSC) Board of Review.

B. Inspection Agencies: inspection agencies and the abbreviations used to reference with lumber grades and species include the following:

1. WCLIB - West Coast Lumber Inspection Bureau
2. WWPA - Western Wood Products Association

C. Grade Stamps: Factory mark each piece of lumber with grade stamp of inspection agency evidencing compliance with grading rule requirements and identifying grading agency, grade, species, moisture content at time of surfacing, and mill.

1. For exposed lumber apply grade stamps to ends or back of each piece, or omit grade stamps entirely and issue certificate of grade compliance from inspection agency in lieu of grade stamp.

D. Nominal Sizes are indicated, except as shown by detail dimensions. Provide actual sizes as required by PS 20, for moisture content specified for each use.

1. Provide dressed lumber, S4S, unless otherwise indicated.
2. Provide seasoned lumber with 19% maximum moisture content at time of dressing shipment for sizes 2" or less in nominal thickness, unless otherwise indicated.

2.02 DIMENSION LUMBER

A. For light framing (2" to 4" thick, 2" to 4" wide), provide the following grade and Species.

1. Stud Grade
2. Species: Douglas Fir Larch

B. For structural light framing (2" to 4" thick, 2" to 4" wide), provide the following grade and species:

1. No. 2 grade
2. Species: Douglas Fir Larch

C. For structural framing (2" to 4" thick, 5' and wider), provide the following grade and species:

1. No. 2 grade
2. Species: Douglas Fir or Douglas Fir Larch graded, respectively, under WCLIB or WWPA rules.

2.03 MISCELLANEOUS LUMBER

A. Provide wood for support or attachment of other work including rooftop equipment curbs and support bases, cant strips, bucks, nailers, blocking, furring, grounds, stripping and similar members. Provide lumber of sizes indicated, worked into shapes shown, and as follows.

B. Moisture content: 19% maximum for lumber items not specified receive wood preservative treatment.

C. Grade: Construction grade light framing size lumber of Douglas Fir Larch. No. 2 Common or Standard grade boards per WCLIB or WWPA rules.

2.04 CONSTRUCTION PANELS

A. Construction Panel Standards: Comply with PS 1 "U.S. Product Standard for Construction and Industrial Plywood" for plywood panels and, for products not

B. Trademark: Factory mark each construction panel with APA trademark evidencing compliance with grade requirements.

C. Concealed APA Performance Rated Panels: Where construction panels will be used for the following concealed types of applications, provide APA Performance Rated Panels complying with requirements indicated for grade designation, span rating, exposure durability classification, edge detail (where applicable) and thickness.

D. Sub-flooring: APA RATED SHEATHING

1. Exposure Durability Classification: EXTERIOR.
2. Exposure Durability Classification: EXTERIOR 1.
 2.a. Thickness: \(\frac{3}{4} " \) T&G
 2.b. Span Rating: 48/24

E. Plywood Backing Panels: For mounting electrical or telephone equipment, provide fire retardant treated plywood panels with grade designation, APA C-D PLUGGED INT with exterior glue, in thickness indicated, or, if not otherwise indicated, not less than 15/32”.

F. Plywood Flooring Underlayment Panels: Provide plywood panels with grade designation, APA Underlayment, Group 1, Sanded Face, Exposure 1, not less than 15/32”. Provide in all new flooring areas.

2.05 MISCELLANEOUS MATERIALS:

A. Fasteners and Anchorages: Provide size, type, material and finish as indicated as recommended by applicable standards, complying with applicable Federal Specifications for nails, staples, screws, bolts, nuts, washers and anchoring devices. Provide metal hangers and framing anchors of the size and type recommended by the manufacturer for each use including recommended nails.

1. Where rough carpentry work is exposed to weather, in ground contact, or in area of high relative humidity, provide fasteners and anchorages with a hot-dip zinc coating (ASTM A 153).

2.06 WOOD TREATMENT BY PRESSURE PROCESS

A. Preservative Treatment: Where lumber or plywood is indicated as “Trt-Wd” or “Treated”, or is specified herein to be treated, comply with applicable requirements of AWPA Standards C2 (Lumber) and C9 (Plywood) and of AWPB Standards listed below. Mark each treated item with the AWPB Quality Mark Requirements.

B. Pressure treat above ground items with water borne preservatives complying with AWPB LP-2. after treatment, kiln-dry to a maximum moisture content, respectively of 19% and 15%. Treat indicated items and the following:

1. Wood sills, sleepers, blocking, furring stripping and similar concealed members in contact with masonry or concrete.

2. Wood framing members less than 18” above grade.

3. Wood floor plates installed over concrete slabs directly in contact with earth.
PART 3 - EXECUTION

3.01 INSTALLATION, GENERAL

A. Discard units of material with defects which might impair quality of work, and units which are too small to use in fabricating work with minimum joints or optimum joint arrangement.

B. Set Carpentry work to required levels and lines, with members plumb and true to line and cut and fitted.

C. Securely attach carpentry work to substrate by anchoring and fastening as shown and as required by recognized standards. Countersink nail heads on exposed carpentry work and fill holes.

D. Countersink nail heads on exposed carpentry work and fill holes.

E. Use common wire nails, except as otherwise indicated. Use finishing nails for finish work. Select fasteners of size that will not penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting of wood; pre-drill as required.

3.02 WOOD GROUND, NAILERS, BLOCKING AND SLEEPERS

A. Provide wherever shown and where required for screeding or attachment of other work. Form to shapes as shown and cut as required for true line and level of work to be attached. Coordinate location with other work involved.

B. Attach to substrates as required to support applied loading. Countersink bolts and nuts flush with surfaces, unless otherwise indicated. Build into masonry during installation of masonry work. Where possible, anchor to formwork before concrete placement.

C. Provide permanent grounds of dressed. Preservative treated, key-beveled lumber not less than 1½ “ wide and of thickness required to bring face of ground to exact thickness of finish material involved. Remove temporary grounds when no longer required.

3.03 WOOD FURRING

A. Install plumb and level with closure strips at edges and openings. Shim with wood as required for tolerance of finished work.

3.04 WOOD FRAMING, GENERAL

A. Provide framing members of sizes and on spacings shown, and frame openings as shown, or if not shown, comply with recommendations of “Manual for House Framing” of National Forest Products Association NFPA). Do not splice structural members between supports.

B. Anchor and nail as shown, and to comply with “Recommended Nailing Schedule” of “Manual for House Framing” and “National Design Specifications for Wood Construction” published by NFPA.

3.05 STUD FRAMING
A. General: Provide stud framing of size and spacing indicated or, if not otherwise indicated, of the following sizes and spacings. Arrange studs so that wide face of stud is perpendicular to direction of wall or partition and narrow face is parallel. Provide single bottom plate and double top plates using 2” thick members with widths equaling that of studs; except single top plate may be used for non-load bearing partitions. Nail or anchor plates to supporting construction.

1. For exterior walls provide 2” x 6” wood studs spaced 24” o.c.
2. For interior partitions and walls provide 2” x 4” wood studs spaced 16” o.c.
3. Construct corners and intersections with not less than 3 studs. Provide miscellaneous blocking and framing as shown and as required for support of facing materials, fixtures, specialty items and trim.
4. Provide continuous horizontal blocking row at mid-height of single story partitions over 8’ high and at midpoint of multi-story partitions, using 2” thick members of same width as wall or partitions.
5. Frame openings with multiple studs and headers. Provide nailed header members of thickness equal to width of studs. Set headers on edge and support on jamb studs.
6. For non-bearing partitions, provide double jamb studs and headers not less than 4” deep for openings 3’ and less in width, and not less than 6” deep for wider openings.

3.06 RAFTER AND CEILING JOIST FRAMING

A. Ceiling Joists: provide member size and spacing shown on plans.

3.07 INSTALLATION OF CONSTRUCTION PANELS

B. Plywood Underlayment: Use 4d x 1 1/2"ring or screw shank nails, minimum 12-1/2 gage (0.099 in.) shank diameter. Place at 3” o.c. at panel perimeters and at 6” o.c. in field.

C. Fastening Methods: Fasten panels as indicated on plans.

1. Plywood backing panels – Nail to supports.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to this section.

1.02 SECTION INCLUDES

A. Glued laminated (Glu-lam) timber is defined to include wood members fabricated from 1 inch or 2 inch nominal thickness lumber, glued face-to-face to a depth of four or more laminations.

B. Provide connectors, anchors, and accessories necessary to interconnect and secure Glulam members to building structure, and their installation.

C. The types of structural glued laminated units specified in this section include:

 1. Straight beams, including girders and purlins, and cambered members.

1.03 RELATED REQUIREMENTS

A. Section 06 10 00 Rough Carpentry

1.04 SUBMITTALS

A. Shop Drawings showing full dimensions of each member and layout of entire structural system. Show large scale details of connections, connectors and other accessories. Indicate species and laminating combination, adhesive type, and other variables in required work.

1.05 QUALITY STANDARDS

A. Standards: Comply with ANSI/AITC A 190.1 "Structural Glued Laminated Timber".

B. Manufacturer Qualification: Provide factory-glued structural units, produced by an AITC-licensed firm, qualified to apply the AITC "Quality Inspected" mark.

C. Factory mark each piece of glued laminated structural units with AITC Quality Inspected mark. Place AITC mark on timber surfaces which will not be exposed in completed work.

1.06 PRODUCT STORAGE AND HANDLING

A. Keep laminated structural units dry during delivery, storage, handling and erection by maintaining factory-applied protective covering in weather tight and light-proof condition, or by applying other weather tight protection. Maintain protective covering until building enclosure is completed to extent necessary for protection of interior Glu-lam units in areas of either excessively high or excessively low relative humidity; comply with manufacturer’s instructions.

B. Keep glued laminated structural units dry during delivery, storage, handling, and erection,
by maintaining factory-applied protective covering in weather tight and light-proof condition, or by applying other weather tight protection. Maintain protective covering until building enclosure is completed to extent necessary for protection of interior Glu-lam work, and until final finishing of exterior work is ready to proceed. Do not store Glu-lam units in areas of either excessively high or excessively low relative humidity; comply with manufacturer's instructions.

C. Time delivery and installation of Glu-lams to avoid extended on-site storage, and to avoid delaying other trades whose work must follow erection of Glu-lams.

D. If laminated units are to be stored before erection, place individual units or bundle wrapped units on blocks well off ground with individual members separated for air circulation. Leave wrappings intact, but slit or puncture lower side to permit drainage of water which may accumulate.

PART 2 - PRODUCTS

2.01 STRUCTURAL GLUED LAMINATED UNITS

A. Lumber: Comply with ANSI/AITC A190.1 and applicable lumber association standards cited therein for grades required to achieve Glu-lam requirements for design values, appearance, fabrication limitations and species (if any).

B. Stress Values for Beams: Provide glued laminated members sized as shown on drawings with laminating combinations that meet or exceed following stress values for normal loading duration and dry condition of use:

1. Bending (Fb), 2400 psi
2. Horizontal shear (Fv), 165 psi.
3. Compression perpendicular to grain, 650 psi.
4. Modulus of Elasticity (E), 1,800,000 psi.

C. Lumber Species: Douglas Fir-Larch.

D. Adhesive: ANSI/AITC A190.1, "wet-use" type.

E. End Sealer: Manufacturer's standard transparent, colorless wood sealer, effective in retarding transmission of moisture at cross-grain cuts.

F. Penetrating Sealer: Manufacturer's standard translucent penetrating wood sealer, which will not interfere with application of wood stain and transparent finish, or paint finish, as indicated.

2.02 FABRICATION

A. General: Comply with ANSI/AITC A190.1 in providing units indicated; where dimensions are not completely documented, provide manufacturer's standard sizes and shapes required to fulfill indicated performances. Shop-fabricate for connections and connecting hardware to greatest extent feasible, including drilling of bolt holes.

B. Appearance Grade: Provide Industrial Grade units, complying with AITC 110.

C. Camber: The required camber for fabrication of each member is shown on drawings, and may be either circular or parabolic, at manufacturer's option.
D. End-Cut Sealing: Immediately after end-cutting each member to final length, and after wood treatment (if any), apply a saturation coat of end sealer to ends and other cross-cut surfaces, keeping surfaces "flood-coated" for not less than 10 minutes.

E. Seal Coat: After fabrication and sanding of each unit, and end-coat sealing, apply a heavy saturation coat of penetrating sealer on surfaces of each unit, except for treated wood where treatment has included a water repellent.

PART 3 - EXECUTION

3.01 INSTALLATION

A. General: Install miscellaneous steel connectors, anchors, and accessories.

B. Plan and execute erection procedures so that close fit and neat appearance of joints and structure as a whole will not be impaired. When hoisting members into place, use padded or non-marring slings, and protect corners with wood blocking.

C. Adequately brace members as they are placed to maintain safe position until full stability is provided.

D. Cutting: Avoid cutting glu-lam members during erection, to greatest extent possible. Except for fastener drilling and other minor cutting, coat cuts with end sealer as specified for "Fabrication".

E. Handle and temporarily support members to prevent visible surface damage.

F. Do not remove wrapping on individually wrapped members until it will serve no useful purpose, including protection from weather, soiling and damage from work of other trades.

G. Coordinate removal of wrapping with finishing work specified in Division 9. Retain wrapping wherever it can serve as a painting shield.

H. Repair damaged surfaces and finishes after completion of erection and removal of wrappings, or replace damaged members as directed where damage is beyond acceptable repair.

3.02 PROTECTION

A. Advise Contractor of necessary limitations on heating, ventilating and air conditioning in building, in order to avoid damage or deterioration of glu-lam work.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 06 64 00 – Plastic Laminate
B. Section 06 41 00 - Custom-Built Casework
C. Section 07 92 00 - Joint Sealants
D. Section 08 14 00 - Wood Doors, except at Cabinets
E. Section 09 90 00 - Painting and Finishing

1.03 QUALITY STANDARDS

A. Except as herein modified, material and work quality grades determined by the Architectural Woodwork Standards, current edition, published by the Architectural Woodwork Institute, 46179 Westlake Drive, Suite 120, Potomac Falls, Virginia 20165 (571-323-3636). Institute hereinafter referred to as “AWI”. Standards may be obtained from Institute.

1.04 PRODUCT DELIVERY

A. Do not deliver products to jobsite until notified by contractor that project is conditioned and prepared to handle and store products without damage or discoloration.

1.05 PRODUCT STORAGE AND HANDLING

A. Protect against damage and discoloration.

1.06 ILLUMINATION

A. Perform no work under less than 30-foot candles of light measured 3'-0" above floor.

1.07 TEMPERATURE

A. Maintain 50-degrees F. minimum in interior spaces where finish carpentry materials are located.

1.08 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

1.09 PROTECTION

A. Protect other surfaces against damage or discoloration caused by work of this section.
PART 2 - PRODUCTS

2.01 MOISTURE CONTENT IN LUMBER
 A. Interior: 12% maximum.

2.02 INTERIOR TRIM
 A. Species......................Birch.
 B. Grain.........................Clear. Hand select to eliminate all dark grain material
 C. AWI Grade...................I.
 D. Surface Texture..........Smooth.
 E. Minimum Lengths:
 1. Opening Trim......1 piece, single length.
 2. Standing Trim.....No less than full story height.
 3. Running Trim......Joints no closer than 12'-0" apart.
 F. Profile.....................See drawings

2.03 INTERIOR FLOORING UNDERLAYMENT
 A. Type.........................APA AC Underlayment grade plywood, Exposure 1
 B. Thickness...............15/32"
 C. Surface Texture.........Fully Sanded Face

2.04 EXTERIOR TRIM
 A. Species.....................Cedar, CVG
 B. Thickness..................As indicated on drawings
 C. Surface Texture..........Smooth
 D. Minimum Lengths
 Opening Trim..............1 piece, single length.
 Standing Trim............No less than full story height.
 Running Trim..............Joints no closer than 12'-0" apart.
 E. Profile.....................As indicated on drawings
 F. Comments...............Match existing trim profile and dimensions where repairs or
 replacements are made

2.05 FABRICATION
 A. General: Conform to AWI custom grade, unless specifically noted otherwise. Assemble finish
 material at mill where feasible. Use concealed fastenings wherever possible. Conceal end
grain in exposed and semi-exposed surfaces. Kerf backs of flat grain members more than 5" wide or more than 1" nominal thickness. Back-plow interior trim. Machine sand finish carpentry not specified with rough surface.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive finish carpentry are straight, plumb, true, solid, rigid, and otherwise properly prepared. Prior to starting work, notify contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 FIELD MEASUREMENTS

A. Verify prior to fabrication. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabricating work.

3.03 WORK QUALITY

A. Install woodwork in as long as lengths as practical. When joints must be made in a single run, center the joint in the length. Miter door and window trim and floor bases unless otherwise indicated. Joints between continuous trim shall be flush on all surfaces. Joints between continuous trim and butted joints shall be uniform and tight without visible gaps or recesses. Tight joints between trim shall be puttied to minimize visibility of joint. Set face nails and putty. Install items specified under other divisions, including cabinet hardware, door and window frames, and bases. Verify that all finish surfaces are straight, plumb, true, solid, rigid, and otherwise properly installed. Protect all items under this division from damage during the construction period.

3.04 INSTALLATION - GENERAL

A. Accurately miter corners. Accurately scribe filler strips, and trim strips to adjacent surface irregularities. Remove sharp external corners prior to finishing.

3.05 TRIM INSTALLATION

A. General: Fit carefully at joints and against other members; all joints on bearings. Secure with hot-dip galvanized casing nails of proper size (drill pilot holes where wood may split). Scarf and glue end joints. Set exposed nails using flathead punch 1/16" below wood surface.

3.06 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave surfaces ready for finishing specified in Section 09 90 00. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 of the General Contract in addition to this Specification and accompanying drawings.

1.02 RELATED WORK PROVIDED BY OTHERS

A. Section 06 20 00 - Finish Carpentry
B. Section 07 92 00 - Joint Sealants
C. Section 08 14 00 - Wood Doors, except as installed on cases
D. Section 08 71 00 - Finish Hardware not specified herein
E. Section 09 90 00 - Painting and Finishing
F. Section 10 50 00 – Storage Specialties
G. Sinks and Fittings, Electrical Outlets and Fixtures built into Casework, including Mechanical and Electrical connections, Division 22 and 23.

1.03 QUALITY STANDARDS

A. Except as herein modified, material and work quality grades determined by the Architectural Woodwork Standards, current edition, published by the Architectural Woodwork Institute, 46179 Westlake Drive, Suite 120, Potomac Falls, Virginia 20165 (571-323-3636). Institute hereinafter referred to as "AWI". Standards may be obtained from Institute.

1.04 SHOP DRAWINGS

A. Show profiles, joint details, and other pertinent items. Show connections to adjacent work, and complete assembly, whether or not materials are furnished by mill. Include manufacturer's descriptive literature for specialty items. Identify each items as to location, material grade, work quality grade, wood species, and finish type.

1.05 PRODUCT DELIVERY

A. Do not deliver products to jobsite until notified by General Contractor that project is conditioned and prepared to handle and store products without damage or discoloration.

1.06 PRODUCT STORAGE AND HANDLING

A. Protect against damage and discoloration.

1.07 ILLUMINATION

A. Perform no work under less than 30-foot candles of light measured 3'-0" above floor.
1.08 TEMPERATURE
 A. Maintain 50-degree F. minimum in spaces where casework and shelving are located.

1.09 COORDINATION
 A. Coordinate with other trades of General Contract affecting or affected by work of this section.

1.10 PROTECTION
 A. Protect other surfaces against damage or discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 LUMBER
 A. Where "Wood" is Shown
 Plain Sliced White Birch, AWI premium grade. Hand select to eliminate all dark grain material.
 B. All Other Finish Lumber
 Douglas fir, AWI custom, VG.

2.02 HARDWOOD PLYWOOD
 A. US Product Standard, PS-51, exterior type where exposed to moisture and for use around sinks.
 1. Species
 Plain Sliced Book Matched and Sequenced Birch, AWI premium grade. Hand select to eliminate all dark grain material.
 2. Core
 Plywood core.
 B. Carefully match veneers for color and grain patterns.

2.03 ALL OTHER PLYWOOD
 A. Douglas fir, US Product Standard 1-74, exterior type where exposed to moisture or around sinks. Rotary cut, AWI custom grade for all others.

2.04 PARTICLE BOARD
 A. 45 pcf minimum density, 8% or less minimum moisture content.

2.05 HARDBOARD
 A. Blond color, Forrest Fiber "Sandalwood" or approved equal.

2.06 FINISH HARDWARE
 A. Finish: All exposed hardware to have a dull chrome finish.
 B. Adjustable Shelf Hardware: European style pin and 6 mm hole type (32 mm spacing), or approved equal.
 C. Standard Drawer Slides: Knape Vogt, KV 8400 full extension runners (100# static rating), white finish, or approved equal.
D. File Drawer Slides: Knape Vogt, KV 8500 full extension runners (150# static rating), white finish, or approved equal.

E. Accessible Writing Surface Pull-out: Knape Vogt, KV 8355 (24") with hold-open frame, or approved equal

F. Door Hinges: Blum Clip 125 self-closing concealed hinges, or approved equal.

G. Grommets: Doug Mockett & Company, SG Series, size as approved by Owner, color: black, or approved equal.

H. Pulls: Belwith Keeler 354-26D, 3 1/2" brushed chrome "wire" pull, or approved equal.

I. Corner Guards: Burns Manufacturing #303 (1 3/4" x 1") Type 304 stainless steel wrap around corner guard or approved.

2.07 FABRICATION

A. General: All Cabinetry shall conform to AWI Wood Veneer Cabinets, custom grade, overlay type, unless specifically noted otherwise. All shelves adjustable unless otherwise shown. Verify dimensions of sinks and other items to be built into cases and counters. Assemble at mill where feasible. Assemble cases with adhesive. Use concealed fastenings wherever possible. Use screws and bolts where required for strength and rigidity. Install finish hardware specified herein at mill. All exposed and semi-exposed surfaces shall be fit together with hair-line seams and joints.

B. Wood Cabinetry Materials, Unless Specifically Noted Otherwise:
 1. Exposed and semi-exposed materials: Wood solids and edge-banded veneers unless noted otherwise.
 2. All exposed cabinetry trim material: Birch unless otherwise noted.
 3. Casework bottoms, ends, backs and vertical standards: 3/4" thick medium density particle board with wood veneer facing.
 4. Typical Casework Countertops: 3/4" thick medium density particle board with Grade -10/HGS Plastic laminate facing.
 5. Shelving: 3/4" thick medium density particle board with LPDL facing.
 6. Drawers: 3/4" MDF white melamine front backing panel and back (wood veneer front facing panel), 1/2" MDF white melamine sides; 1/4" MDF core white melamine bottom, dado in. Pin nail and glue construction.
 7. Edge banding: Provide wood edge banding at all exposed edges in accordance with AWI standard and as specified herein. Miter edge band corners.
 8. Hinge/Fitting Mounting: No wood screw connections allowed in particle board material. Provide solid lumber edging for full depth of anchor screws; use 5 mm Euro Screws or fasteners specifically designed for use with particleboard material.

C. Plastic Laminate Faced Cabinetry Materials, Unless Specifically Noted Otherwise:
 1. Exposed and semi-exposed materials: Grade -10/HGS Plastic laminate facing unless noted otherwise.
 2. Casework bottoms, ends, backs and vertical standards: 3/4" thick medium density particle board with wood veneer facing.
 3. Typical Casework Countertops: 3/4" thick medium density particle board with Grade -10/HGS Plastic laminate facing.
5. Drawers: 3/4" MDF white melamine front backing panel and back (wood veneer front facing panel), 1/2" MDF white melamine sides; 1/4" MDF core white melamine bottom, dado in. Pin nail and glue construction.
6. Edge banding: Edge banding: Provide PVC edge banding at exposed edges in accordance with AWI standard and as specified herein. Miter edge band corners.
7. Hinge/Fitting Mounting: No wood screw connections allowed in particle board material. Provide solid lumber edging for full depth of anchor screws; use 5 mm Euro Screws or fasteners specifically designed for use with particleboard material.

D. Counter Backsplash Boards: 3/4" thick; verify heights and lengths.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive casework and shelving are straight, plumb, true, solid, rigid, and otherwise properly prepared. Prior to starting work, notify contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 FIELD MEASUREMENTS

A. Verify prior to fabricating casework and shelving. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabricating work.

3.03 INSTALLATION

A. Miter corners, and scarf and glue joints. Provide continuous bases under in-line base casework, unless otherwise indicated. Secure casework in place plumb, square, true, level, and without distortion or offset in surfaces. Level where necessary with concealed shims. Install with finish nails, set for puttying, except where screws are required. Secure casework to backing with countersunk screws. Accurately scribe face plates, filler strips, and trim strips to adjacent surface irregularities. Accurately construct casework to provide tight joints without visible gaps or chipped edges. Remove sharp external corners prior to finishing. Allow no screw mounting in particle board material; provide solid lumber edging strips as required.

B. Adjustable Shelf Hardware: Install standard full height of space where adjustable shelves are shown.

C. Hardware Installation: Follow manufacturer's directions.

3.04 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of final completion.

3.05 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave surfaces ready for finishing specified in Section 09 90 00. Remove debris from project site upon work completion or sooner, if directed.
CUSTOM-BUILT CASEWORK AND SHELVING 06 41 00-5

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specifications and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 09 20 00 - Gypsum Drywall

1.03 PRODUCT DELIVER, STORAGE, AND HANDLING

A. Protect against damage, discoloration, and contamination. Deliver in manufacturer’s original, unopened containers with legible labels intact.

1.04 PROTECTION

A. Protect other work against damage and discoloration caused by work of this section. Protect contacting dissimilar materials against electrolytic corrosion.

1.05 SCOPE

A. Provide window coverings at all windows shown on Finish Plan.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturer List: Products of following manufacturers are acceptable subject to conformance to requirements of Drawings, Schedules and Specifications:

1. Corian® by DuPont; www.corian.com
2. Samsung Chemical USA; www.staron.com
3. Wilsonart Contract; www.wilsonartcontract.com

B. Substitution Limitations: This Specification is based on Corian® Products. Comparable Products from manufacturers listed herein will be accepted provided they meet requirements of this Specification.

2.02 MATERIALS

A. Description: Non-porous, homogeneous material maintaining the same composition throughout the part with a composition of acrylic polymer, aluminum trihydrate filler and
pigment; not coated, laminated or of composite construction. Adhesive for Bonding to Other Products: One component silicone to ASTM C920. Sealant: A standard mildew-resistant, FDA/UL® [and NSF/ANSI 51 compliant in Food Zone area,] recognized silicone color matched sealant or clear silicone sealants.

B. Performance/Design Criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement (min or max)</th>
<th>Test Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Surface Based Products:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Tensile Strength</td>
<td>6000 psi min</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>b. Tensile Modulus</td>
<td>1.5 x 10^6 psi min</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>c. Tensile Elongation</td>
<td>0.4% min.</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>d. Flexural Strength</td>
<td>10000 psi min</td>
<td>ASTM D790</td>
</tr>
<tr>
<td>e. Flexural Modulus</td>
<td>1.2 x 10^6 psi min</td>
<td>ASTM D790</td>
</tr>
<tr>
<td>f. Hardness</td>
<td>>85-Rockwell "M" scale min.</td>
<td>ASTM D785</td>
</tr>
<tr>
<td>g. Thermal Expansion</td>
<td>2.2 x 10^-5 in./in./°F</td>
<td>ASTM E228</td>
</tr>
<tr>
<td>h. Fungi and Bacteria</td>
<td>Does not support microbial growth</td>
<td>ASTM G21 & G22</td>
</tr>
<tr>
<td>i. Microbial Resistance</td>
<td>Highly resistant to mold growth</td>
<td>UL 2824</td>
</tr>
<tr>
<td>j. Ball Impact</td>
<td>No fracture - 1/2 lb. Ball:</td>
<td>NEMA LD 3, Method 3.8</td>
</tr>
<tr>
<td></td>
<td>6 mm slab - 36" drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 mm slab - 144" drop</td>
<td></td>
</tr>
<tr>
<td>k. Weatherability</td>
<td>ΔE^*94<5 in 1,000 hrs</td>
<td>ASTM G155</td>
</tr>
<tr>
<td>l. Flammability</td>
<td>All Colors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 mm</td>
<td>12 mm</td>
</tr>
<tr>
<td>m. Flame Spread</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>n. Smoke Developed</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>o. Class</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

2.03 COMPONENTS

A. Lavatory Tops with Integral Bowls: Molded countertop of solid polymer material, complete with integrally molded bowl of solid polymer material; edge details as indicated on Drawings. Provide with coved backsplash and endsplashes as shown on Drawings. Color: Corian Deep Bedrock or as approved. Verify color with Owner prior to ordering.

B. Fabrication:

1. Fabricate components in shop to greatest extent practical to sizes and shapes indicated, in accordance with approved Shop Drawings and solid polymer manufacturer requirements. Form joints between components using manufacturer's standard joint adhesive without conspicuous joints. Provide factory cutouts for plumbing fittings and bath accessories as indicated on Drawings.

2. Where indicated, thermoform corners and edges or other objects to shapes and sizes indicated on Drawings, prior to seaming and joining. Cut components larger than finished dimensions and sand edges to remove nicks and scratches. Heat entire component uniformly prior to forming.
3. Ensure no blistering, whitening and cracking of components during forming.
4. Fabricate backsplashes from solid surfacing material with optional radius cove where counter and backsplashes meet as indicated on Drawings.
5. Fabricate joints between components using manufacturer's standard joint adhesive. Ensure joints are inconspicuous in appearance and without voids. Attach 2" wide reinforcing strip of solid polymer material under each joint. Reinforcing strip of solid polymer material is not required when using DuPont™ Joint Adhesive 2.0.
6. Provide holes and cutouts for plumbing and bath accessories as indicated on Drawings.
7. Rout and finish component edges to a smooth, uniform finish. Rout cutouts, then sand edges smooth. Repair or reject defective or inaccurate work.
8. Finish: Ensure surfaces have uniform finish: Matte, with a 60° gloss rating of 5 - 20.

C. Fabrication Tolerances:
 1. Variation in Component Size: +/-1/8".
 2. Location of Openings: +/-1/8" from indicated location.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verification of Conditions:
 1. Examine substrates and conditions, with fabricator present for compliance with requirements for installation tolerances and other conditions affecting performance of work. Proceed with installation only after unsatisfactory conditions have been corrected.
 2. Verify actual site dimensions and location of adjacent materials prior to commencing work.
 3. Examine cabinets upon which counter tops are to be installed. Verify cabinets are level to within 1/8" in 10' - 0".
 4. Notify Architect in writing of any conditions which would be detrimental to installation.

B. Evaluation and Assessment: Commencement of work implies acceptance of previously completed work.

3.02 INSTALLATION

A. Install components plumb, level, rigid, scribed to adjacent finishes in accordance with reviewed Shop Drawings and Product installation details.

B. Fabricate field joints using manufacturer's recommended adhesive, with joints being inconspicuous in finished work. Exposed joints/seams are not permitted. Keep components and hands clean when making joints. Reinforce field joints as specified herein. Cut and finish component edges with clean, sharp returns.

C. Route radii and contours to template. Anchor securely to base component or other supports. Align adjacent components and form seams to comply with manufacturer's written recommendations using adhesive in color to match work. Carefully dress joints smooth, remove surface scratches and clean entire surface.

D. Install countertops with no more than 1/8" sag, bow or other variation from a straight line.

E. Adhere undermount/submount/bevel mount sinks/bowls to countertops using manufacturer's recommended adhesive and mounting hardware.
F. Adhere topmount sinks/bowls to countertops using manufacturer recommended adhesives and color-coordinated silicone sealant. [Secure seam mount bowls and sinks to counter tops using color matched joint adhesive.]

G. Seal between wall and components with joint sealant as specified herein

H. Provide backsplashes and endsplashes as indicated on Drawings. Adhere to countertops using a standard color-coordinated silicone sealant. Adhere applied sidesplashes to countertops using a standard color-matched silicone sealant. Provide coved backsplashes and sidesplashes at walls and adjacent millwork. Fabricate radius cove at intersection of counters with backsplashes to dimensions shown on reviewed Shop Drawings. Adhere to countertops using manufacturer’s standard color-coordinated joint adhesive.

I. Keep components and hands clean during installation. Remove adhesives, sealants and other stains. Ensure components are clean on date of Substantial Completion of the Work.

J. Coordinate connections of plumbing fixtures with [Division 22] [Mechanical]. Make plumbing connections to sinks in accordance with [Division 22] [Mechanical].

3.03 REPAIR

A. Repair minor imperfections and cracked seams and replace areas of severely damaged surfaces in accordance with manufacturer’s “Technical Bulletins”.

3.04 SITE QUALITY CONTROL

A. Non-Conforming Work: Replace damaged work which cannot be satisfactorily repaired, restored or cleaned, to satisfaction of Architect at no cost to Owner.

3.05 CLEANING

A. Remove excess adhesive and sealant from visible surfaces.

B. Clean surfaces in accordance with manufacturer’s “Care and Maintenance Instructions”.

3.06 PROTECTION

A. Provide protective coverings to prevent physical damage or staining following installation for duration of Project.

C. Protect surfaces from damage until date of Substantial Completion of the Work.

END OF SECTION
DIVISION 6, CARPENTRY
06 64 00 PLASTIC LAMINATE

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 06 41 00 - Custom-Built Cabinets
 B. Section 09 65 00 - Resilient Floor Covering

1.03 SCOPE OF WORK
 A. Provide plastic laminate facing at countertops and backsplashes at cabinetry and window frame surrounds as noted on drawings.

1.04 PRODUCT DELIVERY, STORAGE AND HANDLING
 A. Protect against damage and discoloration.

1.05 WORK SPACE TEMPERATURES
 A. 65-degrees F. minimum.

1.06 WORK SPACE RELATIVE HUMIDITY
 A. 35% minimum
 B. 80 maximum.

1.07 WORK SPACE ILLUMINATION
 A. Maintain 30-foot candles minimum measured 3'-0" above floor during covering installation.

1.08 PROTECTION
 A. Protect other materials against damage and discoloration by work of this section.

1.09 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 PLASTIC LAMINATE
 A. Manufacturer as scheduled on drawings or approved.
 1. Thickness: 1/16".
2. Color: See schedule on drawings.

2.02 PRIMERS AND SEALERS
 A. Water-resistant type, made or recommended by covering manufacturer.

2.03 ADHESIVE
 A. Apply with caulking gun and pressure gun in accordance with manufacturer’s suggestions to assure positive bonding:
 B. At plastic laminate: Brushable grade adhesive as recommended by the plastic laminate manufacturer.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
 A. Verify that surfaces to receive covering are dry, clean, smooth, sound, well-nailed, free from conditions that would damage covering or impair adhesive bond, and otherwise properly prepared. Prior to starting work, notify contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 FIELD MEASUREMENTS
 A. Verify prior to installation. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabrication.

3.03 INSTALLATION, GENERAL
 A. Follow manufacturer’s directions. Make necessary plastic laminate covering joints with tight, flush, nearly invisible, hairline cracks. Weld seams in solid surfacing to present a monolithic finished appearance.

3.04 PLASTIC LAMINATE COUNTERTOPS
 A. No “L” shaped pieces at countertop corners or longitudinal seams permitted. Cross seams 12'-0” apart minimum and at least 24” away from any counter sinks. Provide cut-outs for sinks and other openings. Verify size and location. Where metal edging is not employed, carefully scribe covering edges to fit with hairline joints.

3.05 VERTICAL SURFACES
 A. No longitudinal seams permitted. Vertical seams 12'-0” apart minimum.

3.06 BACKSPLASH
 A. Backsplash height approximately 4” unless specifically noted otherwise. Exact heights established from counter covering material standard widths. Return backsplash along end walls to counter front, unless otherwise indicated.

3.07 SELF-EDGING
 A. Provide at exposed plastic laminate countertop and backsplash edges unless noted otherwise.
3.08 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 07 20 00 Thermal Insulation
B. Section 09 20 00 Gypsum Drywall

1.03 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver materials in original containers, clearly marked with manufacturer's name, brand name, and material type. Do not remove labels or open packages until Architect inspects and accepts. Protect materials against damage, moisture, and extreme temperatures.

1.04 ENVIRONMENTAL CONDITIONS DURING INSTALLATION

A. Air temperature: 40 degrees F. minimum
B. Relative humidity: 90% maximum.
C. Do not install dampproofing during wet weather, or until work surfaces have sufficiently dried from such weather.

1.06 PROTECTION

A. Protect other materials against damage and discoloration caused by work of this section.

1.07 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 AIR BARRIER/VAPOR RETARDER

A. Provide Certainteed Membrane Continuous Air Barrier and Smart Vapor Retarder or approved. Class A fire rated. 2 mil thick film of polyamide.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
A. Verify that surfaces to receive air barrier/vapor retarder are smooth, sound, clean, dry, and free from frost and membrane-damaging defects. Prior to starting work, notify General Contractor of work requiring completion or defects requiring correction. Do not start work until conditions are satisfactory.

3.02 AIR BARRIER/VAPOR RETARDER

A. Provide film barrier over interior face of all new furred walls with rigid insulation. Lap all joints and seal in conformance with manufacturers recommendations.

3.03 CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
DIVISION 07, THERMAL AND MOISTURE PROTECTION
07 13 30 PRE-APPLIED WATERPROOF MEMBRANE

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Self Adhearing Waterproof Membrane, Section 07 13 50

1.03 SCOPE
 A. Membrane applied on prepared subbase prior to placement of concrete elevator hoistway footing and connected with vertical concrete stemwall waterproofing.

1.04 SUBMITTALS
 A. Submit manufacturer's product data, installation instructions and membrane samples for approval.

1.05 QUALITY ASSURANCE
 A. Manufacturer: Sheet membrane waterproofing system shall be manufactured and marketed by a firm with a minimum of 20 years experience in the production and sales of sheet membrane waterproofing. Manufacturers proposed for use but not named in these specifications shall submit evidence of ability to meet all requirements specified, and include a list of projects of similar design and complexity completed within the past 5 years.
 B. Installer: A firm which has at least 3 years experience in work of the type required by this section.
 C. Materials: For each type of material required for the work of this section, provide primary materials which are the products of one manufacturer.
 D. Pre-Installation Conference: A pre-installation conference shall be held prior to commencement of field operations to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work. Agenda for meeting shall include review of special details and flashing.
 E. Schedule Coordination: Schedule work such that membrane will not be left exposed to weather for longer than that recommended by the manufacturer.

1.06 DELIVERY, STORAGE AND HANDLING
 A. Deliver materials in labeled packages. Store and handle in strict compliance with manufacturer’s instructions. Protect from damage from weather, excessive temperature and construction operations. Remove and dispose of damaged material in accordance with applicable regulations.
1.07 PROJECT CONDITIONS

A. Perform work only when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials used. Proceed with installation only when the substrate construction and preparation work is complete and in condition to receive sheet membrane waterproofing.

1.08 WARRANTY

A. Sheet Membrane Waterproofing: Provide written five year material warranty issued by the membrane manufacturer upon completion of work.

1.09 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver materials in original containers, clearly marked with manufacturer's name, brand name, and material type. Do not remove labels or open packages until Architect inspects and accepts. Protect materials against damage, moisture, and extreme temperatures.

1.10 ENVIRONMENTAL CONDITIONS DURING INSTALLATION

A. Air temperature: 40 degrees F. minimum

B. Relative humidity: 90% maximum.

C. Do not install waterproofing during wet weather, or until work surfaces have sufficiently dried from such weather.

1.11 PROTECTION

A. Protect other materials against damage and discoloration caused by work of this section.

1.12 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 Pre-Applied Waterproofing Membrane

A. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe® 300R Membrane by Grace Construction Products, a 1.2mm (0.046 in) nominal thickness composite sheet membrane comprising 0.8 mm (0.030 in.) of high density polyethylene film, and layers of specially formulated synthetic adhesive layers or approved equal. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete.

2.02 Waterstop

A. Adcor™ ES hydrophilic non-bentonite waterstop by Grace Construction Products for non-moving concrete construction joints between elevator hoistway footing and stemwalls.

PART 3 - EXECUTION
3.01 EXECUTION

A. The installer shall examine conditions of substrates and other conditions under which this work is to be performed and notify the Contractor, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed with work until unsatisfactory conditions are corrected.

3.02 SUBSTRATE PREPARATION

A. It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability. Horizontal Surfaces - The substrate must be free of loose aggregate and sharp protrusions. Avoid curved or rounded substrates. When installing over earth or crushed stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic or concrete pour. The surface does not need to be dry, but standing water must be removed. Vertical Surfaces - Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

3.03 INSTALLATION, HORIZONTAL APPLICATIONS

A. Strictly comply with installation instructions in manufacturer’s published literature, including but not limited to, the following:

1. Place the membrane HDPE film side to the substrate with the clear plastic release liner facing towards the concrete pour. End laps should be staggered to avoid a build-up of layers.
2. Leave the plastic release liner in position until overlap procedure is completed.
3. Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
4. Peel back the plastic release liner from between the overlaps as the two layers are bonded together. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller.
5. Completely remove the plastic liner to expose the protective coating. Any initial tack will quickly disappear.

3.04 INSTALLATION, VERTICAL APPLICATIONS

A. Strictly comply with installation instructions in manufacturer’s published literature, including but not limited to, the following:

1. Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the clear plastic release liner facing towards the concrete pour. The membrane may be installed in any convenient length.
2. Fastening through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps.
3. Immediately remove the plastic release liner.
4. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
5. Roll firmly to ensure a watertight seal.
6. Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary.
7. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly.
8. Immediately remove printed plastic release liner from the tape.

3.05 WATERSTOP INSTALLATION

A. Strictly comply with installation instructions in manufacturer’s published literature, including but not limited to, the following:

1. Secure Adcor ES using masonry nails 1½ in. - 2 in. (40 mm – 50 mm) long with a washer ¾ in. (20 mm) in diameter. Hilti EM6-20-12 FP8 shot fired fixings with ¼ in. (6 mm) nuts and ¾ in. (20 mm) diameter washers may also be used. Fixings should be spaced at a maximum of 12 in. (300 mm) centers with a minimum spacing that ensures proper contact to substrate.

2. On irregular concrete faces, or on vertical surfaces, apply a ½ in. (12 mm) bead of Adcor ES Adhesive as bedding for Adcor ES.

3. Adcor ES joints should overlap a minimum of 4 in. (100 mm), ensuring full contact between jointed pieces.

3.06 PROTECTION

A. Protect membrane in accordance with manufacturer’s recommendations until placement of concrete. Inspect for damage just prior to placement of concrete and make repairs in accordance with manufacturer’s recommendations.

3.07 CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
DIVISION 07, THERMAL AND MOISTURE PROTECTION

07 13 50 SELF ADHERING WATERPROOF MEMBRANE

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Pre Applied Waterproof Membrane, Section 07 13 30

1.03 SCOPE

A. Membrane applied on prepared subbase prior to placement of concrete elevator hoistway footing and connected with vertical concrete stemwall waterproofing.

1.04 SUBMITTALS

A. Submit manufacturer's product data, installation instructions and membrane samples for approval.

1.05 QUALITY ASSURANCE

A. Manufacturer: Sheet membrane waterproofing system shall be manufactured and marketed by a firm with a minimum of 20 years experience in the production and sales of sheet membrane waterproofing. Manufacturers proposed for use but not named in these specifications shall submit evidence of ability to meet all requirements specified, and include a list of projects of similar design and complexity completed within the past 5 years.

B. Installer: A firm which has at least 3 years experience in work of the type required by this section.

C. Materials: For each type of material required for the work of this section, provide primary materials which are the products of one manufacturer.

D. Pre-Installation Conference: A pre-installation conference shall be held prior to commencement of field operations to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work. Agenda for meeting shall include review of special details and flashing.

E. Schedule Coordination: Schedule work such that membrane will not be left exposed to weather for longer than that recommended by the manufacturer.

1.06 DELIVERY, STORAGE AND HANDLING

A. Deliver materials in labeled packages. Store and handle in strict compliance with manufacturer’s instructions. Protect from damage from weather, excessive temperature and construction operations. Remove and dispose of damaged material in accordance with applicable regulations.

1.07 PROJECT CONDITIONS
A. Perform work only when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials used. Proceed with installation only when the substrate construction and preparation work is complete and in condition to receive sheet membrane waterproofing.

1.08 WARRANTY

A. Sheet Membrane Waterproofing: Provide written five year material warranty issued by the membrane manufacturer upon completion of work.

1.09 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver materials in original containers, clearly marked with manufacturer's name, brand name, and material type. Do not remove labels or open packages until Architect inspects and accepts. Protect materials against damage, moisture, and extreme temperatures.

1.10 ENVIRONMENTAL CONDITIONS DURING INSTALLATION

A. Air temperature: 40 degrees F. minimum

B. Relative humidity: 90% maximum.

C. Do not install waterproofing during wet weather, or until work surfaces have sufficiently dried from such weather.

1.11 PROTECTION

A. Protect other materials against damage and discoloration caused by work of this section.

1.12 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 SELF ADHERING WATERPROOF MEMBRANE

A. Sheet Membrane Waterproofing: Bituthene® 3000/Low Temperature Membrane by Grace Construction Products; a self-adhesive, cold-applied composite sheet consisting of a thickness of 1.4 mm (0.056 in.) of rubberized asphalt and 0.1 mm (0.004 in.) of cross-laminated, high density polyethylene film. Provide rubberized asphalt membrane covered with a release sheet, which is removed during installation.

2.02 PROTECTION BOARD

A. Rigid Insulation:

1. Expanded Polystyrene Protection Board: 25 mm (1 in.) thick for vertical applications with the following characteristics. Adhere to waterproofing membrane with Bituthene Protection Board Adhesive.

2. Normal Density: 16 kg/m³ (1.0 lb/ft³)

3. Thermal Conductivity, K factor: 0.24 at 5°C (40°F), 0.26 at 24°C (75°F)

4. Thermal Resistance, R-Value: 4 per 25 mm (1 in.) of thickness.
B. Miscellaneous Materials: Surface conditioner, mastic, liquid membrane, tape and accessories specified or acceptable to manufacturer of sheet membrane waterproofing.

PART 3 - EXECUTION

3.01 EXECUTION

A. The installer shall examine conditions of substrates and other conditions under which this work is to be performed and notify the Contractor, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed with work until unsatisfactory conditions are corrected.

3.02 PREPARATION OF SUBSTRATES

A. Refer to manufacturer’s literature for requirements for preparation of substrates. Surfaces shall be structurally sound and free of voids, spalled areas, loose aggregate and sharp protrusions. Remove contaminants such as grease, oil and wax from exposed surfaces. Remove dust, dirt, loose stone and debris. Use repair materials and methods which are acceptable to manufacturer of sheet membrane waterproofing.

B. Cast-In-Place Concrete Substrates:
 1. Do not proceed with installation until concrete has properly cured and dried (minimum 7 days for normal structural concrete and minimum 14 days for lightweight structural concrete).
 2. Fill form tie rod holes with concrete and finish flush with surrounding surface.
 3. Repair bugholes over 13 mm (0.5 in.) in length and 6 mm (0.25 in.) deep and finish flush with surrounding surface.
 4. Remove scaling to sound, unaffected concrete and repair exposed area.
 5. Grind irregular construction joints to suitable flush surface.

C. Related Materials: Treat joints and install flashing as recommended by waterproofing manufacturer.

3.03 INSTALLATION

A. Refer to manufacturer’s literature for recommendations on installation, including but not limited to, the following:
 1. Apply primer at rate recommended by manufacturer. Recoat areas not waterproofed if contaminated by dust. Mask and protect adjoining exposed finish surfaces to protect those surfaces from excessive application of primer.
 2. Delay application of membrane until primer is completely dry. Dry time will vary with weather conditions.
 3. Seal daily terminations with troweled bead of mastic.
 4. Apply protection board and related materials in accordance with manufacturer’s recommendations.

3.04 PROTECTION

A. Protect membrane in accordance with manufacturer’s recommendations until placement of concrete. Inspect for damage just prior to placement of concrete and make repairs in accordance with manufacturer’s recommendations.
3.05 CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
DIVISION 7, THERMAL AND MOISTURE PROTECTION
07 20 00 THERMAL INSULATION

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 09 20 00 – Gypsum Drywall

1.03 DEFINITIONS
 A. "R" value designates thermal resistance of insulation only, not including alleged air spaces or other factors assumed to result in higher "R" values.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING
 A. Deliver to project site in manufacturer’s original unopened packages. Immediately remove damaged or wet material from jobsite.

1.05 ENVIRONMENTAL CONDITIONS
 A. Do not install insulation when surfaces to receive insulation are wet or when surface and/or ambient temperatures are lower than manufacturer’s specified minimums.

1.06 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.07 PROTECTION
 A. Protect other work against damage and discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 FLEXIBLE MINERAL WOOL TYPE INSULATION
 A. Material and Type: Manufactured by Johns-Manville, U.S. Gypsum, Owens-Corning, Certain-teed, or approved. Rock or glass wool blankets, full-length, single-piece where practicable. Kraft-faced at locations in contact with finish surfaces; Foil-faced, flamed-spread rated at all locations where facing is exposed.

 B. Extent of Work: Provide insulation of the following types over all areas of the following surfaces:

C. Vapor barriers applied to insulation shall have a 1 perm rating. Provide flame spread rating not to exceed 25 and smoke density not to exceed 450 when tested in accordance with I.B.C.. Standards where vapor barrier is exposed. At Contractor’s option, an independent continuous vapor barrier may be applied with unfaced insulation batts or blown-in insulation which provides the specified insulation resistance factor.

2.02 RIGID INSULATION

A. Material Properties:
 1. Rigid closed-cell polyisocyanurate thermal board insulation.
 2. Min., compressive strength 16 psi (ASTM D 1621-94)
 3. Thermal resistance: 5-year aged R-values of 5.0 min. for 3/4“ thickness °F-ft²-h/ Btu² inch at 40°F and 75°F respectively (ASTM C 518-91).
 4. Water absorption: Max. 0.1% by volume (ASTM C 272-91(96)).
 5. Surface Burning Characteristics:
 a. Flame Spread: <75.
 b. Smoke Developed: <450.

B. Thickness: 3” total thickness (R-20) at roof areas; one layer: 2” total thickness (R-13.3) at wall areas.

C. Manufacturer and Product: R-Max, R-Matte Plus-3 rigid foam plastic thermal insulation board composed of environmentally sound, closed cell, polyisocyanurate foam bonded to a durable white-matte (non-glare) aluminum facer and a reflective reinforced aluminum facer or approved equal.

2.03 ADHESIVE

A. Adhesive: Type recommended by insulation manufacturer.

2.04 SEAM TAPE

A. Provide Dupont Tyvek Tape or approved equal.

2.05 FASTENERS

A. Type recommended by insulation manufacturer. Long enough to penetrate substrate 1/2", minimum.

2.06 SILL PLATE SEAL

A. Provide fiberglass mat seal sealer beneath all exterior wall sill plates.

2.07 ELECTRICAL OUTLET BOX GASKETS

A. Provide foam insulation gasket at all receptacles and switches penetrating exterior walls.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
A. Verify that work of preceding trades is completed. Verify that surfaces and spaces to receive insulation are accurately sized, located, dry, protected against inclement weather, clean, and otherwise properly prepared. Prior to starting work, notify contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 PREPARATION OF SURFACES

A. Remove, or protect against projections which may damage insulation or prevent proper installation. Remove bond-reducing coatings, and roughen surfaces to receive insulation by adhesion as necessary for bond. Prime surfaces to receive insulation by adhesion.

B. Verify that masonry joints are struck flush and that other conditions are satisfactory for proper installation. Remove concrete fins and mortar projections that interfere with placement of insulation boards.

3.03 INSTALLATION - GENERAL

A. Follow manufacturer's directions. Fit insulation snugly between framing without forcing. Permit no gaps for air passage. Carefully cut and fit insulation around pipes, conduits, and other obstructions. Where pipes, conduit, and other obstructions are located in space to receive insulation, place insulation between cold-in-winter surface and obstruction, compressing insulation where necessary. Except where indicated above, do not compress insulation more than 10%.

3.04 FLEXIBLE MINERAL WOOL INSTALLATION

A. Install insulation with vapor barrier facing warm-in-winter side of assembly. Use full-length, single-piece batts where practicable. Secure facing flanges to wood framing sides, 8” o.c. maximum. Prevent displacement and sagging. Provide additional wire support as necessary to prevent insulation displacement or sagging.

3.05 RIGID INSULATION INSTALLATION

A. Follow manufacturer's directions. Fit insulation snugly between framing without forcing. Permit no gaps for air passage. Carefully cut and fit insulation around pipes, conduits, and other obstructions. Where pipes, conduit, and other obstructions are located in space to receive insulation, place insulation between cold-in-winter surface and obstruction.

B. Apply 2 diameter daubs of adhesive spaced approximately 12” o.c. both ways on inside face of insulation board.

C. Butter all edges of insulation board with adhesive to provide continuous vapor barrier.

D. Fit insulation between wall ties and other obstructions with joints staggered and edges butted tightly.
 1. Press units firmly against inside of masonry or other construction.
 2. Make insulation continuous. Fill all voids.

E. Provide seam tape at all insulation panel joints and perimeters.

3.06 VAPOR BARRIER SEAMS AND PATCHING

A. Provide vapor-proof tape over all vapor barrier joints. Patch and seal vapor barrier punctures, tears, and voids with vapor-proof tape. Effectively seal all penetrations and perimeter joints of
vapor barrier. Permit no openings for vapor passage.

3.07 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 07 60 00 - Sheetmetal Flashings

1.03 WORK INSTALLED BUT FURNISHED BY OTHERS
 A. Install sheetmetal built into work.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING
 A. Deliver materials in unopened bundles, with UL fire hazard rating labels thereon. Do not open bundles, or remove labels until Architect reviews and accepts. Store above ground. Do not stack higher than 3'-0". Do not overload roof structure with stored materials. Protect against damage and discoloration.

1.05 MINIMUM AIR TEMPERATURE
 A. When installing shingles: 32 degrees F.

1.06 PROTECTION
 A. Protect installing shingles: 32 degrees F.

1.07 WARRANTY
 A. Work here under is subject to a 2-year weather-tight warranty. Warrant proper placement of metal work which has been provided by other trades and is in contact with shingles.
 B. Provide manufacturer’s standard Limited Product Warranty.

1.08 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS
2.01 ARCHITECTURAL FIBERGLASS STRIP SHINGLES
 A. Manufacturer & Type...............Owens Corning, Berkshire series
 B. Compliances........................UL Class A.
 C. Color................................Manchester Gray (verify to match existing roofing color)
 D. Specialty Shingles...................Provide specialty shingles as needed at ridges, hips and rakes.
 E. Warranty............................Manufacturer's Standard

2.02 FASTENERS AND ACCESSORIES
 A. Type and size recommended by manufacturer, hot-dip galvanized. Provide all required for complete installation.

2.03 UNDERLAYMENT
 A. 30 lb. type, unperforated, asphalt-saturated roofing felt, ASTM D-226.

2.04 PLASTIC ASPHALT CEMENT
 A. Type recommended by shingle manufacturer, ASTM D-491.

2.05 SNOW GUARDS
 A. Shingle Roofing: Provide Alpine Snowguards half round shingle roof snow guards style #10 fabricated from aluminum with black painted finish or approved. Locate snow guards at 16" o.c. in two staggered rows above full width of entry walkways at locations shown on drawings.

PART 3 – EXECUTION

3.01 EXISTING CONDITIONS
 A. Verify that surfaces to receive shingles are secure, true, smooth, sound, dry, free of holes, accurately sized and located, and otherwise properly prepared. Prior to starting work notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION, GENERAL
 A. Follow referenced specifications and manufacturer's directions as Architect judges them applicable, and requirements specified herein. Conform with manufacturer's requirements for warranties. Verify that work of other trades which penetrates roof deck has been completed before starting work specified herein.

3.03 UNDERLAYMENT INSTALLATION
 A. Apply horizontally under roof immediately prior to applying shingles.

 1. End Laps.................................4" minimum.
 2. Side Laps...............................4" minimum.
 3. Hip & Ridge Laps......................4-1/2" each side minimum, form double thickness.
 4. Metal Gutter & Valley Laps.........4".

 B. Turn up on vertical intersections 6" minimum. Secure to substrate with minimum possible fasteners.
3.04 FIBERGLASS STRIP SHINGLE INSTALLATION

A. Lay in straight line horizontal courses. Secure with nails in conformance with manufacturer’s warranty requirements. Nails sufficiently long to penetrate 5/8” into substrate.

3.05 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site at work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement and Division 1 bound herewith in addition to these specifications and accompanying drawings.

1.02 SCOPE

A. Work includes all modifications of the existing roofing assemblies necessary to install new rooftop air conditioning system as described by mechanical drawings.

1.03 RELATED WORK SPECIFIED ELSEWHERE

A. Division 15, Mechanical
B. Division 16, Electrical

1.04 SUBMITTALS

A. Submit manufacturers product literature for each roofing system to be installed a minimum of two weeks prior to installation. Literature shall indicate product characteristics, typical uses, performance and limitation criteria, and test data.

B. Material Safety Data Sheets (MSDS): Submit MSDS for each product.

C. UL Tested Systems: Submit drawings showing typical installation details (including flashing).

D. Submit manufacturers applicable installation procedures for each type of product.

E. Approved Applicator: Submit document from manufacturer wherein manufacturer recognizes the installer as qualified or submit a list of past projects to demonstrate capability to perform intended work.

F. Upon completion, installer shall provide written certification that materials were installed in accordance with the manufacturers installation instructions and details.

1.05 APPLICATOR

A. Roofing contractor must be authorized by roofing manufacturer.

1.06 LABELS

A. Deliver material in original packages, manufacturer’s original labels thereon. Do not remove labels or open packages until Architect inspects.

1.07 DELIVERY, STORAGE AND PROTECTION OF MATERIALS

A. Deliver materials to jobsite on pallets. Pallet label shall indicate material name, production date and/or product code.
B. Store bulk asphalt in heated tanker not greater than 350 degrees F. Avoid modification of asphalt physical properties resulting from long periods of overheating.

C. Store materials in dry, protected areas in an upright position. Control temperature of storage areas in accordance with manufacturer's instructions. Protect materials from freezing.

1.08 ENVIRONMENT CONDITIONS DURING INSTALLATION

A. Do not apply roofing unless correct system application temperatures can be maintained to obtain good adhesion. Operation shall not be conducted when water in any form is present on deck, such as rain, dew, ice, frost, or snow.

1.09 PREPARATION AND BUILDING PREPARATION

A. Building and site shall be protected to prevent damage while Work is being performed.

B. Protection shall be utilized at all hoisting points to protect building walls.

C. Provide protection at traffic and walkway areas to protect access to existing buildings.

D. Incomplete membrane edges and flashings shall be protected against water entry so that they will remain watertight for an extended period if inclement weather occurs.

E. Damaged components must be repaired or replaced if building damage occurs during construction.

1.10 EXISTING CONDITIONS

A. If discrepancies are discovered between the existing conditions and those noted on the drawings, immediately notify the owner's representative by phone and solicit the manufacturer's approval prior to commencing with the work. Necessary steps shall be taken to make the building watertight until the discrepancies are resolved.

1.11 PRE-CONSTRUCTION CONFERENCE

A. The Contractor shall coordinate a pre-bid meeting at the job site prior to ordering roofing materials.

1.12 PROTECTION OF OTHER MATERIALS

A. Protect against damage and discoloration caused by Work of this section. Prevent debris from entering and clogging roof drains and gutters.

1.13 JOB SITE PROTECTION

A. The roofing contractor shall adequately protect building, paved areas, service drives, lawn, shrubs, trees, etc. from damage while performing the required work. Provide canvas, boards and sheet metal (properly secured) as necessary for protection and remove protection material at completion. The contractor shall repair or be responsible for costs to repair all property damaged during the roofing application.

B. During the roofing contractor’s performance of the work, the building owner will continue to occupy the existing building. The contractor shall take precautions to prevent the spread of dust and debris, particularly where such material may silt into the building. The roofing contractor shall provide labor and materials to construct, maintain and remove necessary
temporary enclosures to prevent dust or debris in the construction area(s) from entering the remainder of the building.

C. Do not overload any portion of the building, either by use of or placement of equipment, storage of debris, or storage of materials.

D. Protect against fire and flame spread. Maintain proper and adequate fire extinguishers.

E. Take precautions to prevent drains from clogging during the roofing application. Remove debris at the completion of each day’s work and clean drains, if required. At completion, test drains to ensure the system is free running and drains are watertight. Remove strainers and plug drains in areas where work is in progress. Install flags or other telltales on plugs. Remove plugs each night and screen drain.

F. Store moisture susceptible materials above ground and protect with waterproof coverings.

G. Remove all traces of piled bulk materials and return the job site to its original condition upon completion of the work.

1.14 WORKMANSHIP

A. Applicators installing new roof, flashing and related work shall be factory trained and approved by the manufacturer they are representing.

B. All work shall be of highest quality and in strict accordance with the manufacturer’s published specifications and to the building owner’s satisfaction.

C. There shall be a supervisor on the job site at all times while work is in progress.

D. All field seams and flashing details are to be completed according to manufacturer’s specifications and details by the end of each work day.

1.15 QUALITY ASSURANCE

A. The Roofing System must achieve a UL Class A.

1. The specified roofing assembly must have been successfully tested by a qualified testing agency to resist the design uplift pressures calculated according to International Building Code (IBC) and American Society of Civil Engineers (ASCE 7) ANSI/SPRI WD-1 “Wind Design Standard Practice for Roofing Assemblies”

B. The membrane must be manufactured by the material supplier. Manufacturer’s supplying membrane made by others are not acceptable.

C. The manufacturer must have a minimum of 20 years experience in the manufacturing of vulcanized thermoset sheeting and the manufacturer shall have domestic manufacturing experience commensurate with the term of warranty coverage of the products supplied.

D. Unless otherwise noted in this specification, the roofing contractor must strictly comply with the manufacturer’s current specifications and details.

E. The roofing system must be installed by an applicator authorized and trained by the manufacturer in compliance with shop drawings as approved by the manufacturer. The roofing applicator shall be thoroughly experienced and upon request be able to provide evidence of having at least five (5) years successful experience installing single-ply EPDM roofing systems and having installed at least one (1) EPDM roofing application or several similar systems of equal or greater size within one year.
F. Provide adequate number of experienced workmen regularly engaged in this type of work who are skilled in the application techniques of the materials specified. Provide at least one thoroughly trained and experienced superintendent on the job at all times roofing work is in progress.

G. There shall be no deviations made from this specification or the approved shop drawings without the prior written approval. Any deviation from the manufacturer's installation procedures must be supported by a written certification on the manufacturer's letterhead.

H. Upon completion of the installation, the applicator shall arrange for an inspection to be made by a non-sales technical representative of the membrane manufacturer in order to identify any needed corrective repairs that will be required for warranty issuance. Notify the Owner's Representative and Architect seventy-two (72) hours prior to the manufacturer's final inspection.

I. Inspector shall be employed and trained by the manufacturer and have received product-specific training from the manufacturer of the products.

1.16 JOB CONDITIONS, CAUTIONS AND WARNINGS

A. Material Safety Data Sheets (MSDS) must be on location at all times during the transportation, storage and application of materials.

B. When positioning membrane sheets, exercise care to locate all field splices away from low spots and out of drain sumps. All field splices should be shingled to prevent bucking of water.

C. When loading materials onto the roof, the Roofing Applicator must comply with the requirements of the building owner to prevent overloading and possible disturbance to the building structure.

D. Proceed with roofing work only when weather conditions are in compliance with the manufacturer's recommended limitations, and when conditions will permit the work to proceed in accordance with the manufacturer's requirements and recommendations.

E. Proceed with work so new roofing materials are not subject to construction traffic. When necessary, new roof sections shall be protected and inspected upon completion for possible damage.

F. Provide protection, such as 3/4 inch thick plywood, for all roof areas exposed to traffic during construction. Plywood must be smooth and free of fasteners and splinters.

G. The surface on which the insulation or roofing membrane is to be applied shall be clean, smooth, dry, and free of projections or contaminants that would prevent proper application of or be incompatible with the new installation, such as fins, sharp edges, foreign materials, oil and grease.

H. New roofing shall be complete and weathertight at the end of the work day.

I. Contaminants such as grease, fats and oils shall not be permitted to come in direct contact with the roofing membrane.
1.17 WARRANTY

A. Provide manufacturer’s 15 year Total System Warranty covering both labor and all materials with no dollar limitation.

PART 2 PRODUCTS

2.01 GENERAL

A. This specification is based upon the Carlisle SynTec Sure-Seal 60 mil EDPM roofing system to clarify the required system characteristics. Equivalent EDPM roofing systems shall be acceptable subject to substitution request process.

B. Unless otherwise approved by the Owner and accepted by the membrane manufacturer, all products (including insulation, fasteners, fastening plates and edgings) must be manufactured and supplied by the roofing system manufacturer and covered by the warranty and manufacturer of roof membrane shall also manufacture all polymeric components for the roofing system, including, but limited to, membrane, adhesives, primers, flashings, caulks and tapes.

2.02 MEMBRANE

A. Provide Sure-Seal 60-mil EPDM (Ethylene, Propylene, Diene Terpolymer) in the largest sheet possible with 3” or 6” Factory-Applied Tape (FAT). The membrane shall conform to the minimum physical properties of ASTM D4637. When a 10 foot wide membrane is to be used, the membrane shall be manufactured in a single panel with no factory splices to reduce splice intersections.

2.03 INSULATION/UNDERLAYMENT

A. When applicable, insulation shall be installed in multiple layers. The first and second layer of insulation shall be mechanically fastened or adhered to the substrate in accordance with the manufacturer’s published specifications.

B. Insulation shall be 20PSI PolyISO as supplied by Carlisle SynTec. Minimum R-value required is 20

1. Carlisle HP-H Polyiso – A foam core insulation board covered on both sides with a medium weight fiber-reinforced felt facer meeting ASTM C 1289-06, Type II, Class 1, Grade 2 (20 psi) or Grade 3 (25 psi). The product is available in 4’ x 8’ standard size with a thickness from 1 to 4 inches. 4’ x 4’ tapered panels are also available.

2.04 FASTENING COMPONENTS

A. Fasteners, Plates and Bars

1. HP- Fasteners: a threaded, #14 fastener with a #3 phillips drive used with steel and wood roof decks.

2. HP-X Fasteners: A heavy duty #15 threaded fastener with a #3 phillips drive used for insulation securement into steel, wood plank or minimum 15/32 inch thick plywood when increased pullout resistance is desired.
3. Pre-Assembled ASAP Fasteners: A pre-assembled 3" diameter Plastic Plate and #12 threaded fastener with a #3 drive used for insulation attachment into steel or wood decks. Installed using OMG Fastening Tools.

4. InsulFast Fasteners: A threaded #12 fastener with #3 phillips drive used for insulation attachment into steel or wood decks.

5. HP Term Bar Nail-Ins: A 1-1/4" long expansion anchor with a zinc plated steel drive pin used for fastening the Carlisle Termination Bar or Seam Fastening Plates to concrete, brick, or block walls.

6. Seam Fastening Plate: a 2" diameter metal fastening plate used in conjunction with RUSS or EPDM membrane for additional membrane securement.

7. Polymer Seam Plate: a 2" diameter plastic fastening plate incorporating barbs on the underside of the plate. This plate is required for membrane and RUSS attachment installed in conjunction with steel roof decks. May also be used for insulation attachment.

8. Insulation Fastening Plates: a nominal 3 inch diameter plastic or metal plate used for insulation attachment.

9. Sure-Seal Pressure-Sensitive RUSS™ (Reinforced Universal Securement Strip): a 6" wide, nominal 45-mil thick clean, cured black reinforced EPDM membrane with 3" wide SecurTAPE laminated along one edge. The 6" wide Pressure-Sensitive RUSS is used horizontally or vertically at the base of walls, curbs, etc., in conjunction with 2" diameter securement plates or bars below the EPDM deck membrane for additional membrane securement.

B. Insulation Adhesives - None

2.05 ADHESIVES, CLEANERS AND SEALANTS

All products shall be furnished by the roofing manufacturer and specifically formulated for the intended purpose.

A. 90-8-30A Bonding Adhesive: A high-strength, yellow colored, synthetic rubber adhesive used for bonding Sure-Seal/Sure-White EPDM membranes to various surfaces. Available in 5 gallon pails.

B. Carlisle Weathered Membrane Cleaner: A clear, solvent-based cleaner used to loosen and remove dirt and other contaminants from the surface of exposed EPDM membrane (for repairs, etc.) prior to applying EPDM Primer. Weathered Membrane Cleaner can also be used when applying Splicing Cement. Available in 1 and 5-gallon pails.

C. Sure-Seal SecurTAPE™ (Factory Applied): A 3" or 6" wide by 100' long splice tape used for splicing adjoining sections of EPDM membrane. Complies with the South Coast Air Quality Management District Rule 1168.

D. EPDM Primer: A solvent-based primer used to prepare the surface of EPDM membrane for application of Splice Tape or Pressure-Sensitive products. Available in 1 gallon pails.

E. Lap Sealant: A heavy-bodied material used to seal the exposed edges of a membrane splice. Available in tubes.

1. Sure-Seal Lap Sealant is a black sealant for use with Sure-Seal (black) Roofing Systems.
2. Sure-White Lap Sealant is a white sealant for use with Sure-White (white-on-black) Roofing Systems.

F. Water Cut-Off Mastic: A one-component, low viscosity, self wetting, Butyl blend mastic used to achieve a compression seal between the EPDM membrane or Elastoform Flashing and applicable substrates. Available in tubes.

G. Universal Single-Ply Sealant A one-part polyether, non-sagging sealant designed for sealing expansion joints, control joints and counterflashings. Available in white only.

H. CCW 702 or CCW 702-LV: a single component, solvent based, high tack primer used to provide adhesion between Carlisle 725TR and an approved substrate.

2.06 METAL EDGING AND MEMBRANE TERMINATIONS

A. General: All metal edgings shall be tested and meet ANSI/SPRI ES-1 standards and comply with International Building Code. All metal work is to be supplied and warranted by the manufacturer.

B. SecurEdge One Supply appropriate type for installed conditions –

1. SecurEdge One Fascia: A snap-on edge system consisting of an extruded aluminum retainer bar, corrosion resistant fasteners and a 24 gauge or 0.040 Kynar finished aluminum fascia cover. Available with a 3" fascia height 12' long. Metal fascia color shall be designated by the Owner's Representative. ANSI/SPRI ES-1 Certified.

2. SecurEdge One Edge: A snap-on edge system consisting of a 24 gauge retainer bar, corrosion resistant fasteners and a 24 gauge or 0.040 aluminum Kynar finished fascia cover. A spring clip holds the fascia cover in place. Available in sizes up to 8" fascia height 12' long. Metal fascia color shall be designated by the Owner's Representative. ANSI/SPRI ES-1 Certified.

3. SecurEdge One Coping: A snap-on coping edge system consisting of a 24 gauge retainer bar (face side only), corrosion resistant fasteners and a 24 gauge or 0.040 aluminum Kynar finished coping cover. The coping cover is secured by clipping on the retainer bar and fastened on the backside with corrosion resistant fasteners (with rubber washer). Available for wall thicknesses up to 30". Metal coping cap color shall be as designated by the Owner's Representative. ANSI/SPRI ES-1 Certified.

C. Drip Edge: a metal fascia/edge system with a 22 or 24 gauge continuous anchor cleat and .032 inch thick aluminum or 24 gauge steel fascia. Metal fascia color shall be as designated by the Owner's Representative.

D. SecurEdge Coping: incorporates a 20 gauge anchor cleat with 4 pre-slotted holes, a concealed joint cover and 10 foot continuous sections of coping cap; can accommodate minimum 5" wide parapet walls. Metal coping cap color shall be as designated by the Owner's Representative.

E. Termination Bar: a 1" wide and .098" thick extruded aluminum bar pre-punched 6" on center; incorporates a sealant ledge to support Lap Sealant and provide increased stability for membrane terminations.
2.07 WALKWAYS

A. Protective surfacing for roof traffic shall be Sure-Seal Pressure-Sensitive Walkway Pads (with Factory-Applied Tape on the underside of the walkway) adhered to the membrane surface in conjunction with Sure-Seal Primer.

2.08 OTHER MATERIALS

A. As needed

PART 3 EXECUTION

3.01 GENERAL

A. Comply with the manufacturer’s published instructions for the installation of the membrane roofing system including proper substrate preparation, jobsite considerations and weather restrictions.

B. Position sheets to accommodate contours of the roof deck and shingle splices to avoid bucking water.

3.02 VAPOR RETARDERS

A. None

3.03 INSULATION PLACEMENT

A. Install insulation or membrane underlayment over the substrate with boards butted tightly together with no joints or gaps greater than 1/4 inch. Stagger joints both horizontally and vertically if multiple layers are provided.

3.04 MEMBRANE PLACEMENT AND BONDING

A. Unroll and position membrane without stretching. Allow the membrane to relax for approximately 1/2 hour before bonding. Fold the sheet back onto itself so half the underside of the membrane is exposed.

B. Apply the Bonding Adhesive in accordance with the manufacturer’s published instructions and coverage rates, to both the underside of the membrane and the substrate. Allow the adhesive to dry until it is tacky but will not string or stick to a dry finger touch.

1. Roll the coated membrane into the coated substrate while avoiding wrinkles. Brush down the bonded half of the membrane sheet with a soft bristle push broom to achieve maximum contact.

2. Fold back the unbonded half of the membrane sheet and repeat the bonding procedure.

C. Install adjoining membrane sheets in the same manner, overlapping edges approximately 4 inches. Do not apply bonding adhesive to the splice area.

3.05 MEMBRANE SPLICING

A. Position membrane sheet to allow for required splice overlap. Mark the bottom sheets with an indelible marker approximately 1/4” to 1/2” from the top sheet edge. The pre-marked line on the membrane edge can also be used as a guide for positioning splice tape.
B. When the membrane is contaminated with dirt, fold the top sheet back and clean the dry splice area (minimum 3" wide) of both membrane sheets by scrubbing with clean natural fiber rags saturated with Sure-Seal Weathered Membrane Cleaner. When using Sure-Seal (black) PRE-KLEENED membrane, cleaning the splice area is not required unless contaminated with field dirt or other residue.

C. Apply EPDM Primer to splice area and permit to flash off.

D. When adhering Factory Applied Tape (FAT), pull the poly backing from FAT beneath the top sheet and allow the top sheet to fall freely onto the exposed primed surface. Press top sheet on to the bottom sheet using firm even hand pressure across the splice towards the splice edge.

E. For end laps, apply 3" or 6" SecurTAPE to the primed membrane surface in accordance with the manufacturer’s specifications. Remove the poly backing and roll the top sheet onto the mating surface.

F. Tape splices must be a minimum of 2-1/2" wide using 3" wide SecurTAPE extending 1/8" minimum to 1/2" maximum beyond the splice edge. Field splices at roof drains must be located outside the drain sump.

G. Immediately roll the splice using positive pressure when using a 2" wide steel roller. Roll across the splice edge, not parallel to it. When FAT is used, Carlisle’s Stand-Up Seam Roller can be used to roll parallel to the splice edge.

H. At all field splice intersections, apply Lap Sealant along the edge of the membrane splice to cover the exposed SecurTAPE 2" in each direction from the splice intersection. Install Carlisle’s Pressure-Sensitive “T” Joint Covers or a 6" wide section (with rounded corners) of Sure-Seal Pressure-Sensitive Elastoform Flashing over the field splice intersection.

3.06 FLASHING

A. Wall and curb flashing shall be cured EPDM membrane. Continue the deck membrane as wall flashing where practicable. Use Pressure-Sensitive Curb Wrap when possible to flash curb units.

B. Follow manufacturer’s typical flashing procedures for all wall, curb, and penetration flashing including metal edging/coping and roof drain applications.

3.07 WALKWAYS

A. Install walkways at all traffic concentration points (such as roof hatches, access doors, rooftop ladders, etc.) and all locations as identified on the specifier’s drawing.

B. Adhere walkways pads or rubber pavers to the EPDM membrane in accordance with the manufacturer’s specifications.

3.08 DAILY SEAL

A. On phased roofing, when the completion of flashings and terminations is not achieved by the end of the work day, a daily seal must be performed.
3.09 CLEAN UP

A. Perform daily clean-up to collect all wrappings, empty containers, paper, and other debris from the project site. Upon completion, all debris must be disposed of in a legally acceptable manner.

B. Prior to the manufacturer’s inspection for warranty, the applicator must perform a pre-inspection to review all work and to verify all flashing has been completed as well as the application of all caulking.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 06 10 00 – Rough Carpentry
 B. Section 07 92 00 – Joint Sealants
 C. Section 09 90 00 - Finish Painting

1.03 PRODUCT DELIVERY, STORAGE, AND HANDLING
 A. Protect against damage and discoloration. Store off ground.

1.04 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.05 PROTECTION
 A. Protect other work against damage and discoloration caused by work of this section.

1.06 WARRANTY
 A. Warrant work weathertight for 2-years, subject to General Condition terms.

PART 2 - PRODUCTS

2.01 SHEETMETAL

2.02 NAILS

2.03 SCREWS
 A. Pan head, self-tapping, sheetmetal type; conforming to Fed. Spec. FF-S-107; #7 by 1" long minimum, cadmium plated.
2.04 RIVETS
 A. 1/8" minimum diameter, length as recommended by rivet manufacturer for materials to be joined; cadmium plated.

2.05 SOLDER
 A. ASTM B-32, tin and 50% lead.

2.06 FLUX
 A. Rosin, cut muriatic acid, or commercial preparation for material to be soldered.

2.07 SEALANT
 A. Silicone type: Dow, GE, or approved equal.

2.08 ASPHALT PLASTIC CEMENT
 A. Fed. Spec. SS-C-153, type I.

2.09 PRIMER COATING AND UNDERCOATINGS
 A. Galvanized iron primer as specified in Section 09900.

2.10 FABRICATION
 A. General: Form to shapes and dimensions shown and as required to exclude weather penetration, with planes and lines in true alignment. Unless otherwise shown on drawings or specified, fabricate with longest practicable lengths. Hem exposed edges. Angle bottom edges of vertical surfaces to form drip.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
 A. Verify that surfaces to receive sheetmetal are smooth, clean, and otherwise properly prepared. Verify that reglets and nailers to receive sheetmetal are properly placed. Prior to starting work, notify Architect and Owner of defects that require correction. Do not start work until conditions are satisfactory.

3.02 FIELD MEASUREMENTS
 A. Before fabricating sheetmetal, verify shapes and dimensions of surfaces to be covered. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabrication.

3.03 INSTALLATION - GENERAL
 A. Install work watertight, without waves, warps, buckles, tool marks, fastening stresses, distortion, or defects which impair strength or mar appearance. Install planes and lines to true alignment. Allow for sheetmetal expansion and contraction.
3.04 SEAM INSTALLATION
 A. Flat Lock Seams: 5/8" thick finish width; 4-ply flat-locked, malleted tight: sweat full with solder.
 B. Single Corner Seams: 3/4" finish width; 3-ply loose locked.
 C. Double Corner Seams: 5/8" finish width; 4-ply loose locked.
 D. Lap Seams: 3" finish width.
 E. Solder - Lap Seams: 1" finish width; sweat full with solder.
 F. Cover Plate Seams: Space abutting sheets 1/2 inch. Cover joint with 4" wide cover and back-up plates set in sealant. Match plates to flashing profile. Secure plates to substrate with screw installed through open space between flashing sheets.

3.05 SOLDERING
 A. Clean and flux metals prior to soldering. Sweat solder completely through seam widths.

3.06 SEALANT INSTALLATION
 A. Apply 1/4" diameter bead, centered in full length of joint.

3.07 ASPHALT PLASTIC CEMENT INSTALLATION
 A. Trowel apply 1/8" thick.

3.08 SHOP PAINTING
 A. Apply primer coat to all sheetmetal surfaces prior to delivery to site, 1-1/2 mil dry film thickness. Exposed flashing to receive finish painting under Section 09900, see finish schedule for color.
 B. Protect contacting dissimilar metals against corrosion with asphaltic coating compound, 7-1/2 mil dry film thickness, applied to each contacting face. Protect roofing materials from asphaltic materials.

3.09 ZEE FLASHING
 A. Form of 26 ga. galvanized steel. Fabricate "Z" shaped; extend upper flange 2" vertically behind siding and secure to substrate. Extend lower flange 1/2" downward over siding face. Lap-seam vertical joints and apply sealant. Provide at horizontal joints where shown on drawings.

3.10 MISCELLANEOUS FLASHING
 A. Provide flashing around doors, windows, louvers, and other openings in exterior walls where indicated or required to maintain building watertight.

3.11 PRODUCT CLEANING AND REPAIRING
 A. As work progresses, neutralize excess flux with 5% to 10% washing soda solution and thoroughly rinse. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this
section. Leave surfaces ready for finish painting specified in Section 09900. Remove debris from project site at work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement and Division 1 bound herewith in addition to these Specifications and accompanying drawings.

1.02 SCOPE

A. Through penetration firestops and smoke-stops for all fire-rated bearing and non-bearing wall and floor assemblies.

1.03 RELATED WORK SPECIFIED ELSEWHERE

A. Division 22 - Plumbing Fixtures
B. Division 23 - HVAC Ductwork
C. Division 26 - Electrical Basic material and Methods

1.04 DEFINITIONS

A. Firestopping: The use of a material or combination of materials in a required fire-rated structure (wall or floor) where it has been breached, so as to restore the integrity of the fire rating on that wall or floor.

B. System: The use of a specific firestop material or combination of materials in conjunction with a specific wall or floor construction type and a specific penetrant(s), constitutes a “System”

C. Barrier: Any bearing or non-bearing wall or floor that has an hourly fire and smoke rating.

D. Through-Penetration: Any penetration of a fire-rated wall or floor that completely breaches the barrier.

E. Membrane-Penetration: Any penetration in a fire-rated wall that breaches only one side of the barrier.

1.05 SUBMITTALS

A. Submit manufacturers product literature for each type of firestop material to be installed. Literature shall indicate product characteristics, typical uses, performance and limitation criteria, and test data.

B. Material Safety Data Sheets (MSDS): Submit MSDS for each firestop product.

C. UL Tested Systems: Submit drawings showing typical installation details for the methods of installation. Indicate which firestop materials will be used and thickness for different hourly ratings.

D. Engineering Judgments: Submit manufacturer's drawings for all non-standard applications where no UL tested system exists. All drawings must indicate the "Tested" UL system upon which the judgment is based so as to assess the relevance of the judgment to some known
performance.

E. Submit manufacturers installation procedures for each type of product.

F. Approved Applicator: Submit document from manufacturer wherein manufacturer recognizes the installer as qualified or submit a list of past projects to demonstrate capability to perform intended work.

G. Upon completion, installer shall provide written certification that materials were installed in accordance with the manufacturers installation instructions and details.

1.06 QUALITY ASSURANCE

A. Firestopping systems (materials and design):

1. Shall conform to both Flame (F) and Temperature (T) ratings as required by local building codes and as tested by nationally accepted test agencies per ASTM E814 or UL 1479 fire tests in a configuration that is representative of field conditions. The F rating must be a minimum of one (1) hour but not less than the fire resistance rating of the assembly being penetrated. T shall be a minimum of one (1) hour but not less than the measurement of the temperature rise on penetrating item(s) when required by code authority. The fire test shall be conducted with a minimum positive pressure differential of 0.01 inches of water column.

2. For joints, must be tested to UL 2079 with movement capabilities equal to those of the anticipated conditions.

B. Firestopping materials & systems must be capable of closing or filling through-openings created by:

1. The burning or melting of combustible pipes, cable jacketing, or pipe insulation materials.
2. Deflection of sheet metal due to thermal expansion (electrical & mechanical duct work).

C. Firestopping materials shall not shrink upon drying as evidenced by cracking or pulling back from contact surfaces.

D. All firestopping materials shall be manufactured by one manufacturer (to the maximum extent possible).

E. Installation of firestopping systems shall be performed by a contractor (or contractors) trained or approved by the firestop manufacturer.

F. Material used shall be in accordance with the manufacturers written installation instructions.

1.07 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Protect against damage. Store products in original, tightly sealed containers, original labels thereon. Do not open containers or remove labels until Owner’s Authorized Representative reviews.

1.08 WEATHER DURING WORK

A. Perform no Work when weather exceeds manufacturer's specified limits.

1.09 COORDINATION

A. Coordinate with other trades affecting or affected by Work of this section.
1.10 PROTECTION

A. Where firestopping is installed at locations which will remain exposed in the completed work, provide protection as necessary to prevent damage to adjacent surfaces and finishes, and protect as necessary against damage from other construction activities.

PART 2 - PRODUCTS

2.01 GENERAL

A. All firestop products and systems shall be designed and installed so that the basic sealing system will allow the full restoration of the thermal and fire resistance properties of the barrier being penetrated with minimal repair if penetrants are subsequently removed.

B. For applications where combustible penetrants are involved, i.e., insulated and plastic pipe, a suitable intumescent material must be used.

2.02 ACCEPTABLE MANUFACTURERS

A. Note: Inclusion of materials in this specification does not indicate that the listed products have been evaluated for conformance to this specification. Therefore, the user/contractor must certify in the submittal package, with a "Certificate of Conformance" from the manufacturer listed below, that the material selected meets all of the criteria set forth in this specification.

B. Specified Technologies Inc./GE Pensil® (STI), (800) 992-1180 or approved equal.

2.03 MATERIALS

A. Intumescent Firestop Sealants and Caulks:
 1. STI SpecSeal SSS100 or approved equal.

B. Latex Firestop Sealant:
 1. STI SpecSeal LC150 Sealant or approved equal.

C. Acrylic Water-Based Sealant:
 1. STI SpecSeal ES100 Elastomeric Sealant or approved equal.

D. Silicone Firestop Sealants and Caulks:
 1. STI SpecSeal Pensil 300 or approved equal.

E. Firestop Putty:
 1. STI SpecSeal SSP100 Firestop Putty Bars and Pads or approved equal.

F. Firestop Collars:
 1. STI SpecSeal SSC Firestop Collars or approved equal.

G. Wrap Strips:
1. SpecSeal SSW Wrap Strip or approved equal.

H. 2-Part Silicone Firestop Foam:

1. STI SpecSeal Pensil 200 or approved equal.

I. Firestop Mortar:

1. STI SpecSeal SSM Mortar or approved equal.

J. Firestop Pillows:

1. STI SpecSeal SSB Pillows or approved equal.

K. Elastomeric Spray:

1. STI SpecSeal AS Elastomeric Spray or approved equal.

L. Accessories:

1. Forming/Damming Materials: Mineral fiberboard or other type as per manufacturer recommendation.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Inspect joints to be caulked and sealed and verify that joints are clean, dry, and free from dust, oil, grease, rust, lacquer, laitence, loose mortar, or other bond-reducing matter. Prior to starting Work, notify Contractor and Owner’s Authorized Representative of defects requiring correction. Do not start Work until conditions are satisfactory.

B. Verify that environmental conditions are safe and suitable for installation of firestop products.

C. Verify that all pipe, conduit, cable, ductwork and other items which penetrate fire-rated construction have been permanently installed prior to installation of firestops.

3.02 CONDITIONS REQUIRING FIRESTOPPING

A. General: Provide firestopping for conditions specified whether or not firestopping is indicated, and if indicated, whether such material is designed as insulation, safing, or otherwise.

B. Through-Penetrations: Firestopping shall be installed in all existing open penetrations and in the annular space in all new or existing penetrations in any bearing or non-bearing required fire-rated barrier.

C. Construction Joints/Gaps: Firestopping shall be provided between the tops of walls and the underside of floors.

D. Smoke-Stopping: As required by the other Sections, Smoke-Stops shall be provided for Through-Penetrations, Membrane-Penetrations, and Construction Gaps with a material approved and tested for such application.

3.03 SEQUENCING

A. Schedule firestopping after installation of penetrants but prior to concealing the openings.
B. Firestopping shall precede wall finishing system application.

3.04 INSTALLATION

A. General:

1. Installation of firestops shall be performed by an applicator/installer qualified and trained by the manufacturer. Installation shall be performed in strict accordance with manufacturers detailed installation procedures.
2. Apply firestops in accordance with fire test reports, fire resistance requirements, acceptable sample installations, and manufacturers recommendations.
3. Unless specified and approved, all insulation used in conjunction with through-penetrants shall remain intact and undamaged and may not be removed.
4. Seal holes and penetrations to ensure an effective smoke seal.
5. In areas of high traffic, protect firestopping materials from damage. If the opening is large, install firestopping materials capable of supporting the weight of a human.
6. Insulation types specified in other sections shall not be installed in lieu of firestopping material specified herein.
7. All combustible penetrants (e.g. non-metallic pipes or insulated metallic pipes) shall be firestopped using products and systems tested in a configuration representative of the field condition.

B. Dam Construction:

1. When required to properly contain firestopping materials within openings, damming or packing materials may be utilized. Combustible damming material must be removed after appropriate curing. Noncombustible damming materials may be left as a permanent component of the firestop system.

3.05 FIELD QUALITY CONTROL

A. Prepare and install firestopping systems in accordance with manufacturers printed instructions and recommendations.

B. Follow safety procedures recommended in the Material Safety Data Sheets.

C. Finish surfaces of firestopping which are to remain exposed in the completed work to a uniform and level condition.

D. All areas of work must be accessible until inspection by the applicable Code Authorities.

E. Correct unacceptable firestops and provide additional inspection to verify compliance with this specification.

3.06 CLEANING

A. Remove excess materials as Work progresses and leave surfaces neat, smooth, and clean. Remove debris from project site upon Work completion or sooner, if directed. Including Work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by Work of this section.
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 07 60 00 - General Sheetmetal
 B. Section 09 20 00 - Gypsum Drywall

1.03 EXTENT OF WORK OR THIS SECTION
 A. Caulk joints around window frames, and any other openings in exterior walls with caulking compound. Caulk joint between masonry and cladding. Caulk elsewhere noted on drawings.

1.04 OPTIONS
 A. Use caulking compound unless sealant is specified or noted on drawings.

1.05 PRODUCT DELIVERY, STORAGE, AND HANDLING
 A. Protect against damage. Store products in original, tightly sealed containers, original labels thereon. Do not open containers or remove labels until Architect reviews.

1.06 WEATHER DURING WORK
 A. Perform no work when weather exceeds manufacturer's specified limits.

1.07 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.08 PROTECTION
 A. Mask surfaces adjacent to joints, as required for completion protection.

1.09 WARRANTY
 A. Caulking and sealing subject to 1-year weatherproof warranty called for in General Conditions.

PART 2 – PRODUCTS

2.01 CAULKING COMPOUND
 A. Select the appropriate specified product for the application per the manufacturer's recommendations.
1. Latex acrylic caulking: Pecora AC-20, or approved equal.
2. Synthetic rubber caulking: Pecora BC-158, or approved equal.

2.02 SEALANT
 A. Silicone type: GE, SCS 2000 SilPruf (structural); SCS 1700 Sanitary (interior countertops) or approved equal.
 B. Select proper type in accordance with manufacturer's recommendations.

2.03 COLOR OF COMPOUND OR SEALANT
 A. Caulking: Approximate color of adjacent surfaces, unless otherwise directed. Obtain Architect's approval prior to application.
 B. Sealant: Clear translucent, unless otherwise directed.

2.04 PRIMER AND SURFACE CONDITIONER
 A. Made or recommended by manufacturer of compound or sealant.

2.05 BACKER ROD
 A. Closed-cell, polyethylene gasketing rod, compatible with caulking or sealant.
 B. Diameter: 1/4 greater than width of joint where to be installed.

2.06 ROPE YARN
 A. Raveled strands of non-staining fiber or cotton wicking.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
 A. Inspect joints to be caulked and sealed and verify that joints are clean, dry, and free from dust, oil, grease, rust, lacquer, laitence, loose mortar, or other bond-reducing matter. Prior to starting work, notify Architect and Owner of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 SURFACE PREPARATION
 A. Remove dust and dirt by brushing and air-blowing.

3.03 PRIMING
 A. Prime unpainted surfaces to receive caulking and sealant. Apply with bristle brush. Do not flood surfaces.

3.04 BACKING INSTALLATION
 A. Joints to Receive Sealant: Install backer rod behind sealant in accordance with manufacturer's directions. Provide in as long continuous lengths as practicable. Stretch taut and force into joints to uniform depth, approximately 1/2 joint width but not to exceed 1/2 inch.
Replace any punctured backer rod with undamaged material.

B. Joint to Receiving Caulking: If joints are deeper than 3/4", and no suitable backstop is provided, pack with rope yarn to within 1/2" of surface.

3.05 CAULKING AND SEALANT INSTALLATION

A. Mix and apply caulking and sealant in accordance with manufacturer's directions using gun-type dispenser. Caulk or seal joints before applying final paint coat. Size gun nozzle to fit joint. Fill joints and voids solid. Superficial pointing with skin bead not acceptable. Install flush with adjacent surfaces. Tool joints smooth within 10 minutes after installation. Remove masking materials, if any, immediately after caulking and sealant installation.

3.06 CLEANING

A. Remove excess materials as work progresses and leave surfaces neat, smooth, and clean. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section.

END OF SECTION
DIVISION 7, THERMAL AND MOISTURE PROTECTION
07 95 13 SEISMIC JOINT COVERS

PART 1 - GENERAL

1.01 SUMMARY

A. This section includes the following:

 1. Expansion and seismic joint systems for building interiors
 2. Expansion and seismic joint systems for building exteriors

1.02 RELATED WORK

A. Related work that is specified elsewhere

 1. Section 04200: Unit Masonry
 2. Section 09250: Gypsum Wallboard

1.03 DEFINITIONS

A. Nominal Joint Width: The width of the expansion joint opening as specified in the project documents, at which the expansion joint will be constructed and the cover will be installed

B. Maximum Joint Width: The widest expansion joint width which the joint cover is required to accommodate without damage to its components

C. Minimum Joint Width: The narrowest expansion joint width which the joint cover is required to accommodate without damage to its components

D. Movement Capability: The amount of movement in a single direction (open or close), given as a percentage of the nominal joint width, that the joint cover is required to accommodate without damage to its components

E. Lateral Shear: Movement horizontally and parallel to the expansion joint

 Vertical Shear: Movement vertically and parallel to the expansion joint

1.04 SUBMITTALS

A. Submission must be made within fifteen (15) working days of the contract award to avoid project delay.

B. Submittals shall contain the following as required for each specified system

 1. Shop Drawings showing complete fabrication details for all joint covers, including required anchorage to surrounding construction, recesses, blocking, backing, and connections between similar and dissimilar joint cover assemblies
 2. Manufacturer’s product data including product details, installation instructions, maintenance and cleaning instructions, Safety Data Sheets
3. Certificates, copies of independent test reports, or research reports showing compliance with fire resistance rating and other specified performance requirements

1.05 QUALITY ASSURANCE

A. Manufacturer: Obtain joint cover assemblies through one source from a single manufacturer.
 1. Manufacturer shall have a third party certified ISO 9001 quality management system.
 2. The manufacturer shall have documented management and control of the processes that influence the quality of its products.
 3. The manufacturer shall have documented management and control of the processes that influence the quality of its customer service.

B. Manufacturer shall have a minimum of ten (10) years of experience in the fabrication of joint cover assemblies.

C. Installer: All products listed in this section shall be installed by a single installer with demonstrated experience in installing products of the same type and scope as specified. Installer shall be insured and licensed as required by agencies within the project’s jurisdiction.

1.06 COORDINATION

A. Submittals shall be completed and approved prior to fabrication and shipment of material to the jobsite.

B. Schedule for the work of this section shall be planned to allow sufficient time for manufacturer’s production and delivery scheduling.

C. Coordinate installation of products and systems with interfacing and adjoining construction to provide a successful and proper installation.

D. Coordinate installation of exterior joint assemblies to ensure that transitions are watertight.

E. Verify product types, quantities, dimensions, and attachment methods shown on shop drawings against field conditions prior to releasing materials for fabrication by the manufacturer.

F. Communicate necessary changes on the manufacturer’s shop drawings.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Provide temporary protective cover on anodized aluminum, stainless steel, and bronze finished surfaces.

B. Deliver joint covers to jobsite in clean, unopened crates of sufficient size and strength to protect materials during transit.

C. Store components in original containers in a clean, dry location.
1.08 WARRANTY

A. Submit manufacturer’s warranty that materials furnished will perform as specified for a period of not less than one (1) year when installed in accordance with manufacturer’s recommendations.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Furnish and install as noted in specifications and as indicated on drawings as manufactured by Balco, Inc., PO Box 17249, 2626 S. Sheridan, Wichita, KS 67217; phone: 800-767-0082 or (316) 945-0789.

B. Substitutions: Submit proposed substitutions in writing to the architect not less than 10 days before bids are due. Submit samples and product data to demonstrate acceptability of proposed substitute. Acceptance will be by addendum.

2.02 EXPANSION AND SEISMIC JOINT SYSTEMS

A. Interior Expansion and Seismic Joint Systems: BALCO WD-2 Joint cover or approved equal.

B. Exterior Expansion and Seismic Joint Systems: BALCO FCVS-4 Flexible Joint or approved equal.

C. Interior Expansion and Seismic Joint Systems: BALCO BHS-6 Joint Cover or approved equal.

2.03 MATERIALS

A. Metals

1. Aluminum extrusions: ASTM B221, alloys 6063-T5, 6005A-T6, 6061-T6
2. Aluminum plate and sheet: ASTM B209, alloys 6061-T6, 5052-H32

B. PVC Vinyl: 90 Shore A, ASTM D2240

C. Silicone: ASTM D 2000 4GE 709 M

D. Santoprene

1. 75 shore A durometer, 15 sec, ISO 868
2. Face seals to be installed in exterior conditions shall be UV resistant.

E. Abrasive: Two (2) part Epoxy combined with aluminum oxide grit

F. Water Barrier: Flexible EPDM, Class I, ASTM D4637, 45 mils thick (minimum)

G. Fire Barriers: Designed for indicated or required dynamic structural movement without material degradation or fatigue when tested according to ASTM E 1399. Tested in maximum joint width condition with a field splice as a component of an expansion joint cover by an independent, nationally recognized testing entity in accordance with UL 2079, or ASTM E1966, including hose stream test, where applicable, at the full rated
period. Assemblies shall be listed with an independent, nationally recognized testing and listing entity.

H. Standard fasteners required for assembly and installation shall be included

I. All surfaces in contact with masonry or concrete shall be protected by a factory-applied coating.

2.04 FINISHES

A. Aluminum
 1. Interior Walls and Ceilings: Clear anodized, Class II, AA-M12 C22 A31
 2. Exterior Walls and Roofs: High-Performance Organic Coating (Kynar or Trinar)
 3. All surfaces in contact with masonry shall be protected by a factory-applied coating

B. Elastomeric Seals:
 1. Color as selected and approved from manufacturer’s samples

PART 3 - EXECUTION

3.01 EXAMINATION

A. Installer shall examine conditions under which work is to be performed and shall notify the contractor in writing of unsatisfactory conditions. Installer shall not proceed until all unsatisfactory conditions have been corrected in a manner acceptable to the installer.

3.02 PREPARATION

A. Prepare surfaces using methods recommended by the manufacturer for achieving the required results within project conditions.

B. Corner blockouts should be square, level, free of spalling or laitance, and meet the dimensions shown on shop drawings. Repairs should be made using appropriate materials as recommended by concrete repair material manufacturer, based on project-specific conditions.

C. Concrete repair material must be applied and allowed to cure in accordance to the manufacturer of the product recommendations and instructions.

D. Clean dirt, debris, and other contaminants from both the blockout and joint opening

E. Mask areas adjacent to the joint as required to achieve neat, clean joint lines. Remove masking prior to the curing process.

3.03 INSTALLATION

A. Install expansion and seismic joint covers in accordance with the manufacturer’s instructions.

B. Centering bars shall be fully engaged with base members.
C. Locate fasteners at interval recommended by manufacturer as shown on shop drawings.

D. Floor systems: Where shimming is required, provide continuous support for base members to prevent vertical deflection when in service.

E. Heavy-duty floor systems: Repair or grout blockouts as required for continuous frame support. Bring base members to proper level; shimming is not allowed.

F. Fire-rated joint covers: Install fire rated covers in accordance with requirements of applicable fire rated product. Install fire barriers and flame sealant as shown on shop drawings and in accordance with installation instructions.

G. Water barrier: Install water barriers at exterior joints and where called for on shop drawings. Provide drainage fittings where called for on shop drawings.

3.04 PROTECTION AND CLEANING

A. Protect the installation from damage by work of other sections.

B. Where required, remove and store cover plates and install temporary protection over joints and re-install cover plates prior to substantial completion of work.

C. Do not remove protective coverings until finish work in adjacent areas is complete.

D. Prior to project closeout, clean exposed surfaces with a suitable cleaner as recommended by manufacturer.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 08 71 00 - Finish Hardware
 B. Section 08 14 00 – Wood Doors
 C. Section 09 90 00 - Painting and Finishing

1.03 REGULATORY AGENCY REQUIREMENTS

1.04 REFERENCED SPECIFICATIONS
 A. Except as modified herein, conform to requirements of "Recommended Specifications - Standard Steel Doors and Frames", as published by Steel Door Institute.

1.05 SHOP DRAWINGS
 A. Submit in accordance with Contract requirements. Show elevations, principal construction features and dimensions of each, and full size glass installation moldings.

1.06 PRODUCT DELIVERY AND STORAGE
 A. Do not deliver to jobsite until notified by General Contractor that project is conditioned and prepared to handle and store products without damage or discoloration.
 B. Protect against damage and discoloration. Store upright in protected dry area at least 1” above ground or floor. Cover for protection, but allow air circulation.

1.08 PROTECTION
 A. Protect other surfaces against damage or discoloration caused by work of this section.

1.09 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 INTERIOR DOOR FRAMES
A. Typical: Timely C Series pre-finished 18 ga. steel door frames with TA-8 standard steel casing, or approved. Provide manufacturer’s standard Black SC103 finish.

2.02 HARDWARE REINFORCEMENT

A. General: Make standard provisions for hardware listed in Section 08 71 00.

B. Reinforcement: Reinforce for hardware listed in hardware schedule, provide standard reinforcement for door closers whether or not closers are listed in hardware schedule.

2.03 FABRICATION

A. Accurately form metal to required sizes and shapes.

B. Fabricate neat, rigid, and free of wrap, buckle and defects.

C. Assemble components and grind and dress welds to form smooth flush surfaces. Do not use metallic fillers to conceal defects.

D. Fabricate exterior door frames with 26 ga. minimum dust cover boxes at hardware mortises.

E. Fabricate with the following clearances:

1. Between doors and frames: 1/8"
2. Between door sills and thresholds: 1/4"
3. Between door sills and floor: 3/4"

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that openings to receive hollow metalwork are accurately located and sized, square, plumb, true, and otherwise properly prepared. Prior to starting work, notify Architect and Owner about defects requiring correction. Do not start work until conditions are satisfactory.

3.02 FIELD MEASUREMENTS

A. Verify dimensions prior to fabrication. If minor differences exist between field measurements and drawing dimensions, modify work as required for accurate fit. Notify Architect about major differences prior to fabrication.

3.03 HANGING

A. Follow referenced specifications and manufacturer’s instructions. Secure anchors to adjacent construction. Set frames true with adjacent construction. Accurately position work. Set doors flush with frame face. Set doors plumb to hold any desired position.

3.04 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of Final Completion

3.05 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair, and touch-up, or replace when directed,
products which have been soiled, discolored, or damaged by work of this section. Leave surfaces ready for finishing specified in Section 09 90 00. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 06 41 00 - Cabinet Doors
B. Section 08 71 00 - Finish Hardware
C. Section 08 80 00 - Glazing
D. Section 09 90 00 - Painting and Finishing

1.03 ALLOWABLE TOLERANCES

A. Size: 1/8" plus or minus; 1/32" for prefit doors.
B. Squareness: 1/4" maximum difference between opposite diagonal measurements.
C. Warp: 1/4" maximum space measured from horizontal, vertical, or diagonal straight, edge to point of maximum bow, cut, or twist.

1.04 REFERENCED STANDARDS

A. National Woodwork Manufacturer's Association Industry Standard I.S. 1-76. Standard may be obtained from the Association at 400 W. Madison Street, Chicago, IL, 60606.

1.05 SHOP DRAWINGS

A. Submit in accordance with Section 01 33 23. Show full size glass installation moldings. Show preparations for prefitting and premachining.

1.06 PRODUCT DELIVERY

A. Do not deliver to job site until notified by Architect and Owner that project is conditioned and prepared to handle and store products without damage or discoloration.

1.07 PRODUCT STORAGE

A. Protect against damage and discoloration. Store flat on level, dry surface and in well ventilated space. Cover for protection, but allow air circulation.

1.08 PROTECTION

A. Protect other surfaces against damage or discoloration caused by work of this section. Seal door edges prior to job site delivery.
1.09 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 – PRODUCTS

2.01 INTERIOR DOORS

A. CORE

1. Interior Flush Solid Core Doors: Particle board type.

B. INTERIOR DOOR’S FACE

1. Plain Sliced Book Matched and Sequenced Birch. Hand select veneers to eliminate all dark grain patterns.

C. INTERIOR DOOR’S EDGE BAND

1. 1/2" thick, minimum. Species: Manufacturer's standard hardwood, matched for color.

D. INTERIOR DOOR’S FABRICATION

2.02 EXTERIOR DOORS

a. Stile-and-rail construction
b. 3/4" Insulated glass
c. Provide optional UltraBlock® technology: Composite block material finger-jointed into the bottom of the stiles eliminates water infiltration, 5-year warranty
d. Wood Species: Douglas Fir.
e. Thickness: 1-3/4"
f. Panel Detail: 7000 Series flat panel (3/4" thick)
g. Moulding: Ovolo Sticking
h. Glass Detail: 3/4" Insulated Glazing: Clear

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that door frames are correct type, accurately located and sized, square, plumb, true, and otherwise properly prepared. Prior to starting work, notify Architect and Owner about defects requiring correction. Do not start work until conditions are satisfactory.
3.02 PREPARATION OF DOORS FOR HANGING

A. Seal job-cut surfaces with 2 coats waterproof sealer compatible with door finish specified in Section 09 90 00. Undercut doors as required for floor covering clearance. Fit doors for width by planing; for height by sawing.

3.03 HANGING

A. Position doors flush with frame face. Set plumb so door will hold any desired position. Install with the following clearances:

1. Between doors and frames: 1/8"
2. Between door sills and thresholds: 1/4"
3. Between meeting edges of pairs of doors: 1/8"

3.04 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of Final Completion

3.05 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair, and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave surfaces ready for finishing specified in Section 09 90 00. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 08 71 00 - Finish Hardware
B. Section 08 14 00 – Wood Doors
C. Section 09 90 00 - Painting and Finishing

1.03 REGULATORY AGENCY REQUIREMENTS

1.04 REFERENCED SPECIFICATIONS

A. Except as modified herein, conform to requirements of "Recommended Specifications - Standard Steel Doors and Frames", as published by Steel Door Institute.

1.05 SHOP DRAWINGS

A. Submit in accordance with Contract requirements. Show elevations, principal construction features and dimensions of each, and full size glass installation moldings.

1.06 QUALITY ASSURANCE

A. Overall Standards: Comply with ANSI/AAMA 101.I.S.2, except as otherwise noted herein.
 1. Manufacturer Qualifications: Minimum five years experience in producing aluminum doors of the type(s) specified.
 2. Member AAMA, NFRC.

1.07 PRODUCT DELIVERY AND STORAGE

A. Do not deliver to jobsite until notified by General Contractor that project is conditioned and prepared to handle and store products without damage or discoloration.

B. Protect against damage and discoloration. Store upright in protected dry area at least 1" above ground or floor. Cover for protection, but allow air circulation.

1.08 WARRANTY

A. Commercial Special Warranty:
 1. 10-year guarantee.
 2. Guarantee doors against defects in manufacturing and workmanship including costs for parts and labor.
1.09 PROTECTION
 A. Protect other surfaces against damage or discoloration caused by work of this section.

1.10 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 MANUFACTURER
 A. Product specification is based upon the following manufacturer:

 Milgard Manufacturing, Inc. Tel: 1.800.MILGARD (645-4273)
 1010 54th Avenue East (253) 922-2030
 Tacoma, WA 98424 Fax: (253) 926-0848
 Web: milgard.com

 1. Door Series: Milgard Aluminum Doors or approved equal.

2.02 MATERIALS
 A. Aluminum: Comply with requirements of AAMA/WDMA/CSA 101/I.S.2/A440-05, 6063-T5 temper for strength, corrosion resistance and application of required finish.

 B. Extruded frame members are to be .060” in thickness for structural walls.

2.03 GENERAL PERFORMANCE REQUIREMENTS:
 A. Thermal Performance: Comply with NFRC 100.

 C. Forced-Entry Resistance: Comply with CAWM 300-96.

2.04 DOOR TYPES:
 A. Sliding Patio Door – 450 Series

 1. Frame: 450 Series frame depth is 4 1/2”
 2. Sash: Depth of 1 5/16”, hollow aluminum extrusion.
 3. Sightlines: Equal sightlines between sash and fixed glass.

2.05 GLAZING
 A. Insulated Glass Units: ASTM E 774, Class A, 1 inch thick overall.

 1. Tempered Glazing Type: Clear/Clear
2.06 INSECT SCREENS
 A. None required.

2.07 FABRICATION
 A. Fabricate frames and sash with mechanically joined corners. Corners are fastened with corrosion
 resistant screws and sealed with an acrylic sealant.
 B. All sashes are marine glazed with flexible PVC glazing. The sashes will need to be disassembled to
 replace the glazing.

2.08 FINISHES
 A. Frame and Sash Color: Bronze Anodized Finish: Provide AA-C22-A32 Class II Bronze, minimum 0.4
 mils thick, electrolytically deposited color anodized finish.

2.09 SOURCE QUALITY CONTROL
 B. Doors inspected in accordance with manufacturer’s Quality Control Program as required by AAMA
 Gold Label certification.

PART 2 - PRODUCTS

3.01 EXAMINATION
 A. Examine openings in which patio doors will be installed.
 1. Verify that fasteners in framed walls are fully driven and will not interfere with door installation.
 B. Coordinate with responsible entity to correct unsatisfactory conditions.
 C. Commencement of work by installer is acceptance of substrate conditions.

3.02 INSTALLATION
 A. Install doors in framed walls in accordance with manufacturer's recommendations as modified herein.
 Note: Remove nail flanges and secure assembly to framed wall opening with fasteners through patio
 door assembly jambs.
 B. Do not remove temporary labels.

3.03 CLEANING
 A. Reference Section 01 74 00 – Cleaning and Waste Management.
 B. Remove temporary labels and retain for Closeout Submittals.
 C. Clean soiled surfaces and glass using a mild detergent and warm water solution with soft, clean cloths.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Finish Hardware, Section 08 71 00.
B. Wiring Devices, Section 26 27 26.

1.03 SCOPE

A. The scope of this work shall include complete operational power door operator systems to serve single leaves of paired wide stile aluminum storefront doors in two locations. Work shall include provision of all accessories necessary for a complete installation.

B. General Contractor shall verify layout, dimensions, details of construction, methods of joining to other work, required clearances and other pertinent items to fully prepare the facility to accept the stipulated subcontractor's equipment.

C. Provide automatic aluminum doors which have been manufactured, fabricated and installed to maintain performance criteria stated by manufacturer without defects, damage or failure.

1.04 QUALITY ASSURANCE

A. INSTALLERS QUALIFICATIONS: Installer experienced (as determined by contractor) to perform work of this section who has specialized in the installation of work similar to that required for this project and who is acceptable to product manufacturer.

B. MANUFACTURERS QUALIFICATIONS: Manufacturer to have minimum (5) five years successful experience in the fabrication of automatic doors of the type required for this project. Manufacturer capable of providing field service representation during installation, approving acceptable installer and approving application method.

C. AAADM COMPLIANCE: Both installer and manufacturer to meet requirements necessary to get certification/license agreement. Meet certification every (3) three years.

1.05 WARRANTY

A. Units to be warranted against defect in material and workmanship for a period of one year from the date of installation.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section (particularly electrical work, storefront door installation and finishes).
PART 2 - PRODUCTS

2.01 MANUFACTURER

A. HORTON AUTOMATICS, a division of Overhead Door Corporation, shall manufacture automatic swing door(s) of type(s) and size(s) specified on plans and door schedule.

2.02 EQUIPMENT

A. OPERATOR: EasyAccess® Series 7100: Electric operator shall be mounted and concealed in an extruded aluminum case for smooth and quiet operation. Header shall be 4" x 6" with side access.
 a. Opening action shall be accomplished by a 1/15 HP D.C. permanent magnet motor working through reduction gears to the output shaft.
 b. Closing action shall be accomplished by a field replaceable spring. When the door is in the closing mode or fully closed, motor voltage shall not be required and will be off. The door can be manually operated with power on or off without damage to the operator. An On/Off/Hold Open switch shall be supplied.

B. MASTER CONTROL: Shall incorporate the following features:
 1. Adjustable time delay of 2 to 30 seconds.
 2. Infinite adjustment to opening and open check speeds including adjusting the opening force without affecting the opening speed.
 3. Immediate reversal of door motion without undue strain on the drive train. This will be accomplished by supplying stepped voltage to the motor. The door shall reverse when closing if an object stops the door.
 4. Motor Protection Circuit: A locked door motor protection circuit will be supplied that will shut off current to the motor when the door is inadvertently locked or otherwise prevented from opening.

C. OPERATING SEQUENCE (in order of normal use):
 1. The actuating switch signals the operator when to open. Door closes after time delay expires. Operator to include the following variable adjustments so as to comply with ANSI Standard A156.19: Opening speed - 4 to 6 seconds; Closing speed - 4 to 6 seconds. Opening and closing force, measured 1" out from the lock stile of the door, not to exceed 15 pounds of force to stop the door when operating in either direction.
 2. The detection of a fire trips the fire detection device. Provision must be made to remove power from the operator upon activation of the fire alarm causing the door to be mechanically closed by a spring.
 3. The fire detection device also trips the latch release mechanism on the fire exit hardware causing the latch bolts to engage when the door is in the closed position. The fire exit hardware latches the door closed to contain the fire or smoke and prevent it from spreading to other areas of the building.
 4. Exiting: The panic bar is depressed which releases the exit device. The springs on the door operator will re-close the door as soon as the door is released. The door will close and re-latch upon reactivation of the fire detection system.
 5. Reset to automatic mode as required.
2.03 RELATED EQUIPMENT

A. ACTIVATING DEVICE: Shall be located on each side of the opening as per ANSI Safety Standard A117. Activating device shall be Push plate: MS SEDCO 59H or approved equal.

2.03 RELATED EQUIPMENT - Continued

B. UL LABELED EQUIPMENT: Door, frame, hinges, automatic fire detectors or a central alarm control and “fire exit hardware” type GXHX as found in the UL Building Materials Directory.

2.04 RELATED WORK REQUIREMENTS

A. ELECTRICAL: 120 VAC, 60 cycle, 1 phase, 15 amp. Non-North American voltages can be 240 VAC (operator must have 240 volt power supply)

2.05 MATERIALS, FINISHES AND FABRICATION

A. EXTRUDED ALUMINUM: Structural Header Sections shall be Minimum 1/8" (3 mm) thickness. ASTM B221, 6063-T5 alloy and temper, anodized:

B. FINISHES (for all exposed aluminum surfaces): Shall be one of the following:
 1. 204-R1 Clear: Arch. Class 2 Clear Anodized Coating, AA-MI2C22A31.

C. OPERATOR CONSTRUCTION: Electromechanical.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Site Verification of Conditions: Installer must verify that base conditions previously installed under other sections are acceptable for product installation according to with manufacturer's instructions. Notify the Contractor in writing of conditions detrimental to the proper and timely completion of work. Do not start work until all negative conditions are corrected in a manner acceptable to the installer and manufacturer.

B. Electrical contractor to provide necessary power, lighting for installation of equipment.

3.02 INSTALLATION

A. Comply with manufacturer’s recommended installation procedures and standards. Install units plumb, level and true to line, without warp or rack of frames or sash with manufacturer's prescribed tolerances. Provide support and anchor in place.

B. Separate aluminum materials and other dissimilar corroducible surfaces from sources of corrosion or electrolytic action contact points.

C. WEATHER-TIGHT CONSTRUCTION: Install header and framing members in a bed of sealant or with joint filler or gaskets. Coordinate installation with wall flashings and other
components of construction.

D. ELECTRICAL: General or electrical contractor to install all wiring to operator on a separate
 circuit breaker routed into header.

3.03 CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed,
 products which have been soiled, discolored, or damaged by work of this section. Leave
 surface ready for finishing specified in other section. Remove debris from project site upon
 work completion or sooner, if directed.

B. Installer to adjust operator and controls for optimum condition and safety. Repair or replace
 damaged installed products. Lubercate operating equipment for optimum condition.

C. Advise Contractor of precautions required through the remainder of the construction period,
 to ensure that doors will be without damage or deterioration (other than normal weathering)
 at the time of acceptance.

END OF SECTION
WOOD WINDOWS – 08 52 00 - 1

DIVISION 08, OPENINGS
08 52 00 WOOD WINDOWS

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 06 20 00 - Wood Surrounds
 B. Section 07 92 00 - Caulking of Joints Between Windows and Adjacent Construction

1.03 QUALITY ASSURANCE
 A. Units shall comply with requirements of ANSI\AAMA 101V-86 HC-40 Industry Standard for vinyl windows.

1.04 SHOP DRAWINGS
 A. Submit in accordance with Section 01 33 23. Show dimensions, full size sections, thicknesses, construction details, sealing methods, required clearances, anchor location, and installation details.

1.05 PRODUCT DELIVERY, STORAGE AND HANDLING
 A. Protect against damage and discoloration. Deliver any anchoring devices to be embedded into concrete to General Contractor for installation. Label each unit with installation location. Store in upright position, off ground, and on dunnage.

1.06 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.07 WARRANTY
 A. Warrant for 2 years against leakage, air infiltrations, faulty operation, and finish deterioration.

PART 2 - PRODUCT

2.01 MANUFACTURERS
 A. This specification is based upon the JELD-WEN, Inc., Siteline double hung window product to clarify the required system characteristics. Equivalent wood window assemblies shall be acceptable subject to substitution request process.

2.02 ALL WOOD WINDOWS - GENERAL
 A. Design Requirements: Provide assemblies capable of complying with requirements indicated, based on testing manufacturer's units that are representative of those specified.
1. Test Size: In compliance with requirements of AAMA/WDMA/CSA 101/I.S2/A440.
2. Structural Requirements: Provide assemblies complying with requirements indicated:
3. Performance Class: CW.
4. Performance Grade: 30.
5. NFRC Requirements: Provide assemblies complying with the following total window ratings:
 a. U-Factor: .35 in accordance with NFRC 100.

B. Installation Accessories:
 1. Flashing: Refer to Section 07 60 00 - Flashing and Sheet Metal.
 2. Sealants: OSI Sealants by Henkel Corporation.
 3. Sealants: Manufacturer recommended sealants to maintain watertight conditions.

C. Materials:
 1. Exterior Wood: Western Pine, preservative treated with AuraLast by JELD-WEN, Inc. in accordance with WDMA I.S.4.

D. Finishes:
 1. Interior Finishes for Windows: Optional primed finish.

2.03 ALL WOOD DOUBLE HUNG WINDOW ASSEMBLIES (SITELINE)

A. Basis of Design: Siteline Series Wood window assemblies as manufactured by JELD-WEN, Inc. to clarify the required system characteristics. Equivalent wood window assemblies shall be acceptable subject to substitution request process.

B. Window Type: Double-hung windows.
 1. Window Fabrication:
 2. Window Type: Double-hung windows.
 3. Frame: Corner joints mechanically fastened.
 5. Glass: Mounted using silicone glazing compound and secured with interior applied profiled wood stops.
 7. Sash Bottom Rail: Standard 2-1/4 inches (57.2 mm).
 8. Sash Bottom Rail Optional 3-1/2 inches (88.9 mm).

C. Frames:
 1. Material: Select kiln-dried pine AuraLast treated wood.
 2. Double-hung Windows Base Frame: 4-9/16 inch (115 mm).
 3. Jamb Width: 4-9/16 inches (116 mm).

D. Sash:
 1. Select kiln-dried pine AuraLast treated wood.
 2. Sash Thickness: 1-7/16 inches (36.5 mm).
E. Exterior Trim:
 1. As selected from Manufacturer's standard offering.
 2. Casing, Standard: 2 inch brickmould.

F. Factory Applied Extension Jambs:
 1. Configuration: On 3 sides of frame interior in preparation for stool by others.

G. Weatherstripping:
 1. Double-hung Windows: Dual bulb at head and sill, thermoplastic rubber bulb at check rail, rigid vinyl water stops at sill.

H. Window Hardware:
 1. Double-Hung Windows:
 2. Balance: Dual block and tackle.

I. Glazing for Windows:
 2. Glazing Type: Insulated glass.
 a. Description: Two panes of glass utilizing continuous roll formed stainless steel spacer and dual seal sealants.
 b. Overall Nominal Thickness: 3/4 inch (19 mm).
 d. Glass Protection: Plastic preserve film on interior and exterior of glass.
 e. Air Space: Standard Argon-filled airspace.

J. Exterior Insect Screens:
 1. Not required.

2.04 ALL WOOD FIXED RADIUS WINDOW ASSEMBLIES (SITELINE)

A. Basis of Design: Siteline Series Wood window assemblies as manufactured by JELD-WEN, Inc. to clarify the required system characteristics. Equivalent wood window assemblies shall be acceptable subject to substitution request process.

B. Window Type: Fixed radius windows.
 1. Window Fabrication:
 2. Window Type: Fixed, Half-round.
 3. Frame: Corner joints mechanically fastened.
 5. Glass: Mounted using silicone glazing compound and secured with interior applied profiled wood stops.
 8. Sash Bottom Rail Optional 3-1/2 inches.
C. Frames:
 1. Material: Select kiln-dried pine AuraLast treated wood.
 2. Double-hung Windows Base Frame: 4-9/16 inch (115 mm).

D. Sash: Select kiln-dried pine AuraLast treated wood.

E. Exterior Trim:
 2. Sill Nosing: 2 inches.

F. Factory Applied Extension Jamb
 1. Configuration: On 3 sides of frame interior in preparation for stool by others.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces and openings to receive windows are square, plumb, rigid, accurately sized and located, clean or debris, and otherwise properly prepared. Prior to starting work, notify General Contractor of defects requiring correction.

B. Inspect and prepare openings and substrates using the methods recommended by the manufacturer for achieving best result for the substrates under project conditions. Inspect assembly components prior to installation.

C. Verify rough opening conditions are within recommended tolerances. Form sheet metal sill pan in accordance with manufacturer's recommendations. Prepare assembly components for installation in accordance with manufacturer's recommendations.

D. Do not proceed with installation until openings and substrates have been prepared using the methods recommended by the manufacturer and deviations from manufacturer's recommended tolerances are corrected. Commencement of installation constitutes acceptance of conditions.

E. If preparation is the responsibility of another installer, notify Owner's Representative and Architect in writing of deviations from manufacturer's recommended installation tolerances and conditions.

3.02 FIELD MEASUREMENTS

A. Verify prior to fabrication. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabrication.
3.03 INSTALLATION

A. Install windows in accordance with manufacturer's instructions and approved shop drawings.

B. Install windows to be weather-tight and freely operating.

C. Maintain alignment with adjacent work.

D. Secure assembly to framed openings, plumb and square, without distortion.

E. Integrate window system installation with exterior water-resistant barrier using flashing/sealant tape. Apply and integrate flashing/sealant tape with water-resistant barrier using watershed principles in accordance with window manufacturer's instructions.

F. Place interior seal around window perimeter to maintain continuity of building thermal and air barrier using insulating-foam sealant.

G. Seal window to exterior wall cladding with sealant and related backing materials at perimeter of assembly.

H. Leave windows closed and locked.

3.04 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair, and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

B. Clean the exterior surface and glass with mild soap and water. Remove and dispose of protective film from glass; touch-up, repair or replace damaged components and assemblies before Substantial Completion.

END OF SECTION
DIVISION 8, OPENINGS
08 71 00 FINISH HARDWARE

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 10 40 00 – Safety Specialties
B. Section 06 41 00 – Custom Built Casework and Shelving
C. Section 28 13 00 - Access Control

1.03 SUBSTITUTIONS

A. Products specified establish desired quality and appearance levels. Approved alternate manufacturer may be bid. Conform to requirements specified in Section 01 25 00.
B. Include with requests: Specified item, design, catalog number, and finish for each item on which approval is being requested. Blanket approvals by manufacturer's name only will not be given.

1.04 SUPPLIER'S REPRESENTATIVE

A. Hardware supplier shall employ person qualified for membership in the American Society of Hardware Consultants, who shall be available for consultation with Architect, General Contractor and Owner during course of work. Prior to Final Completion, supplier's representative shall make one field inspection and notify Architect if hardware installation complies with manufacturer's instructions. Prior to Final Completion, supplier's representative shall instruct Owner how to properly adjust and maintain hardware.

1.05 INSTALLER'S QUALIFICATIONS

A. Installation of finish hardware shall be performed by a contractor with a minimum of five years with commercial finish hardware installation. Contractor shall be trained or approved by the finish hardware manufacturers.

1.06 REGULATORY AGENCY REQUIREMENTS

A. Conform to UL requirements for fire-rated openings.

1.07 SUPPLIER'S HARDWARE SCHEDULE

A. Submit similar to Shop Drawings in accordance with Section 01 33 23. Indicate each item and location.
1.08 PRODUCT DELIVERY
 A. Package each item separately, and identify with hardware schedule number. Deliver to General Contractor for installation in original, unopened containers with legible labels intact. Ship tagged and identified keys by registered mail to General Contractor. Include complete set of specialized hardware maintenance and removal tools for Owner's use. Store where directed by Owner.

1.09 PRODUCT STORAGE AND HANDLING
 A. Protect against theft, damage, and discoloration.

1.10 PROTECTION
 A. Protect other surfaces against damage and discoloration caused by work of this section.

1.11 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.12 CONSTRUCTION LOCKS
 A. Provide temporary construction locks during the course of work. Replace construction locks immediately prior to Owner move-in. Keys to final locks shall not be made available to any individuals without Owner approval.

PART 2 - PRODUCTS

2.01 DOOR SILENCERS
 A. Three silencers for single doors.
 B. Omit silencers at doors with gaskets or weatherstripping.

2.02 FASTENERS
 A. Provide required screw, bolts, and other fasteners. Match hardware material and finish.

2.03 HINGES
 A. Provide non-removable pins on out-swinging, corridor door hinges.

2.04 FABRICATION
 A. Cut and fit threshold and floor plates to door frame profile with mitered corner joints. Fabricate joints and cuts smooth and with hair-line seams. Make hardware for door and frames to template. Send templates, together with Hardware Schedule, to door and frame manufacturer not later than two weeks after approval of Hardware Schedule.

2.05 SCHEDULE
 A. Keying
 1. Keying systems employed shall provide maximum security. Keying systems shall be
proprietary. Contractor shall coordinate with the Owner's Key Shop, who will provide keying.

B. Finishes

1. 626- Dull Chrome.

C. Manufacturers

1. The numbers listed in the schedules are taken from catalogs of the following manufacturers:

<table>
<thead>
<tr>
<th>Hardware Item</th>
<th>Specified Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butts</td>
<td>Hager</td>
</tr>
<tr>
<td>Locks/Locksets</td>
<td>Best</td>
</tr>
<tr>
<td>Keypad Locksets</td>
<td>Schlage</td>
</tr>
<tr>
<td>Exit Device</td>
<td>Von Duprin</td>
</tr>
<tr>
<td>Closers</td>
<td>LCN</td>
</tr>
<tr>
<td>Stops</td>
<td>Ives</td>
</tr>
<tr>
<td>Astragals</td>
<td>Pemko</td>
</tr>
<tr>
<td>Thresholds</td>
<td>Pemko</td>
</tr>
<tr>
<td>Door Gasket</td>
<td>Pemko</td>
</tr>
<tr>
<td>Silencers</td>
<td>Glynn Johnson</td>
</tr>
</tbody>
</table>

D. Butts

1. Interior Doors: BB1191 Five Knuckle standard weight ball bearing hinge.
2. Exterior Doors: BB1199 Five Knuckle heavy weight ball bearing hinge w/non-removable pins.

E. Lockset and Latchset Design

1. General: Provide strikes with extended lip where required to protect trim from being marred by latch bolt. Component lock parts shall be product of one manufacturer and must carry that manufacturer's guarantee.
2. Typical Door Hardware Type and Design: Best 93K, 16D Series cylindrical lock, or approved equal.
3. Typical Electronic Door Hardware Type and Design: Best 9KW7, DEU, 16D Series cylindrical lock, or approved equal.
4. Keypad Lockset Type and Design: Schlage AD200CY40KPATH6264B or approved equal.

F. Camden Lockset Design

1. Single-user restroom door control: Provide Camden CX-22 dual function relay
2. Annunciators: Provide two CM-AF500 single gang annunciators printed with:
 OCCUPIED WHEN LIT
 LOCKED WHEN LIT
3. Activators: Provide Camden CM-500/4 mushroom push switch with 4 ½" x 4 ½" faceplate printed with push to lock
4. Additional Hardware: Provide CX-MDC surface mount door contacts and Von Duprin 6210 electric strike.
5. Where more than one single-user restrooms are provided in close proximity to each other, a minimum of one restroom shall be provided with this hardware.

G. Exit Device Design

1. General: Provide strikes with extended lip where required to protect trim from being marred by latch bolt. Component exit device parts shall be product of one manufacturer and must carry that manufacturer's guarantee.
2. Typical Door Hardware Type and Design: Von Duprin, 99 Series exit device, or approved equal.
3. Electronic Door Hardware Type and Design: Von Duprin, 9927OEL Series exit device, or approved equal.

H. Door Closers

1. 4040 series, size as recommended by door supplier. Verify door-opening degree. Provide handicapped delay action feature.
2. Adjust door closers to ADA recommended operational force levels, see section 3.04.B below.

I. Door Stops

1. Provide for all doors. Stop numbers refer to types. Locate stops at contact point. In certain locations, it may be advantageous to locate stop on floor or door.

J. Thresholds

1. Extruded aluminum. Pemko 257x259A ramped threshold, Pemko 158A offset threshold or Pemko 171 A thresholds (or approved equals) at locations indicated on drawings. Verify installation locations with hardware schedule.

K. Schedule

1. See Door Schedule on Drawings and Hardware Groups Scheduled at the end of this specification section.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive finish hardware are properly prepared, including necessary backing. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION

A. Accurately locate, fit, and install square, plumb, and secure in accordance with manufacturer's directions and templates. Mount at the following heights above the floor, unless otherwise shown on drawings:

1. Top butt 5" from door top to butt top.
2. Intermediate butt Equal distance between top and bottom butts.
3. Bottom butt 10" to butt bottom.
4. Lever locks 39" to lever pivot center.
5. Dead locks 42" to cylinder center.
6. All others Manufacturer's standard.

B. After fitting mortised hardware to surfaces to be painted, remove and store hardware in original package until painting completion, then permanently install.

3.03 DOOR LEVER BACKSET

A. 2-3/4" from door edge (typical).

3.04 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of Final Completion.

B. Adjust hardware to conform with the American's with Disabilities Act guidelines. In particular adjust closers as follows:

1. Exterior Doors: Provide maximum 8 1/2 pounds force to operate door; close door with minimum of 3 seconds from 70 degree opening angle to within 3 inches of jamb.
2. Interior Doors: Provide maximum 5 pounds force to operate door; close door with minimum of 3 seconds from 70 degree opening angle to within 3 inches of jamb.

3.05 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair, and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
HARDWARE SCHEDULE

HARDWARE GROUP H1

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>2 EA</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>689</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELEC. PANIC HARDWARE</td>
<td>RX-QEL-9927-EO-CON</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELEC. PANIC HARDWARE</td>
<td>RX-QEL-9927-NL OP-110WD</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>1E72 S2 RP3</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>MORTICE CYLINDER</td>
<td>1E74 RP3</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>2 EA</td>
<td>OVERHEAD STOP</td>
<td>100S</td>
<td>630</td>
<td>GLYNN JOHNSON</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4111 EDA ST-1496 WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE AUTO OPERATOR</td>
<td>4642 CS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>BLADE STOP SPACER</td>
<td>4110-61</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>ACTUATOR</td>
<td>216-N</td>
<td>630</td>
<td>SED</td>
</tr>
<tr>
<td>1 EA</td>
<td>ACTUATOR</td>
<td>216-N (VEST. BI-DIRECTIONAL)</td>
<td>630</td>
<td>SED</td>
</tr>
<tr>
<td>2 EA</td>
<td>DOOR SEAL SET</td>
<td>8303 AA</td>
<td>697</td>
<td>ZERO</td>
</tr>
<tr>
<td>2 EA</td>
<td>DOOR BOTTOM</td>
<td>8197AA</td>
<td>697</td>
<td>ZERO</td>
</tr>
<tr>
<td>2 EA</td>
<td>KICK PLATE</td>
<td>8400 10"X2"LDW B-CS</td>
<td>630</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>THRESHOLD</td>
<td>158A</td>
<td>630</td>
<td>PEMKO</td>
</tr>
<tr>
<td>2 EA</td>
<td>WIRE HARNESS</td>
<td>CON-192P (VERIFY LENGTH)</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>2 EA</td>
<td>WIRE HARNESS</td>
<td>CON-6W</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>2 EA</td>
<td>DOOR CONTACT</td>
<td>679-05HM/WD AS REQUIRED</td>
<td>689</td>
<td>SCE</td>
</tr>
<tr>
<td>1 EA</td>
<td>POWER SUPPLY</td>
<td>PS902 900-BBK 900-2RS</td>
<td>LGR</td>
<td>SCE</td>
</tr>
</tbody>
</table>

COMMENTS:

ACCESS CONTROL - WORK OF DIVISION 28
PROVIDE FACTORY POINT TO POINT WIRING DIAGRAMS
PROVIDE RISER DIAGRAMS

HARDWARE GROUP H2

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>689</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELEC. PANIC HARDWARE</td>
<td>RX-QEL-9927-NL OP-110WD</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>MORTICE CYLINDER</td>
<td>1E74 RP3</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4111 EDA WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE AUTO OPERATOR</td>
<td>EASYACCESS 7100</td>
<td>689</td>
<td>HORTON</td>
</tr>
<tr>
<td>1 EA</td>
<td>BLADE STOP SPACER</td>
<td>4110-61</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>ACTUATOR</td>
<td>216-N</td>
<td>630</td>
<td>SED</td>
</tr>
<tr>
<td>1 EA</td>
<td>ACTUATOR</td>
<td>216-N (VEST. BI-DIRECTIONAL)</td>
<td>630</td>
<td>SED</td>
</tr>
<tr>
<td>1 EA</td>
<td>KICK PLATE</td>
<td>8400 10"X2"LDW B-CS</td>
<td>630</td>
<td>ZERO</td>
</tr>
<tr>
<td>2 EA</td>
<td>DOOR SEAL SET</td>
<td>8303 AA</td>
<td>697</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR BOTTOM</td>
<td>8197AA</td>
<td>697</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>THRESHOLD</td>
<td>158A</td>
<td>630</td>
<td>PEMKO</td>
</tr>
<tr>
<td>2 EA</td>
<td>MOUNTING BRACKET</td>
<td>770SPB</td>
<td>630</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>WIRE HARNESS</td>
<td>CON-192P (VERIFY LENGTH)</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>WIRE HARNESS</td>
<td>CON-6W</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR CONTACT</td>
<td>679-05HM/WD AS REQUIRED</td>
<td>689</td>
<td>SCE</td>
</tr>
</tbody>
</table>

COMMENTS:

ACCESS CONTROL - WORK OF DIVISION 28
POWER SUPPLY - WORK OF DIVISION 28
HARDWARE GROUP H3

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>POWER TRANSFER</td>
<td>EPT10 CON</td>
<td>689</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELEC. PANIC HARDWARE</td>
<td>RX-QEL-9927-EO-CON</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>RIM CYLINDER</td>
<td>1E72 S2 RP3</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4111 EDA WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>KICK PLATE</td>
<td>8400 10"X2"LDW B-CS</td>
<td>630</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR SEAL SET</td>
<td>8303 AA</td>
<td>AA</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR BOTTOM</td>
<td>8197AA</td>
<td>AA</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>THRESHOLD</td>
<td>158A</td>
<td>AA</td>
<td>PEMKO</td>
</tr>
<tr>
<td>2 EA</td>
<td>MOUNTING BRACKET</td>
<td>770SPB</td>
<td></td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>WIRE HARNESS</td>
<td>CON-192P (VERIFY LENGTH)</td>
<td></td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>WIRE HARNESS</td>
<td>CON-6W</td>
<td></td>
<td>VONDUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR CONTACT</td>
<td>679-05HM/WD AS REQUIRED</td>
<td>BLK</td>
<td>SCHLAGE</td>
</tr>
</tbody>
</table>

COMMENTS:

ACCESS CONTROL - WORK OF DIVISION 28
POWER SUPPLY - WORK OF DIVISION 28

HARDWARE GROUP H4

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>LOCKSET</td>
<td>93K7AB16DSTK W/7 PIN RC</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4111 EDA WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>KICK PLATE</td>
<td>8400 10"X2"LDW B-CS</td>
<td>630</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR SEAL SET</td>
<td>8303 AA</td>
<td>AA</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR BOTTOM</td>
<td>8197AA</td>
<td>AA</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>THRESHOLD</td>
<td>158A</td>
<td>AA</td>
<td>PEMKO</td>
</tr>
</tbody>
</table>

COMMENTS:

HARDWARE GROUP H5

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>LOCKSET</td>
<td>93K0N16DSTK</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR SEAL SET</td>
<td>S88D</td>
<td>BLK</td>
<td>PEMKO</td>
</tr>
<tr>
<td>1 EA</td>
<td>PRIVACY INDICATOR</td>
<td>D871K</td>
<td>626</td>
<td>FALCON</td>
</tr>
</tbody>
</table>

COMMENTS:
HARDWARE GROUP H6

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>CORRIDOR LOCK</td>
<td>L9456BDC 17A</td>
<td>630</td>
<td>SCHLAGE</td>
</tr>
<tr>
<td>1 EA</td>
<td>PERMANENT CORE</td>
<td>1C7 VERIFY, VERIFY KEYWAY</td>
<td>626</td>
<td>VON DUPRIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELECTRIC STRIKE</td>
<td>6210 FS 24VDC</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE AUTO OPERATOR</td>
<td>4631 CS WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>2 EA</td>
<td>ACTUATOR</td>
<td>216-N</td>
<td>630</td>
<td>SED</td>
</tr>
<tr>
<td>2 EA</td>
<td>ACTUATOR</td>
<td>216-N (VEST. BI-DIRECTIONAL)</td>
<td>630</td>
<td>SED</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR SEAL SET</td>
<td>S88D</td>
<td>BLK</td>
<td>PEMKO</td>
</tr>
<tr>
<td>1 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>PUSH SWITCH</td>
<td>CM-500/4</td>
<td></td>
<td>CAMDEN</td>
</tr>
<tr>
<td>1 EA</td>
<td>ANNUNCIATOR "LOCKED"</td>
<td>CM-AF500</td>
<td></td>
<td>CAMDEN</td>
</tr>
<tr>
<td>1 EA</td>
<td>ANNUNCIATOR "UNLOCKED"</td>
<td>CM-AF-500</td>
<td></td>
<td>CAMDEN</td>
</tr>
<tr>
<td>1 EA</td>
<td>RELAY</td>
<td>CX-22</td>
<td></td>
<td>CAMDEN</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR CONTACTS</td>
<td>CX-MDC</td>
<td></td>
<td>CAMDEN</td>
</tr>
<tr>
<td>1 EA</td>
<td>"PUSH TO LOCK"</td>
<td>SWITCH CM-500/4</td>
<td></td>
<td>CAMDEN</td>
</tr>
</tbody>
</table>

COMMENTS:

120VAC TO DOOR OPERATOR

HARDWARE GROUP H7

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>LOCKSET</td>
<td>93K7AB16DSTK W/7 PIN RC</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>3 EA</td>
<td>DOOR SILENSERS</td>
<td>64</td>
<td>GRAY</td>
<td>GLYNN JOHNSON</td>
</tr>
</tbody>
</table>

COMMENTS:

HARDWARE GROUP H8

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>LOCKSET</td>
<td>93K7AB16DSTK W/7 PIN RC</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>FLUSH BOLT</td>
<td>FB457 W/DP2 STRIKES</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>ASTRAGAL</td>
<td>355CS</td>
<td></td>
<td>PEMKO</td>
</tr>
<tr>
<td>2 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>6 EA</td>
<td>DOOR SILENSERS</td>
<td>64</td>
<td>GRAY</td>
<td>GLYNN JOHNSON</td>
</tr>
</tbody>
</table>

COMMENTS:

HARDWARE GROUP H9

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>LATCHSET</td>
<td>93K0N16DSTK</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>3 EA</td>
<td>DOOR SILENSERS</td>
<td>64</td>
<td>GRAY</td>
<td>GLYNN JOHNSON</td>
</tr>
</tbody>
</table>

COMMENTS:
<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>ELECTRIC PRIVACY LOCK</td>
<td>AD-200-MD-40-KP-ATH-BD</td>
<td>626</td>
<td>SCHLAGE</td>
</tr>
<tr>
<td>1 EA</td>
<td>PERMANENT CORE</td>
<td>1 C7 VERIFY, VERIFY KEYWAY</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4011 WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>KICK PLATE</td>
<td>8400 10" X 2" LDW B-CS</td>
<td>630</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>GASKETING</td>
<td>488S-BK</td>
<td>S-BK</td>
<td>ZERO</td>
</tr>
<tr>
<td>3 EA</td>
<td>GASKETING</td>
<td>770AA</td>
<td>AA</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR BOTTOM</td>
<td>369AA6</td>
<td>AA</td>
<td>ZERO</td>
</tr>
<tr>
<td>1 EA</td>
<td>THRESHOLD</td>
<td>566A</td>
<td>AA</td>
<td>ZERO</td>
</tr>
</tbody>
</table>

COMMENTS: LACTATION ROOM PRIVACY LOCK

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>WI-Q MORTICE LOCK</td>
<td>45HQ7DV14PH</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>PERMANENT CORE</td>
<td>1 C7 VERIFY, VERIFY KEYWAY</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4111 EDA WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>1 EA</td>
<td>WALL STOP</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>3 EA</td>
<td>DOOR SILENSERS</td>
<td>64</td>
<td>GRAY</td>
<td>GLYNN JOHNSON</td>
</tr>
<tr>
<td>1 EA</td>
<td>MOUNTING BRACKET</td>
<td>770SPB</td>
<td>BLK</td>
<td>SCHLAGE</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR CONTACT</td>
<td>679-05HM/WD AS REQUIRED</td>
<td>VERIFY LENGTH</td>
<td>BLK</td>
</tr>
</tbody>
</table>

COMMENTS:
ACCESS CONTROL - WORK OF DIVISION 28
POWER SUPPLY - WORK OF DIVISION 28

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>MODEL NUMBER</th>
<th>FINISH</th>
<th>MFR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 EA</td>
<td>HINGES</td>
<td>FBB179 5X4.5</td>
<td>626</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1 EA</td>
<td>WI-Q MORTICE LOCK</td>
<td>45HQ7DV14PH</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>PERMANENT CORE</td>
<td>1 C7 VERIFY, VERIFY KEYWAY</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1 EA</td>
<td>SURFACE CLOSER</td>
<td>4111 EDA WMS</td>
<td>689</td>
<td>LCN</td>
</tr>
<tr>
<td>2 EA</td>
<td>WALL STOPS</td>
<td>WS406CVX</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>FLUSH BOLT</td>
<td>FB457 W/DP2 STRIKES</td>
<td>626</td>
<td>IVES</td>
</tr>
<tr>
<td>1 EA</td>
<td>ASTRAGAL</td>
<td>355CS</td>
<td>PEMKO</td>
<td></td>
</tr>
<tr>
<td>6 EA</td>
<td>DOOR SILENSERS</td>
<td>64</td>
<td>GRAY</td>
<td>GLYNN JOHNSON</td>
</tr>
<tr>
<td>1 EA</td>
<td>MOUNTING BRACKET</td>
<td>770SPB</td>
<td>BLK</td>
<td>SCHLAGE</td>
</tr>
<tr>
<td>1 EA</td>
<td>DOOR CONTACT</td>
<td>679-05HM/WD AS REQUIRED</td>
<td>VERIFY LENGTH</td>
<td>BLK</td>
</tr>
</tbody>
</table>

COMMENTS:
ACCESS CONTROL - WORK OF DIVISION 28
POWER SUPPLY - WORK OF DIVISION 28
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 08 52 00 – Wood Windows
 B. Section 10 40 00 – Safety Specialties

1.03 REGULATORY AGENCY REQUIREMENTS

1.04 PRODUCT DELIVER, STORAGE, AND HANDLING
 A. Schedule glass delivery to coincide with glazing schedules. Original label, showing manufacturer, quality, and thickness required for each piece of glass, except where label must be removed for glass-cutting. Deliver other glazing materials in original containers, manufacturer's original legible labels thereon. Protect against damage and discoloration.

1.05 ENVIRONMENTAL CONDITIONS
 A. Do not install glazing when temperature is below 40 degrees F., when dust is present, or in wet weather except under cover.

1.06 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.07 PROTECTION
 A. Protect materials of other trades against damage or discoloration caused by work of this section. Protect installed glazing against breakage and staining.

1.08 WARRANTY
 A. Warrant exterior glazing against air and water infiltration for two years, and insulating glass against seal failure for five years.

PART 2 - PRODUCTS

2.01 APPROVED MANUFACTURERS
 A. AGW Old Style Window Glass, hereinafter called AGW
B. Or approved equal.

2.02 REPLACEMENT WINDOW GLASS

A. Type: AGW Old Style Window Glass, Type A (verify distortion to match adjacent glass).
B. Thickness: to match existing window glass.
C. Finish: Clear

2.04 GLAZING COMPOUND

A. Gibson-Homans, PTI, Pacific Putty, 3-M, Norton, or approved equal. Type as recommended by manufacturer for conditions of use.

2.05 SETTING BLOCKS

A. Neoprene rubber with 70-90 shore “A” durometer hardness, and compatible with glazing compound and sealant. Fabricate wider than glass unit thickness and long enough to support glass without excessive pressure on glass edge.

2.06 OBSCURE FILM

A. SOLYX SX-1002 Clear Sand Blast applied at interior face of window, or approved. Obtain Owner’s Representative's approval of sample prior to ordering material.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that openings to be glazed are accurately sized and located, and free of fasteners and other projections which will interfere with glazing. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 FIELD MEASUREMENTS

A. Verify opening dimensions prior to fabrication. Allow for glass edge clearances. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabrication.

3.03 PREPARATION OF SURFACES

A. Prior to starting work, clean, dry, and remove protective coatings from glass and surfaces to be glazed.

3.04 INSTALLATION - GENERAL

A. Follow glass manufacturer's recommendations. Allow for glass expansion and contraction. Install glass larger than 5 square feet with setting blocks placed at sill quarter points. Install glass surface waves running horizontal.

3.06 CLEANING AND REPAIRING
A. Remove excess glazing compound from glass and surrounding work. Final glass cleaning specified in Section 01 74 00, Cleaning. Remove debris from project site upon work completion or sooner if directed.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 09 51 00 – Acoustic Ceilings
B. Section 09 90 00 – Painting and Finishing

1.03 EXTENT OF WORK

A. Where spaces are scheduled to receive gypsum drywall, include closets and alcoves opening off these spaces, and any beams, and pilasters within spaces, unless otherwise indicated. Extend gypboard full height at interior face of exterior walls and at both faces of sound insulated walls. Gypsum board finish shall terminate approximately 6” above finished ceiling in all other locations unless shown otherwise.

1.04 REGULATORY AGENCY REQUIREMENTS

A. Where fire-rated partitions or ceilings are noted, construct to obtain specified rating.

1.05 REFERENCED SPECIFICATIONS

A. Conform to current Gypsum Association recommended specifications for the application and finishing of gypsum board, as modified and supplemented herein. Recommended materials and methods are mandatory. Those proposed by contractor as equal or equivalent must be accepted by Architect. Referenced specifications may be obtained from Gypsum Association, 1603 Orrington Avenue, Evanston, Illinois 60201.

1.06 PRODUCT DELIVER, STORAGE, AND HANDLING

A. Deliver products to site with manufacturer's original labels intact and legible. Identify fire-rated materials with testing agency label. Protect gypsum materials against damage and discoloration and metal materials against rust. Do not stack gypsum boards with long lengths overhanging shorter lengths. Do not overload floor system with stockpiled materials. Indicate adhesive "open time" on adhesive container label.

1.07 WORK SPACE TEMPERATURE

A. Maintain between 55-degrees F. and 75-degrees F. for 24 hours before, during, and 24 hours after materials have dried.

1.08 VENTILATION

A. Maintain sufficient ventilation for proper joint treatment drying and for safe and healthy working environment for all workers. Prevent excessive drafts during hot, dry weather.
1.09 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.10 PROTECTION
 A. Protect other work against damage and discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 GYPSUM BOARD
 A. Standard Gypsum Board
 1. Bestwall, Celotex, Kaiser, Johns-Manville, Pabco, National Gypsum, U.S. Gypsum, Flintkote, Georgia Pacific or approved. Type as follows:
 b. Overlay Assemblies: Tapered edge, 1/2" thick.

 B. Acoustic Gypsum Board (apply to interior face of one face of each office acoustic insulated wall)
 1. Pabco Gypsum or approved. Type as follows:

2.02 FASTENERS
 A. Screws
 1. Self-tapping, self-drilling, bugle head, ASTM C-646. Type W (1 1/4"

2.03 METAL TRIM
 A. At External Corners:
 1. "Beadex", "Perf-A-Bead", "Dura-Bead", Casings-Western #220, or approved equal, as required.

 B. At Exposed Gypsum Board Edges and Where Gypsum Board Abuts Other Materials
 2. U.S. Gypsum casing bead No. 200, Casings-Western #108, or approved equal.

 C. At Window surrounds:
 1. Fry F reveal molding (DRMF-50-50) or approved equal.

2.04 JOINT TAPE
 A. Interior: Conform to ASTM C-475, perforated.
2.05 JOINT COMPOUND
 A. Interior: Conform to ASTM C-475.

2.06 LAMINATING ADHESIVE
 A. For adhering gypsum board to wood framing or gypsum board: Type recommended by gypsum board manufacturer.

2.07 SPRAY TEXTURE
 A. USG, Kaiser, "Spray Texture", or approved equal. Provide at gypsum board surfaces scheduled to receive paint finish.

2.08 OTHER MATERIALS
 A. Made or recommended by gypsum board manufacturer. Provide all indicated or required for complete installation.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
 A. Verify that surfaces to receive gypsum board are accurately located, plumb, square, true, secure, and otherwise properly prepared. Prior to starting work, notify Architect and Owner of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 ACOUSTIC SEALANT INSTALLATION
 A. Gun or butter sealant to floor and ceiling plates prior to installation, and around electrical boxes, pipes, etc., located in or passing through sound walls. Prior to installing gypsum board, provide acoustic sealant around sound wall perimeters in angle between walls, floor, and ceiling. Press board into sealant forming bond between framing member face and backside of board. Provide in joints between sound walls and other adjacent materials. Permit no voids for sound passage. Provide at walls and ceiling of Lavatory #107.

3.03 TYPICAL GYPSUM BOARD INSTALLATION
 A. Follow referenced specifications and manufacturer's directions as amplified hereunder. Extend wallboard to within 1/4" of floor. Loosely butt joints. Place tapered edges together, except at angles. Do not place butt ends against tapered edges. Where possible, apply boards without butt joints. Where butt joints are necessary, locate as far from wall and ceilings centers as possible and stagger, including joints on opposite sides of partitions. Support board ends and edges on framing members. At outside corners conceal cut edges with covered edges. Maintain 3/8" minimum distance between fastener and board edge. Dimple board surface 1/32" with fastener. Do not fracture face paper.

 B. Secure single-ply boards to framing as follows:
 1. Wall framing Screw at 7" o.c.
 2. Ceiling framing Screw at 6" o.c.
3.04 JOINT, CORNER, AND EDGE TREATMENT

A. Reinforce inside corners in accordance with manufacturer's direction. Except at sound deadening board and backer board, treat filled joints and fastener holes in accordance with referenced specifications. Protect external corners and exposed edges with metal trim.

3.05 SURFACE TEXTURE

A. At Walls and Ceilings to be Painted
 1. Spray apply to produce light orange peel texture. Before starting work, submit texture sample to Architect for review and acceptance.

B. Application
 1. Apply after joints are taped and dry. Follow manufacturer's directions.

3.06 REPAIRS

A. General
 1. After installation and before finishing, correct surface damage and defects. Leave surfaces clean, smooth, and ready for finishing specified in Section 09 90 00.
 2. Repair all cracks and defects that develop during the one year warranty period without additional cost to Owner.

B. Ridging
 1. Sand ridges smooth without cutting joint tape. Fill concave areas on both sides of ridge with compound and finish to match adjacent surface.

C. Cracks
 1. Fill with compound and finish to match adjacent surface.

3.07 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed by Owner or Architect, products which have been soiled, discolored, or damaged by work of this section. Leave surface ready for finishing specified in other section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
DIVISION 9, FINISHES
09 51 00 ACOUSTIC CEILINGS

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 09 20 00 – Gypsum Drywall

1.03 REFERENCED SPECIFICATIONS

A. General: Specifications may be obtained from associations listed below.

C. Suspension Systems: Suspension systems, hereinafter specified, refer to "Metal Suspension Systems for Acoustical Tile and Lay-In Panel Ceilings", ASTM C-635, and to "Recommended Practice for Installation of Metal Ceiling Suspension System for Acoustic Tile and Lay-In Panels", ASTM C-636.

1.04 WORKER QUALIFICATIONS

A. Approved by manufacturer of materials being installed.

1.05 REQUIREMENTS OF REGULATORY AGENCIES

A. Conform to requirements of building code, if more restrictive than those herein. Notify Architect of differences prior to starting work.

1.06 ALLOWABLE TOLERANCES

A. Suspension system components fully loaded; maximum deflection: 1/360 of span in accordance with ASTM C-635. Finish surfaces level and true within 1/8" per 12'-0".

1.07 EXTRA STOCK

A. Submit one (1) extra case of each panels in unopened protective packages. Store in Authorized Owner’s Representative approved location.

1.08 PRODUCT DELIVERY

A. Deliver in original, unopened, protective packages with manufacturer's labels indicating brand name, pattern, size, thickness, and fire rating legible and intact.

1.09 PRODUCT STORAGE AND HANDLING

A. Protect against damage and discoloration. Store cartons open at each end to stabilize
moisture content and temperature.

1.10 ENVIRONMENTAL REQUIREMENTS

A. Delay installation of acoustic units until work spaces are dry. Maintain 65%-75% humidity in work spaces 24 hours before, during, and 24 hours after installation. Maintain uniform 55 degrees F. - 70 degrees F. temperature in work spaces 24 hours before, during, and after installation.

1.11 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

1.12 PROTECTION

A. Protect other work against damage or discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 ACOUSTIC PANELS

A. Typical Panels: Mineral fiber 24" x 48" x 3/4" tegular lay-in panels, manufactured by Armstrong, Second Look #2758, Color: White, Accents or approved equal. Noise reduction coefficient on specified mounting not less than 0.55. CAC: minimum 40 in all areas.

2.02 EXPOSED METAL SUSPENSION SYSTEM

A. TYPICAL CEILING: Exposed 15/16" tee/two directions system. All acoustic panels removable for access to space above; Armstrong, Chicago Metallic, Donn or approved equal. Follow layout shown on drawings.

 1. Finish: Manufacturer's standard enamel.
 2. Color: White

2.03 METAL EDGE TRIM

A. Corrosion-resistant steel, finish to match adjacent metal suspension system.

2.04 FASTENERS AND ACCESSORIES

A. Type and sizes recommended by suspension system manufacturer. Provide all required for complete system.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces provided by other trades are clean, dry, and otherwise properly prepared to receive acoustic treatment. Prior to starting work notify Architect and Owner of defects requiring correction. Do not start work until conditions are satisfactory.

B. Verify field measurements prior to fabrication. If field measurements differ slightly from drawing dimensions, modify work as required for accurate fit. If measurements differ substantially, notify Architect prior to fabrication.
3.02 INSTALLATION

A. General: Follow standards specifications, manufacturer's directions, and layout drawings, except as modified hereunder.

B. Metal Suspension System: Where mechanical and electrical work interferes with regular spacing of hangers, provide additional hangers and channels and make necessary adjustments in ceiling construction. Do not attach or pass hangers through mechanical or electrical ductwork. Provide framing around recessed light fixtures and other openings.

C. Vertical Hangers: Suspension wires shall not be smaller than No. 12 gauge spaced at 4'-0" o.c. along each main runner. Each vertical wire shall be attached to the ceiling suspension member and the support above by minimum three turns. Each connection device supporting the ceiling system shall have a minimum capacity of 100 pounds when loaded in the manner installed. Suspension wires shall not vary more than 1 in 6 out-of-plumb unless countersloping wire are provided. Wires shall not attach to or bend around obstructions. A trapeze or equivalent device shall be used where obstructions preclude direct suspension. Trapeze suspensions spanning 48" or more shall be formed from (2) back-to-back 1 1/2" cold-rolled channels.

D. Perimeter Hangers: The terminal ends of each cross runner and main runner shall be independently supported by a #12 gauge wire within 8" of all perimeter walls or ceiling discontinuities. Ends of main and cross runners shall be wired together to prevent the runners from splaying and displacing.

E. Lateral Force Bracing: Horizontal restraint of the suspended ceiling system shall be effected by four No. 12 gauge wires secured to the main runner within 2 inches of the cross runner intersection and splayed 90 degrees from each other at an angle not exceeding 45 degrees from the plane of the ceiling. A cold-formed steel strut shall be provided between the intersection and the structure overhead to prevent vertical displacement. These horizontal restraint points shall be provided at 12'-0" o.c. in both directions, with the initial restraint point located within 6'-0" of the ceiling perimeters. Attachment of the restraint wires to the overhead structure shall have a minimum capacity of 280# in shear (1-16 gauge wood screw or equivalent).

F. Acoustical Units: Install units in level plane, in straight line courses, and with solid bearing on support members. Minimum border unit width: 1/2 unit dimension, unless otherwise shown on drawings. Install pattern grain, if any, in one direction, Seal joints around pipes, ducts, and other penetrations with caulking compound specified in Section 07 92 00. Where panels abut vertical surfaces, trim joints with metal edge trim. Provide code-approved protective hoods at all lighting fixtures where fire-rated ceiling systems are indicated.

3.03 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair, and touch-up or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 06 64 00, Plastic Laminate

1.03 AREAS TO BE COVERED

A. In Spaces Scheduled to Have Floor Covering: All closet and alcove floors opening into spaces, if any, shall be provided with same material.

B. Where Base is Scheduled: Provide around perimeter of room or space, unless otherwise indicated elsewhere. Include casework, free-standing columns, pilasters and other projections, if any.

C. Miscellaneous: Covering not required under permanently built-in casework and equipment, unless otherwise indicated elsewhere.

1.04 SUBMITTALS

A. Product Data: Submit product data, including manufacturer's product sheet, for specified products.

B. Shop Drawings: Submit Shop Drawings showing layout, profiles, and product components, including anchorage, accessories, finish colors, patterns and textures.

C. Samples: Submit selection and verification samples for finishes, colors, and textures.

D. Closeout Submittals: Submit the following:

1. Operation and Maintenance Data: Provide operation and maintenance data for installed products in accordance with Division 1 Contract Closeout Submittals requirements. Include methods for maintaining installed products, and precautions against cleaning materials and methods detrimental to finishes and performance.

2. Warranty: Warranty documents specified herein.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Installer experienced in performing work of this section who has specialized in installation of commercial project work similar to that required for this project.

1. Submit certificate indicating qualification.

B. Pre-Installation Meetings: Conduct pre-installation meeting to verify project requirements, substrate conditions, manufacturer's installation instructions, and manufacturer's warranty requirements.
1.06 DELIVERY, STORAGE, AND HANDLING

A. General: Comply with Division 1 Product Requirements Sections.

B. Ordering: Comply with manufacturer's ordering instructions and lead time requirements to avoid construction delays.

C. Delivery: Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.

D. Storage and Protection: Store materials protected from exposure to harmful weather conditions and at temperature and humidity conditions recommended by manufacturer.

 1. Material should be stored in areas that are fully enclosed, weathertight with the permanent HVAC system set at a uniform temperature of at least 68 degrees F for 48 hrs. prior to, during and after installation.

1.07 PROJECT CONDITIONS

A. Environmental Requirements/Conditions: In accordance with manufacturer's recommendations, Areas to receive flooring should be clean, fully enclosed and weathertight with the permanent HVAC system operational and set at a minimum of 68°F (20°C) for a minimum of 7 days prior to, during, and 7 days after the installation. The flooring material should be conditioned in the same manner for at least 48 hours prior to the installation. Maximum temperature should not exceed 100 degrees F after installation. Areas to receive flooring shall be adequately lighted to allow for proper inspection of the substrate, installation and seaming of the flooring, and for final inspection.

B. Temperature Requirements: Maintain air temperature in spaces where products will be installed for time period before, during, and after installation as recommended by manufacturer.

 1. Temperature Conditions: 68 degrees F (20 degrees C) for 7 days prior to, during and after installation.

C. Field Measurements: Verify actual measurements/openings by field measurements before fabrication; show recorded measurements on Shop Drawings. Coordinate field measurements and fabrication schedule with construction progress to avoid construction delays.

1.08 WARRANTY

A. Resilient Sheet Flooring: Submit a written warranty executed by the manufacturer, agreeing to repair or replace resilient flooring that fails within the warranty period.

 1. Limited Warranty Period: 10 years
 2. For the Limited Warranty to be valid, this product is required to be installed using the appropriate Armstrong Flooring Guaranteed Installation System. Product installed not using the specific instructions from the Guaranteed Installation System will void the warranty. Contractor shall observe instructions of the Guaranteed Installation System System.

B. Resilient Linoleum Tile Flooring: Manufacturer's Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty document executed by authorized company official.

C. Static Control Flooring: Manufacturer's Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty document executed by authorized company official.
D. Manufacturer's warranties are in addition to, and not a limitation of, other rights Owner may have under Contract Documents. The Limited Warranty shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and will be in addition to and run concurrent with other warranties made by the Contractor under the requirements of the Contract Documents.

1.09 MAINTENANCE

A. Extra Materials: Deliver to Owner extra materials from same production run as products installed. Package products with protective covering and identify with descriptive labels.

1. Quantity: Furnish quantity of flooring units equal to 5% of amount installed.

PART 2 - PRODUCTS

2.01 RESILIENT SHEET FLOORING

A. Manufacturer: Armstrong Flooring or approved equal.

B. Proprietary Product: Medintone or approved equal.

1. Description: Homogeneous slip resistant sheet flooring. Pattern and color shall extend throughout total thickness of material.
2. Width: 2 Meters (6'-7")
3. Length: 30 Meters (98.4 Linear Feet)
4. Gauge: 2.0mm (0.080")
5. Pattern and Color: Per Finish Schedule
6. Adhesive: Armstrong Full Spread Adhesives S-599, S-543 as required by substrate
7. Slip Resistance: R9 per DIN 51130

2.02 RESILIENT LINOLEUM TILE FLOORING

A. Manufacturer: Forbo Flooring, Inc. or approved equal.

B. Proprietary Product(s): Marmoleum® Composition Tile (MCT) or approved equal.

1. Description: Homogeneous sheet linoleum of primarily natural materials consisting of linseed oil, wood flour, and rosin binders, mixed and calendered onto natural jute backing.
2. Pattern and color shall extend throughout total thickness of material.
3. Size: 33.3 cm x 33.3 cm (13"x13")
4. Gauge: 2.0 mm (0.080")
5. Backing: Jute
6. Pattern and Color: Per Finish Schedule

2.03 STATIC CONTROL FLOORING

A. Provide VPI Conductile conductive tile flooring or approved at locations indicated on drawings. Color: #10 Black Ice.
2.04 EXTERIOR RUBBER RUNNER FLOORING
 A. Provide Eagle Mat and Floor Products, Corrugated Rubber Runner Mat (1/4" thick 100% Nitrile Rubber) or approved at north recessed entry landing as shown on drawings. Custom sized sheet to fit landing without seams. Color: Black.

2.05 RUBBER BASE
 A. General: Roppe, Armstrong, Flex-cove, Textile, Bruke, Goodrich, Wanke, or approved equal. 6" tall in lavatories and 4" high in all other locations.
 B. Color: See Finish Schedule on Drawings.
 C. Type: Coved in all locations.

2.06 EDGING STRIPS
 A. 1" wide, 1/8" thick, rubber type with beveled top. Color match to Rubber Base. Provide at exposed resilient flooring edges, if any.

2.07 PRIMER, SEALER, CRACK FILLER, AND ADHESIVE
 A. Water-resistant type, made or approved by covering manufacturer.

2.08 CLEANER
 A. Neutral type approved by covering manufacturer.

PART 3 - EXECUTION

3.01 MANUFACTURER’S INSTRUCTIONS
 A. Compliance: Comply with manufacturer’s product data, including product technical bulletins, product catalog installation instructions, and product carton instructions for installation.

3.02 EXAMINATION
 A. Site Verification of Conditions: Verify substrate conditions are acceptable for product installation in accordance with manufacturer’s instructions.
 B. Material Inspection: In accordance with manufacturer’s installation requirements, visually inspect materials prior to installation. Material with visual defects shall not be installed. Labor costs required to replace material installed with visual defects shall be the responsibility of the installation contractor.

3.03 PREPARATION
 A. Adjacent Surfaces Protection: Protect adjacent work areas and finish surfaces from damage during product installation.
 B. Surface Preparation:
 1. Fill cracks less than 1/16" wide and depressions less than 1/8" deep with filler. Notify Contractor to correct wider cracks and deeper depressions.
 2. General: Prepare floor substrate in accordance with manufacturer’s instructions.
3. Floor Substrate: Prepare floor substrate to be smooth, rigid, flat, permanently dry, clean and free of foreign materials such as dust, paint, grease, oils, solvent, curing and hardening compounds, sealers, asphalt and old adhesive residue.

3.04 INSTALLATION

A. Full Spread Adhesive Method Installation: Install tile flooring with full spread adhesive method from established area center marks, in order for tile at opposite edges of area to be of equal width. Avoid using cut tile widths at perimeter less than four inches of tile width. Install tiles square with room axis. Lay tile material into wet adhesive, as recommended by tile manufacturer.

1. Adhesive Material Installation: Use trowel as recommended by flooring manufacturer for specific type of adhesive. Spread at a rate of approximately 150 sq. ft./gal. as recommended by flooring manufacturer.

B. Installation Techniques:

1. Quarter turn tiles.
2. Scribe, cut, fit flooring to butt tightly to vertical surfaces, permanent fixtures and built-in furniture, including pipes, outlets, edgings, thresholds, nosings, and cabinets.
3. Extend flooring into toe spaces, door reveals, closets, and similar openings.
4. Adhere resilient flooring to flooring substrate without producing open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, or other surface imperfections in completed flooring installation.
 a. Use adhesive applied to substrate in compliance with flooring manufacturer recommendations, including those for trowel notching, adhesive mixing, and adhesive open and working times.

3.05 RUBBER BASE AND EDGING STRIP INSTALLATION

A. General: Follow manufacturer's instructions.

B. Rubber Base: Follow standard specifications of Resilient Tile Institute. Standard specifications may be obtained from the Institute, 26 Washington Street, East Orange, New Jersey 07017.

C. Edging Strips: Provide wherever covering edges are exposed. Where covering terminates at door opening, center strip under door.

3.06 CLEANING

A. Cleaning: Remove temporary coverings and protection of adjacent work areas. Repair or replace damaged installed products. Clean installed products in accordance with manufacturer's instructions prior to owner's acceptance. Remove construction debris from project site and legally dispose of debris.

1. Remove visible adhesive and other surface blemishes using cleaning methods recommended by tile floor manufacturer.
2. Sweep and vacuum floor after installation.
3. Do not wash floor until after time period recommended by flooring manufacturer.
4. Damp-mop flooring to remove black marks and soil.

3.07 PROTECTION

A. Protection: Protect installed product and finish surfaces from damage during construction.
Remove and legally dispose of protective covering at time of Substantial Completion

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Standard General Conditions, Supplementary General Conditions, and Division 1, bound herewith, in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Resilient Flooring, Section 09 65 00.

1.03 INSTALLER QUALIFICATIONS
 A. To be eligible to perform Work specified herein, Contractor must be acceptable to carpet manufacturer and have successfully completed two (2) similar commercial projects.

1.04 REGULATORY AGENCY REQUIREMENTS
 A. Fire hazard classification as follows:
 1. Radiant Panel: (ASTM E-648) Class 1
 2. Smoke Density: (ASTM E-662) <450
 B. Comply with Department of Commerce Flammability Standard DOC FF 1-70. Corridor and exit way carpet shall comply with National Bureau of Standards Radiant Panel Test 75-950.

1.05 SOURCE QUALITY CONTROL
 A. Submit carpet manufacturer's affidavit which certifies that installed carpet was manufactured in accordance with specification requirements and installer is authorized to perform Work. Replace non-complying products at no cost to Owner.

1.06 MAINTENANCE MATERIALS
 A. Leave with Owner a minimum of 10 carpet tile for future repairs. Store where directed by Owner.

1.07 MAINTENANCE INSTRUCTIONS
 A. Submit to Contractor in accordance with Division 1, General Requirements, for inclusion in Owner's maintenance manual, two (2) copies of manufacturer's recommendations for care, cleaning, and maintenance of installed carpet. After installation thoroughly instruct Owner in care, cleaning, and maintenance of installed carpet.

1.08 PRODUCT DELIVERY
 A. Deliver in original unbroken mill-wrapping, manufacturer's register number labels thereon. Do not deliver until installation is ready to start. Do not remove labels or open packages until Architect reviews and accepts.
1.09 PRODUCT STORAGE AND HANDLING
 A. Protect against damage and discoloration. Do not store carpet rolls on end.

1.10 WORK SPACE ILLUMINATION
 A. Perform no Work under less than 30-foot candles measured 3'-0” above floor.

1.11 MINIMUM AIR AND SURFACE TEMPERATURE
 A. Perform no Work when conditions exceed manufacturer's specified limits; 60-95 degrees F for
 a period of 48-72 hours in advance of installation minimum.

1.12 PROTECTION
 A. Protect Work specified herein, and Work of other trades, against damage and discoloration
 caused by Work of this section. Provide necessary coverings and barricades to protect
 completed Work.

1.13 COORDINATION
 A. Coordinate with other trades affecting or affected by Work of this section.

1.14 WARRANTY
 A. Correct defects in Work quality which appear during the one year general warranty period by
 repairing and/or replacing if necessary, at no additional cost to Owner.
 B. Warranty period shall start on the project’s date of Substantial Completion.

PART 2 - PRODUCTS

2.01 CARPET TILE
 A. Material and Pattern:
 1. Typical Carpet: Interface FLOR or approved equal.
 a. Product Name: Cubic
 b. Color: 4287 Shape
 c. Installation: Quarter Turn

2.02 PATCHING COMPOUNDS
 A. Provide patching compounds as approved by carpet manufacturer.

PART 3 - EXECUTION

3.01 EXAMINATION
 A. Report to the Architect and Owner, in writing, any imperfections, unacceptable conditions
 and/or corrections required to be made before commencing work of this section.
B. Beginning installation of any given area means acceptance of all surfaces and conditions affecting the work of this area by the floor covering installation contractor.

C. Where primers/sealers are used, their compatibility with adhesive shall be verified prior to starting work.

3.02 PREPARATION

A. It shall be the responsibility of the General Contractor to present the floors in a condition to receive the carpet.

B. Surface to receive carpet must be free of dirt, solvents, oil, grease, paint, plaster, moisture, and other substances detrimental to proper performance of adhesive and carpet.

C. Existing vinyl composition tile, wood, and other acceptable securely bonded floor coverings must be clean and free of all waxes, finishes, sealers, or other contaminants.

3.03 INSTALLATION

A. Carpet shall be installed in non-directional pattern and in strict accordance with manufacturer's written instructions and recommendations.

B. Apply floor adhesive uniformly to substrate in accordance with manufacturer's instructions. Butt carpet tile edges firmly together to form seams without gaps. Remove adhesive promptly from face of carpet.

C. Where carpet meets dissimilar floor surface, proper edge molding shall be used.

D. Install edge moldings where carpet edge is exposed and at transitions to other floor coverings. Edge moldings shall be securely anchored to substrate.

E. Apply base at all adhered carpet installations, to walls, columns, pilasters, casework, and other permanent fixtures in rooms or areas where base is required.
 1. Install base in lengths as long as practical, with preformed corner units.
 2. Tightly bond base to backing throughout length of each piece, with continuous contact at horizontal and vertical surfaces.
 3. On masonry surfaces, of other similar irregular surfaces, fill voids along top edge of wall base with base manufacturer's recommended adhesive filler material.

3.04 RESTORATION

A. Any damage done to point, walls, woodwork, floors, and/or similar finishes as a result of this work, shall be the responsibility of the carpet contractor.

B. Required repairs shall be made by the proper trade contracted on the work of this project, who shall make the necessary repairs and shall be paid by the carpet subcontractor for the repair work.

3.05 CLEANING

A. Upon completion of the installation, remove all waste materials, tools and equipment.

B. Using commercial vacuums, thoroughly vacuum the entire floor surface to the Owner's Authorized Representative's satisfaction.
C. Remove spots or replace carpet where spots cannot be removed.

D. Remove debris, sorting pieces to be saved from scraps to be disposed of.
 1. Usable pieces of carpet are to be returned to their original packaging and left on the job site and placed in an orderly manner in such areas as designed by the Owner’s Authorized Representative.
 2. Dispose of smaller pieces as construction waste.

E. Provide protection methods and materials needed to ensure that carpeting will be without deterioration or damage at time of Substantial Completion.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 07 20 00, Thermal Insulation
 B. Mechanical Systems Insulation, Division 23.

1.03 PRODUCT DELIVERY, STORAGE, AND HANDLING
 A. Deliver to project site in manufacturer's original unopened packages. Immediately remove damaged or wet material from jobsite.

1.04 PRODUCT HANDLING
 A. Protect insulation from physical damage.
 B. Comply with manufacturer's recommendations for handling, storage and protection.
 C. Handle boards carefully so corners are not broken off or boards otherwise damaged.

1.05 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.06 PROTECTION
 A. Protect other work against damage and discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 INSULATION
 A. Material Properties: Mineral or rock wool
 B. Thickness: 3"
 C. Provide acoustic insulation/caulking at perimeters and penetrations of all sound walls. See Section 07 92 00, Joint Sealants.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
A. Verify that work of preceding trades is completed. Verify that surfaces and spaces to receive insulation are accurately sized, located, dry, protected against inclement weather, clean, and otherwise properly prepared. Prior to starting work, notify contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION - GENERAL

A. Follow manufacturer’s directions. Fit insulation snugly between framing without forcing. Permit no gaps for sound passage. Carefully cut and fit insulation around pipes, conduits, and other obstructions.

B. Use full-length, single-piece batts where practicable. Prevent displacement and sagging. Provide additional wire support as necessary to prevent insulation displacement or sagging.

3.03 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
DIVISION 9, FINISHES
09 90 00 PAINTING AND FINISHING

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division
 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 05 50 00 - Shop Painting Fabricated Steel
 B. Section 07 60 00 - Shop Painting Sheetmetal
 C. Section 07 92 00 - Caulking

1.03 SCOPE
 A. Work of this section shall include finishing of all exposed faces of surfaces described herein
 and on finish plans plus those concealed surfaces specified.
 B. Where patching occurs refinish entire surface to provide an even finish to match adjacent work
 as follows:
 1. Continuous surfaces: Refinish to nearest intersection.
 2. Assemblies: Refinish entire unit.

1.04 PRODUCT LABELS
 A. Each product container shall bear manufacturer's legible labels.

1.05 PRODUCT LIST
 A. Before ordering, submit complete and detailed list of materials proposed for use. Obtain
 Architect's acceptance before ordering.

1.06 QUALITY CONTROL
 A. Applicator: Company with minimum three years documented experience in applying similar
 paint coatings in projects of the same scope.

1.07 SUBMITTALS
 A. Submit in accordance with Section 01340, two samples of each required finish, color, and
 sheen. Sample size 8.5 x 11", minimum. Use suitable substrate for each sample, such as stiff
 paper for paints, actual wood substrate at stains. Obtain Architect's acceptance before
 proceeding with work.
 B. Product Data: Manufacturer's data sheets on each paint and coating product should include:
 1. Product characteristics
 2. Surface preparation instructions and recommendations
 3. Primer requirements and finish specification
 4. Storage and handling requirements and recommendations
 5. Application methods
6 Cautions, VOC’s

C Selection Samples: Submit a complete set of color chips that represent the full range of manufacturer’s color samples available.

D Verification Samples: For each finish product specified, submit samples that represent actual product, color, and sheen.

1.08 EXTRA STOCK

A. Leave, in previously unopened original containers, one gallon of each top coat. Store on project premises in location directed in unopened containers and in manner recommended by the manufacturer. Include identification information for each container from delivery and storage.

1.09 PRODUCT DELIVER, STORAGE, AND HANDLING

A. Deliver in original, unopened containers. Do not open containers or remove labels until Architect inspects. Store in suitable location where directed by General Contractor. Protect against contamination by foreign matter. Remove unacceptable materials from project site.

1.10 ENVIRONMENTAL REQUIREMENTS

A. Follow manufacturer’s directions. Do not work where dust or insects are present. Do not work where inclement weather may damage surface.

1. Perform no painting or decorating work when the ambient air and substrate temperatures are below 50°F (10°C) for both interior and exterior work.

2. Perform no exterior painting work unless environmental conditions are within paint manufacturer’s requirements or until adequate weather protection is provided. Where required, suitable weatherproof covering and sufficient heating facilities shall be in place to maintain minimum ambient air and substrate temperatures for 24 hours before, during and after paint application.

3. Perform no interior painting or decorating work unless adequate continuous ventilation and sufficient heating facilities are in place to maintain ambient air and substrate temperatures above minimum requirements for 24 hours before, during and after paint application. Provide supplemental ventilating and heating equipment if ventilation and heating from existing system is inadequate to meet minimum requirements.

4. Perform no painting or decorating work when the relative humidity is above 85% or when the dew point is less than 5°F (3°C) variance between the air / surface temperature.

5. Perform no painting or decorating work when the maximum moisture content of the substrate exceeds:
 a. 12% for concrete masonry and clay masonry surfaces.
 b. 15% for wood surfaces.
 c. 12% for plaster and gypsum board surfaces.
 d. 8% for horizontal concrete surfaces.
 e. 12% for vertical concrete surfaces.

6. Conduct all moisture tests using a properly calibrated electronic Moisture Meter, except
test concrete floors for moisture using a simple cover patch test.

7. Test concrete, masonry and plaster surfaces for alkalinity as required. Concrete and masonry surfaces must be installed at least 28 days prior to painting and decorating work and must be visually dry on both sides.

8. Apply paint only to dry, clean, properly cured and adequately prepared surfaces in areas where dust is no longer generated by construction activities such that airborne particles will not affect the quality of finished surfaces.

9. Perform no painting or decorating work unless a minimum lighting level of 323 Lux (30 foot candles) is provided on surfaces to be painted or decorated. Adequate lighting facilities shall be provided by the General Contractor.

10. Do not apply products of this section outside acceptable range of conditions as specified by paint manufacturer.

1.11 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

1.12 PROTECTION

A. Cover or otherwise protect work of other trades, including walls and floors of paint storage and mixing rooms. Remove or otherwise protect finish hardware, accessories, plates, lighting fixtures, and similar items. Post signs and install barricades as required to protect work of this section against damage or discoloration. Take extraordinary care to prevent fire.

PART 2 - PRODUCTS

2.01 GENERAL

A. Products for each general purpose shall be of same manufacturer. Do not use products of different manufacturers over one another, except for shop prime coats specified in other sections of these specifications. All materials used shall be lead and mercury free and shall have low VOC content where possible.

2.02 MATERIALS - GENERAL REQUIREMENTS

A. Paints and Coatings - General:

1. Unless otherwise indicated, provide factory-mixed coatings. When required, mix coatings to correct consistency in accordance with manufacturer's instructions before application. Do not reduce, thin, or dilute coatings or add materials to coatings unless such a procedure is specifically described in manufacturer's product instructions. VOC numbers need to be confirmed by using the products MSDS sheets.

Interior Topcoat Paints: VOC classification.

Coating Type	VOC weight in grams/liter of product minus water
Non-flat | 150
Flat | 50

2.03 ACCESSORIES

A. Coating Application Accessories: Provide all primers, sealers, cleaning agents, cleaning cloths, sanding materials, and clean-up materials required, per manufacturers specifications.

2.04 MIXING AND TINTING

A. Unless otherwise specified herein or pre-approved, all paint shall be ready-mixed and pre-tinted. Re-mix all paint in containers prior to and during application to ensure break-up of lumps, complete dispersion of settled pigment, and color and gloss uniformity. Paste, powder or catalyzed paint mixes shall be mixed in strict accordance with manufacturer's written instructions.

B. Where thinner is used, addition shall not exceed paint manufacturer's recommendations. Do not use kerosene or any such organic solvents to thin water-based paints.

C. If required, thin paint for spraying according in strict accordance with paint manufacturer's instructions. If directions are not on container, obtain instructions in writing from manufacturer and provide copy of instructions to Consultant.

2.05 COLORS

A. See Finish Schedule on drawings.

2.06 MIXING AND TINTING

A. Deliver paints and enamels ready-mixed to jobsite. Mix only in clean, rust-resistant containers. Use tinting colors recommended by manufacturer for specific type of surface.

2.07 PAINTING SCHEDULE

A. General: Provide no variation or substitutions of specified paint systems without written approval of the Owner's Representative. Prime coats specified below may be omitted where factory applied shop coats are specified in other sections. Prime coats specified may be omitted from existing finished surfaces, provided existing coating is sound. Number of coats hereunder specified is minimum. Contractor shall provide adequate coatings to provide finish that additional coatings will not show any difference in color. Finished work shall be smooth, even, uniform color, and free from cloudy and mottled surfaces. Provide additional coats where necessary without additional cost to owner (this particularly applies to additional coats of sanding sealer that may be required for a smooth finish at interior stain work).

B. Surfaces Not Coated. Unless Otherwise Shown on Drawings:

<table>
<thead>
<tr>
<th>Items having complete factory finish</th>
<th>Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-ferrous metal (unless noted)</td>
<td>Acoustic Tile</td>
</tr>
<tr>
<td>Elastomeric sealants</td>
<td>Glass</td>
</tr>
<tr>
<td>Fire-resistance rating labels</td>
<td>Flooring</td>
</tr>
<tr>
<td>Instructional labels</td>
<td>Roofing</td>
</tr>
</tbody>
</table>
C. **Exterior Cementitious Surfaces:**

 Paint System #C1: Fiber Cement Panel and Trim Surfaces – Masonry Paint
 One coat primer, Sherwin Williams Loxon® Exterior Acrylic Masonry Primer, A24W300
 One coat Sherwin Williams Duration® Exterior Latex Acrylic Flat Coating, K32 Series

D. **Exterior Wood Surfaces:**

 Paint System #D1: Wood windows and Trim Surfaces – Latex Flat
 One coat primer, Sherwin Williams A-100® Exterior Latex Wood Primer, B42W41
 (If Tannin Bleeding occurs, use A-100® Exterior Stain Blocking Primer, Y24 Series)
 Two coats Sherwin Williams A-100® Exterior Latex Flat, A6 Series

E. **Exterior New Masonry Veneer Surfaces:**

 Paint System #E1: Brick - Clear Water Repellent
 Two coats Fabrishield 761 clear water repellent.

F. **Exterior Existing Masonry**

G. **Exterior Metal Surfaces:**

 Paint System #G1: Aluminum and Galvanized Steel – Latex Satin
 One coat metal primer, Sherwin Williams A100; followed by:
 Two coats satin latex, Sherwin Williams A100

 Paint System #G2: All Other Exterior Ferrous Metal – Latex Satin
 One coat rust inhibiting primer followed by:
 Two coats satin latex, Sherwin Williams A100

H. **Interior Wall and Ceiling Surfaces:**

 Paint System #H1: Gypsum Wallboard Surfaces - Latex Satin
 One coat latex primer Sherwin Williams Harmony Low Odor Interior Latex Primer, B11W900
 followed by:
 Two coats satin latex, Sherwin Williams Duration Home Interior Latex Satin, A97-100 series

I. **Interior Ferrous Metal Surfaces:**

 Paint System #I1: All Metals – Acrylic Satin
 One coat Sherwin Williams ProCryl Universal Primer, B66-310 Series followed by:
 Two coats Sherwin Williams ProClassic Waterborne Acrylic Satin, B20 Series

J. **Interior Woodwork Surfaces:**

 Paint System #J1: Stained Surfaces - Stain and Polyurethane
 One coat Paste Wood Filler, followed by:
 One coat Sherwin Williams Minwax 250 VOC Stains, followed by:
 Two coats Sherwin Williams WoodClassics Waterborne Polyurethane Varnish, A68 Series.
 No surface left without some type of finish.

K. **Custom-Built Wood Cabinetry:**
Paint System #K1: Stained Surfaces - Stain and Polyurethane
One coat Paste Wood Filler, followed by:
One coat Sherwin Williams Minwax 250 VOC Stains, followed by:
Two coats Sherwin Williams WoodClassics Waterborne Polyurethane Varnish, A68 Series.
No surface left without some type of finish.

L. Exposed Mechanical and Electrical Work Except in Mechanical or Electrical Equipment Rooms:

Paint System #L1: Exterior Metal Work Including Downspout Hubs and that on Roof - Varies
Prepare and paint as specified for other exterior metal of same kind.

Paint System #L2: All Other Piping, Equipment, and Supports – Acrylic Satin
One coat Sherwin Williams ProCryl Universal Primer, B66-310 Series followed by:
Two coats Sherwin Williams ProClassic Waterborne Acrylic Satin, B20 Series

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Examine surface to receive coating for conditions that will adversely affect execution, permanence, and work quality. Verify that hardware contractor has removed door hardware, as specified in Section 08 71 00. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 SURFACE PREPARATION

A. Remove scale, dirt, grit, rust, wax, grease, efflorescence, and other foreign matter detrimental to proper adhesion of paint. Surfaces shall be smooth, even and true where required.

B. The surface must be dry and in sound condition. Remove mildew, oil, dust, dirt, loose rust, peeling paint or other contamination to ensure good adhesion.

C. Prior to the application of coating, completely mask, remove or otherwise protect all hardware, accessories, plates, lighting fixtures, sprinkler heads, and other items in contact with coating surfaces but not scheduled to receive special coating.

D. No exterior painting should be done immediately after a rain, during foggy weather, when rain is predicted, or when the temperature is below 50°F.

E. Shop Primed/Painted Metal: Touch up abraded surfaces prior to painting with same type of paint used as shop coat. Featheredge abraded surfaces prior to touch up. Test area to be painted to make certain there are not compatibility problems with the coatings.

F. Galvanized Metal: Clean surface so prime coat bonds well and adheres permanently. Wash with suitable solvents and methods directed by coating manufacturer. Use compatible chemical solution such as Galvaprep to treat galvanized surface. Allow drying thoroughly.

G. Ferrous Metal: Use suitable solvents, tools, and methods to clean surface. Consult coating manufacturer's product data sheet for SSPC requirements for particular coatings used. Allow to dry thoroughly before coating.

H. Non-Ferrous Metal: Prepare, clean, and wash surfaces as specified for galvanized metal. Allow to dry thoroughly before coating.
I. Aluminum: Etch with phosphoric acid or approved solution.

J. Cementitious Surfaces: Clean substrate of substances, which might interfere with penetration/adhesion of coating. Remove loose particles and foreign matter. Remove oil or foreign substance with a chemical cleaner that will not affect the coating. Surface must be thoroughly dry before coating. Alkali Conditions: Test surfaces for presence of alkali. If present neutralize with solvent detergent. Repair minor cracks and holes; roughen surface when necessary to promote better adhesion of coating. Delay application of coating until installations of sealants in joints of surfaces to be coated have been completed.

K. Wood Doors: Lightly sand faces and edges. Fill any voids. At natural finish, color filler to match wood.

L. Other Woods: Clean soiled surfaces with alcohol or approved. Sandpaper smooth then remove sanding dust residue. At opaque coatings seal knots, pitch, and resinous sapwood before prime coat application. Fill holes, cracks, and other defects. At natural finish, color filler to match wood. Back Prime surfaces installed against Cementitious surfaces using prime coat specified for exposed face of surface; give particular attention to sealing cross-grained surfaces. Seal wood with shellac or stain resistant primer any marks or defects which may bleed through paint coating.

M. Puttying at Opaque finishes: Fill all nail holes, cracks, and other depressions with putty after prime coat application. Allow putty to dry; sandpaper smooth before applying body coat(s).

N. Previously Finished Surfaces: Sand, wire brush, or scrape painted surfaces to remove loose, scaling paint and to reduce gloss of in-place coating. Featheredge abraded surfaces. Wash soiled surfaces. When existing coatings are hard or glossy, sand lightly to promote better adhesion of the new coating, when they are chalky, wash thoroughly. All surfaces shall be thoroughly dry before they are coated.

O. Mildewed Surfaces: Wash where mildew is evident, remove it by scrubbing the surface with this solution: 1 cup detergent and 1 quart of household bleach dissolved into 3 quarts water. Rinse thoroughly with fresh water and immediately apply a solution of 50% household bleach and 50% water. Allow this final treatment to dry on the surface before applying stain or paint.

3.03 APPLICATION

A. General: Follow manufacturer's directions. Do not apply initial coating until moisture content of surface to be finished is within limitations recommended by paint manufacturer. Test with moisture meter. Apply coating with suitable brushes, spray equipment, or rollers, as recommended by coating manufacturer. Do not exceed coating manufacturer's application rate. Keep brushes, spray equipment and rollers, clean, dry, free from contaminates, and suitable for finish required. Comply with product manufacturer's recommended drying time between succeeding coats. Apply finish coats smooth, free of brush marks, drips, streaks, laps, pile up, and skipping or missed areas. Where paint abuts other materials or colors, cut paint edges clean and sharp and with no overlap. Finish door tops, bottoms, and edges as specified below: remove doors from frames if necessary. Apply succeeding coats to unscarred and integral base coats; slightly vary color of undercoats to distinguish them from preceding coat. Allow sufficient dry time for each coat of paint. Sandpaper smooth interior finishes between coats.

B. The minimum number of coats required is shown in the paint schedule. The coats scheduled are field-applied coats, and shall be in addition to prime coats or any special preparation.
Spraying and back-rolling are considered one coat. Provide additional coats as necessary to provide uniform appearance of paint system without additional cost.

C. Priming: Do not thin primers in excess of manufacturer’s written instructions. Apply within 8 hours of surface cleaning substrate.

D. Should any coat of coating be deemed unsatisfactory, it shall be sanded and additional coat(s) applied as necessary until satisfactory finish is achieved.

E. Painted Work: Immediately upon jobsite delivery, prime woodwork including back side surfaces. Face runs not permitted.

F. Stained and Natural Work: Adjust finishes where necessary to obtain similar appearance between different adjacent materials.

3.04 FIELD QUALITY CONTROL

A. For each required color scheme, request Architect to inspect first finished room, space, panel or item for color, texture, and work quality.

3.05 CLEANING

A. Remove spills, splatters, and stains from all surfaces including other work and those in paint storage and mixing rooms. Unless otherwise approved, refinish entire wall or surface where portion of finish has been damaged or is otherwise unacceptable. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section.

END OF SECTION
DIVISION 10 SPECIALTIES
10 10 00 INFORMATION SPECIALTIES

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 08 71 00 - Finish Hardware
 B. Section 09 90 00 - Painting and Finishing

1.03 SHOP DRAWINGS
 A. Show layout, dimensions, details of construction, methods of joining to other work, required clearances, finishes, accessories, and other pertinent items. Submit in accordance with Section 01 33 23. Manufacturer's printed data or samples may be substituted, provided required information is included. Approved samples in like-new condition may be used on contract work.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING
 A. Protect against damage and discoloration. Deliver in manufacturer's original, unopened, protective wrapping with original, legible label intact.

1.05 PROTECTION
 A. Protect other materials against damage and discoloration caused by work of this section.

1.06 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 DRY MARKER BOARD
 A. 4'-0"x 8'-0 white porcelain on steel writing surface with concealed fastening aluminum frame (black) with chalk trough. Claridge Series 3 with LCS-II color #92 white writing surface or approved equal. Mount with head at 7'-0" a.f.f.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
 A. Verify that surfaces to receive specialties are properly prepared, sized, and located. Prior to starting work, notify Architect and Owner of defects requiring correction. Do not start work until conditions are satisfactory.
3.02 INSTALLATION

A. General:
 1. Follow manufacturer's instructions. Secure plumb, level, square, straight, and true as applicable.

B. Mounting Heights: See diagrams and notes on drawings.

3.03 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of Final Completion.

3.04 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and defect-free.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 08 71 00 - Finish Hardware
B. Section 08 90 00 – Painting and Finishing

1.03 SHOP DRAWINGS

A. Show layout, dimensions, details of construction, methods of joining to other work, required clearances, finishes, accessories, and other pertinent items. Submit in accordance with Section 01 33 23. Manufacturer's printed data or samples may be substituted, provided required information is included. Approved samples in like-new condition may be used on contract work.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Protect against damage and discoloration. Deliver in manufacturer's original, unopened, protective wrapping with original, legible label intact.

1.05 PROTECTION

A. Protect other materials against damage and discoloration caused by work of this section.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 ROOM NUMBERS

B. Manufacturer's Plaque Module construction (Braille window with modular pocket type) to match appearance of existing signs and comply with general requirements indicated for materials, thickness, finish, colors, designs, shapes, sizes and details of construction. Installed dimensional tolerances to be plus/minus 1/16 inch. This system is to be a subsurface assembly with changeable insert features, but with no apparent visible indication that the changeable insert maybe withdrawn. It must be tamper resistant and appear permanent. Provide the following module type:
Type A: Module 6.33 (Window w/raised room number and Braille; module with three lines of description) with Module 3.5 (Sliding bar with description).

Type B: Module 6.33 (Window w/raised room number and Braille; module with three lines of description).

Type C: Module 2.0 (Window w/raised room number and Braille)

Type D: Module 2.0 (Window w/the word "EXIT" and Braille)

Type E: OSU Standard Accessible Lavatory Sign (MEN)

Type F: OSU Standard Accessible Lavatory Sign (WOMEN)

Type G: OSU Standard Accessible Lavatory Sign (SINGLE USER RESTROOM)

C. Subsurface Color: Ground, opaque border and perimeter stripe to be applied to sign face inner surface by Manufacturer's standard multiple coat self-etching ink processes.

D. Message graphics: Subsurface computer cut vinyl in Helvetica Medium. These graphics are applied to the surface of the insert in standard formats. The sign insert is die-cut from integral colored calendered semi-rigid polymer plastic and inserted through the right hand side slot opening between the congruent plates, into the pocket formed by the double coated joining tape.

E. All signage is to be of consistent color, radius corners complete with opaque border, perimeter stripe and computer cut-vinyl typography with a changeable insert.

F. Mounting Method: 1/16" 3M Scotch Brand double sided foam tape and/or Dow-Corning #999-A silicon adhesive, or approved equal or as dictated by mounting surface.

G. Colors: Modules: To match signs for existing offices in Corridor H504. Verify color selection from manufacturer's standard color palate with Owner's Authorized Representative prior to ordering with white characters. Dimensional Letters: White

H. Surface Texture: Matte, per ADA standards.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive specialties are properly prepared, sized, and located. Prior to starting work, notify Architect and Owner of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION

A. General:

1. Follow manufacturer's instructions. Secure plumb, level, square, straight, and true as applicable.

B. Mounting Heights: See diagrams on drawings.
3.03 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of Final Completion.

3.04 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and defect-free.

END OF SECTION
DIVISION 10, SPECIALTIES
10 28 00 TOILET ACCESSORIES

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 08 80 00 - Mirrors

1.03 PRODUCT DELIVER, STORAGE, AND HANDLING
 A. Protect against damage and discoloration. Do not remove protective covers until final project clean-up. Deliver keys to Owner.

1.04 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.

1.05 PROTECTION
 A. Protect other work against damage or discoloration caused by work of this section.

PART 2 - PRODUCTS

2.01 GENERAL
 A. All accessories shall be installed in an accessible manner. Verify placement and positioning of accessories with Architect prior to installation.

2.02 PAPER TOWEL DISPENSERS
 A. Provide Georgia Pacific Max 3000 Double Roll 58445 x series (Black) or approved. Locate where indicated on drawings.

2.03 SOAP DISPENSER
 A. Provide Signatory FMX-12 foam soap dispenser available through Coastwide Laboratories (541-926-3289) or approved. Locate adjacent to lavatories where indicated on drawings.

2.04 TOILET PAPER DISPENSER
 A. Provide Toilet paper dispenser, roll – Georgia Pacific 56784 Compact roll Coastwide (541-926-3289). or approved. Locate adjacent to toilet where indicated on drawings.

2.05 TOILET SEAT COVER DISPENSER
 A. Provide Georgia Pacific white #57710 ½ fold.
2.06 SANITARY RECEPTACLE
 A. Provide Rubbermaid 6140 wall mount white, plastic.

2.07 GRAB BARS
 A. Satin finish 1 1/2" diameter stainless steel, with 1-1/2" clearance between bar and wall. Mount horizontally to solid blocking. Provide as follows at each accessible toilet:

 (1) - ASI 3200 series x 42"
 (1) - ASI 3200 series x 36"
 (1) - ASI 3200 series x 24"

2.08 COAT HOOKS
 A. Provide one (1) ASI 7340 polished stainless steel coat hook at interior face of each single occupant lavatory door. Mount at 54".

2.09 FABRICATION
 A. Fabricate units with one piece seamless exposed flanges and with no open miters.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS
 A. Do not proceed until surfaces to receive accessories are smooth, clean, dry, square, sound, accurately sized and located, and otherwise properly prepared (including full blocking). Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION
 A. Install accessories in accordance with manufacturer's directions where indicated or directed. Mount plumb, level, true, and secure with non-corrosive fasteners.

 B. Verify mounting height of Grab Bars with access clearance, toilet paper dispensers and ADA requirements prior to drilling wainscot material; consult Architect on-site prior to installation.

3.03 ADJUSTMENTS
 A. Adjust moving parts to operate satisfactorily at time of final project acceptance and during warranty period.

3.04 CLEANING AND REPAIRING
 A. Remove debris from project site upon work completion or sooner if directed. Including work of other sections, clean, repair, and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 08 71 00 - Finish Hardware
B. Section 09 90 00 - Finish Painting, Except Where Complete Factory-Finish is specified herein

1.03 SHOP DRAWINGS

A. Show layout, dimensions, details of construction, methods of joining to other work, required clearances, finishes, accessories, and other pertinent items. Manufacturer's printed data or samples may be substituted, provided required information is included. Approved samples in like-new condition may be used on contract work.
B. Shop Drawings: Indicate layouts heights, component connection details, and details of interface with adjacent construction. Mark data to indicate Roof top mechanical equipment to be enclosed.
C. Design Criteria: Manufacturer is responsible for the structural design of all materials, assembly and attachments to resist snow, wind, suction and uplift loading at any point without damage or permanent set.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Protect against damage and discoloration. Deliver in manufacturer's original, unopened, protective wrapping with original, legible label intact.

1.05 PROTECTION

A. Protect other materials against damage and discoloration caused by work of this section.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 SCREEN WALL

A. Provide sight proof vertical screens as hereinafter specified where shown on plans or as described in schedules. Screen components shall be factory assembled by the manufacturer. Sizes too large for shipping shall be built up by the contractor from factory assembled sections to provide overall sizes required. Design shall incorporate blade supports required to withstand
a wind load of 20 lbs. per sq. ft. when attached to structural supports supplied by others. Screens shall be Ruskin Model EV700 6063T5 extruded aluminum alloy construction or approved equal.

1. Front Blades: 6063T5 extruded aluminum with 0.080" (2) nominal thickness. Blades are 7" wide and 2 1/2" deep, spaced as specified between 5" and 6 1/2"
2. Back Blades: 6063T5 extruded aluminum with 0.080" (2) nominal thickness.
3. Spacing: Space blades to provide complete screening from a position perpendicular to the screen.
4. Finish: Provide factory applied 2-coat 70% PVDF painted finish. Color: Dark Bronze #75.
5. Fasteners: Anchorage shall be concealed and not visible on the exterior face of the screen.

2.02 PRE-CAST CONCRETE PIER CAP

A. Provide 26" precast concrete pier cap at each masonry pier of mechanical enclosure screen wall. Modern Precast 26"x26"x7" concrete pier cap or approved equal.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive specialties are properly prepared, sized, and located. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION

A. Follow manufacturer's instructions. Secure plumb, level, square, straight, and true as applicable.

3.03 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and defect-free.

END OF SECTION
DIVISION 10 SPECIALTIES
10 90 10 MISCELLANEOUS SPECIALTIES

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS
- Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specifications and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
- Fabricated Steel, Section 05500.
- Finish Hardware, Section 08710.
- Finish Painting, Except Where Complete Factory-Finish is specified herein, Section 09900.

1.03 SHOP DRAWINGS
- Show layout, dimensions, details of construction, methods of joining to other work, required clearances, finishes, accessories, and other pertinent items. Submit in accordance with Section 01 33 23. Manufacturer's printed data or samples may be substituted, provided required information is included. Approved samples in like-new condition may be used on contract work.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING
- Protect against damage and discoloration. Deliver in manufacturer's original, unopened, protective wrapping with original, legible label intact.

1.05 PROTECTION
- Protect other materials against damage and discoloration caused by work of this section.

1.06 COORDINATION
- Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 FLOOR HATCHES
- Provide where indicated on plans Bilco access door Type T1, size: 24” x 24”. The floor access door shall be single leaf and pre-assembled from the manufacturer.

- Performance characteristics:
 1. Cover: Shall be reinforced to support a minimum live load of 150 psf (732 kg/m²) with a maximum deflection of 1/150th of the span.
 2. Operation of the cover shall be smooth and easy with controlled operation throughout the entire arc of opening and closing. Operation of the cover shall not be affected by temperature.
3. Cover: Shall be ¼” (6mm) aluminum smooth pattern plate with extruded aluminum molding [specify 1/8” (3mm) or 3/16” (5mm) in height, depending on flooring material thickness] fastened to the cover to receive floor covering.

4. Frame: Frame shall be extruded aluminum with strap anchors bolted to the exterior.

5. Hinges: Shall be specifically designed for horizontal and shall be bolted to the underside of cover.

6. Lifting mechanisms: Cam-action hinges shall pivot on torsion bars to provide, smooth, easy, and controlled cover operation throughout the entire arc of opening and to act as a check in retarding downward motion of the cover when closing.

7. A removable exterior turn/lift handle with a spring loaded ball detent shall be provided to open the cover.

8. Hardware:
 a. Hinges: Cast steel cam-action hinges which pivot on torsion bars shall be provided.

9. Cover shall be equipped with a steel hold open arm that automatically locks the cover in the open position.

10. Cover shall be fitted with the required number and size of torsion bars.

11. A Type 316 stainless steel snap lock with fixed handle shall be mounted on the underside of the cover.

12. Hardware: shall be zinc plated and chromate sealed.

13. Finishes: Factory finish shall be mill finish aluminum with bituminous coating applied to the exterior of the frame.

2.02 CEILING HATCHES

A. Provide where indicated on plans Best Access Doors BA-AHD-18-18 ceiling access door or approved. Size: 18” x 18”. The ceiling access door shall be single leaf, screwdriver operated and pre-assembled from the manufacturer.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive specialties are properly prepared, sized, and located. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 INSTALLATION

A. General:

 1. Follow manufacturer's instructions. Secure plumb, level, square, straight, and true as applicable.
 2. Apply flooring to match adjacent floor surface at floor hatch lid.

3.02 ADJUSTMENTS

A. Adjust moving parts to operate satisfactorily at time of final project acceptance and during warranty period.

3.03 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and
defect-free.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 REFERENCES

A. ANSI A14.9: Safety Requirements for Ceiling Mounted Disappearing Climbing Systems.

1.03 SHOP DRAWINGS

A. Show layout, dimensions, details of construction, methods of joining to other work, required clearances, finishes, accessories, and other pertinent items. Manufacturer's printed data or samples may be substituted, provided required information is included. Approved samples in like-new condition may be used on contract work.

B. Shop Drawings: Indicate layouts heights, component connection details, and details of interface with adjacent construction.

1.04 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Protect against damage and discoloration. Deliver in manufacturer's original, unopened, protective wrapping with original, legible label intact.

1.05 PROTECTION

A. Protect other materials against damage and discoloration caused by work of this section.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

1.07 WARRANTY

A. Limited Warranty: One year against defective material and workmanship, covering parts only. Defective parts, as deemed by the manufacturer, will be replaced at no charge, freight excluded, upon inspection at manufacturer's plant.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Base specification manufacturer: Precision Ladders, LLC, P. O. Box 2279; Morristown, TN 37816-2279; Tel: 423-586-2265; Fax: 423-586-2091; www.PrecisionLadders.com. Requests for substitutions will be considered in accordance with provisions of Section 01 25 00.

B. Automatic electric disappearing stairway:
1. Automatic Electric Disappearing Stairway and Components: Stairway, rail, frame, door, drive unit, motor and controls/junction box.

2. Model: Model AE as manufactured by Precision Ladders LLC, P. O. Box 2279, Morristown, TN 37816; Phone: (800) 225-7814, Fax: (423) 586-2091.

3. Capacity: Unit shall support a 1000 lb load without failure.

4. Clearances: The system requires a ceiling opening of 2'-6" X 6'-0" for floor-to-floor dimensions up to 14'-0"; and 2'-6" X 7'-0" for floor-to-floor dimension greater than 14'-0".

5. Accessories:
 a. Provide key-operated switch (an optional feature).
 b. Battery backup power to open the stair in the event of a power failure.
 c. Provide warning buzzer (an optional feature) sounds when stairway is in motion.

6. Components:
 a. Stairway Stringer: 7 inches by 0.230 inch extruded aluminum channel. Steel rollers at base of each stringer. Pitch: 52 degree.
 b. Stairway Tread: Aluminum channel 6 inches by 20-3/16 inches by 0.225 inch. Nonskid safety material at walking surface.
 c. Riser Height: 9-1/2 inches maximum.
 d. Railing: Hand/guide rail 1-1/16 inches OD both sides, galvanized.
 e. Frame: 1/8 inch steel formed channel. Height to suit total ceiling thickness.
 f. Door: 1/8 inch aluminum panel. Steel piano hinge.
 g. Drive Unit: 1/3 horsepower 246 W), 115 volt instantly reversible motor direct-connected to a reduction gear drive, complete with contactors. Pre-wired control switches. Sealed ball bearing guides. Double 1/8 inch aircraft cable drive.

C. Fabrication: Completely fabricate ladder ready for installation before shipment to the site. Completely fabricate handrail components ready for field assembly to ladder before shipment to site.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces to receive specialties are properly prepared, sized, and located. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until Do not begin installation until rough opening and structural support have been properly prepared. If substrate preparation is the responsibility of another installer, notify Owner's Representative of unsatisfactory preparation before proceeding. Examine materials upon arrival at site. Notify the carrier and manufacturer of any damage.

3.02 INSTALLATION

A. Follow manufacturer's instructions. Secure plumb, level, square, straight, and true as applicable.

3.03 PROTECTION

A. Protect installed products until completion of project.

B. Touch-up, repair or replace damaged products before Substantial Completion.

3.04 CLEANING AND REPAIRING
A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and defect-free.

END OF SECTION
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 SUMMARY AND SCOPE

A. Scope of Work includes the design, furnishing and installation of all fume hoods, work tops, and under structures. Furnishing and installing all filler panels, knee space panels and scribes as shown on drawings.

B. Accessorization: Furnishing and delivering all service outlets, accessory fittings, electrical receptacles and switches, as listed in these specifications, equipment schedules or as shown on drawings. Plumbing fittings mounted on the fume hood superstructures shall be preplumbed per section 2.01.I. Electrical fixtures shall be prewired per section 2.01.J. The fume hood superstructure shall be listed to UL Standards for Safety by Underwriters Laboratories Inc. (UL). Final plumbing and electrical connections are the responsibility of those contractors fulfilling requirements of Divisions 22, 23 and 26.

C. Removal of all debris, dirt and rubbish accumulated as a result of the installation of the fume hoods to an on-site container provided by others, leaving the premises clean and orderly.

D. Related Divisions:

1. Division 06: Casework
2. Division 22, 23: Plumbing and Exhaust Ducting
3. Division 26: Electrical Fittings and Connections

E. Related Publications:

2. NSF STD#49 - Photometric Method of Testing
3. NIH03-112C - National Institute of Health Specification
4. UL - Underwriters Laboratories
5. ASTM D552 - Bending Test
6. NFPA-45 - National Fire Protection Association

1.01 BASIS OF WORK

A. This specification is based upon the use of Kewaunee Scientific Corporation, Statesville, North Carolina, as the standard of construction for laboratory fume hoods. The construction standards of the Kewaunee Supreme Air LV fume hood shall provide the basis for quality and functional installation. Use of alternative equipment will be considered under the terms of Section 01 25 00.

B. Submittals:

1. Manufacturer's Data: Submit manufacturer's data and installation instructions for each
type of fume hood. Provide data indicating ASHRAE Standard 110.1995 has been successfully completed per section 1.02 C

2. Samples: Samples if called for will be reviewed for color, texture, and pattern only. Submit the following:
 a. Hood interior lining, 6 by 6 inches.
 b. Hood enclosure, 6 by 6 inches, of color selected.
 c. Operation sign(s).

3. Shop Drawings:
 a. Submit shop drawings for fume hoods showing plans, elevations, ends, cross-sections, service run spaces, location and type of service fittings:
 b. Coordinate shop drawings with other work involved.
 c. Provide roughing-in drawings for mechanical and electrical services when required.
 d. Provide face opening, air volume, and static pressure drop data.

4. Non-Specified Manufacturer's Samples: A sample from each non-specified manufacturer will be required and reviewed per specification. This sample shall be delivered, at no cost to the architect or owner to a destination set forth by the architect or owner. The sample must then be tested per section 1.02.C by an independent test agency hired by the submitting company and approved by the owner/architect. A passing test and owner/architect approval of the prototype must be written and approved seven (7) days before quotation deadline as a condition of acceptance for any quotation participant.

1.02 STANDARD FUME HOOD PERFORMANCE REQUIREMENTS

A. Fume hoods shall be of Supreme Air LV belted counterweight sash / aerodynamic entry design to insure maximum operating efficiency. Sash and air entry framework of the hood shall minimize eddying of air currents at the hood face and Cartesian rear baffle system shall minimize turbulence and vortexes in all portions of the hood interior.

B. Bench Top LV Fume Hood Type:

 Variable Air Volume (VAV) Fume Hood:
 1. VAV Fume Hood designed to yield 100 FPM face velocity at 18" sash opening
 2. Sash auto-return feature shall return the sash to 18" if opened wider
 3. A full-open sash latch to facilitate fume hood set-ups
 4. Notched belt and sprocket sash system

C. Walk-In Fume Hood Type:

 Variable Air Volume: The fume hoods shall be of the variable air volume type in which the exhaust air volume varies proportionally to the hood opening when used with a hood face velocity controller system (provided by others). The air bypass shall be RESTRICTED PER THE VAV Manufacturer's recommendation.

D. Containment:

 1. The purpose of this specification is to pre-qualify the performance of the bidder's laboratory fume hood before award of contract. At their option, Owner's Representative may require the same tests to be performed and the same performance be achieved before acceptance of the hood after award of contract. The Owner's Representative shall witness the tests. Failure to meet the performance specified shall be cause for rejection of the bidder.
2. Test Method: The hood shall be tested per the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 110-1995.

3. Location of Tests and Test Facility: All tests referenced herein shall be performed in the bidder's fume hood test facility. Field-testing is described in Section 3.01.F. The test facility shall meet the following requirements:
 a. The test facility shall have sufficient area so that a minimum of 5 feet of clear space is available in front of and on both sides of the hood for viewing tests.
 b. The facility's ventilation system shall have adequate heating and air conditioning so that room air temperatures can be maintained within the desired ranges.
 c. Standard room air currents in the test area shall be less than 15 FPM.
 d. The hood exhaust system shall be properly calibrated so that the desired exhaust air volumes can be easily attained.
 e. Make-up air to the test room shall be ceiling-supplied as in a standard chemical laboratory.

4. Instrumentation, Equipment and Test Personnel: Qualified personnel to perform the tests shall be supplied by the bidder. Instrumentation and equipment required shall be supplied by the bidder at their expense. Required instrumentation shall include but not be limited to the following items:
 a. Thermal anemometer capable of measuring air velocities from 10 to 600 ft./minute
 b. One-half minute smoke candles or other source of high volume smoke
 c. Smoke tubes or other source of localized smoke
 d. Miran 103 analyzer calibrated to indicate concentration of sulfur hexafluoride or equivalent.
 e. Flowmeter - 15 L/minute capacity
 f. Tank of sulfur hexafluoride with a two-stage regulator or other tracer gas suitable for detector to be used
 g. Adjustable mannequin, 5'0' to 5'8" in height, with reasonable human proportions and arms hanging at its side
 h. ASHRAE 110-1995 tracer gas ejector

5. ASHRAE Test:
 Standard 110-1995 Test Hood should be tested with the sash at the maximum opening 28", with a face velocity that corresponds to the volume indicated in Paragraph 1.02 B. The hood shall have a performance rating in the static portion of ASHRAE 110-1995 (Section 7.1-7.10) of AM 0.01 or better wherein:
 \[
 4.0 = \text{tracer gas release in liters/minute}
 \]
 \[
 \text{AM} = \text{as manufactured}
 \]
 \[
 0.01 = 5 \text{ minute time average level of control of tracer gas in parts per million (PPM)}
 \]

6. ASHRAE 110-1995 Perimeter, Sash Movement Tests, and Cross Draft Requirements:
 a. The hood shall have a maximum perimeter reading (Section 7.11) of 0.01 PPM or less.
 b. The hood shall have a maximum sash movement value (Section 7.12) of 0.05 PPM or less.

7. Twisting Manikin Test: A manikin mounted to a twisting base will be placed in standard ASHRAE 110 position. Arms will be altered to hold objects similar in dimension to two 600 ml beakers inside the hood. Manikin twist angle will be such that at the extreme right and left rotational positions, one “beaker” is outside the sash plane. At a rotation rate of 4 cycles per minute, a four-minute run will be undertaken with a sensor in the manikin breathing zone. Average breathing zone concentration shall remain less than 0.05 PPM.
1.03 QUALITY ASSURANCE

A. The laboratory fume hood manufacturer shall provide fume hood work tops and casework all manufactured or shipped from the same geographic location to assure proper staging, shipment and single source responsibility.

B. General Performance: Provide certification that fume hoods meet the performance requirements described in section 1.02.C.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. The basis of this specification is based upon units as manufactured by Kewaunee Scientific Corporation, 2700 West Front Street, Statesville, North Carolina. Bench top type fume hoods shall be Supreme Air LV model. Walk-In type fume hood shall be Supreme Air Walk-In model with vertical rising sash.

B. All laboratory equipment covered by the specification shall be the product of one manufacturer and be fabricated at one geographic location to assure shipping continuity and single-source responsibility. All quotations from a manufacturer other than Kewaunee Scientific shall contain a review of the following capabilities:

1. List of shop facilities
2. List of engineering and manufacturing personnel
3. Proof of financial ability to fulfill the contract
4. List of a minimum of ten installations over the last five years of comparable scope
5. Proof of project management and installation capabilities

C. The selected manufacturer must warrant for a period of one-year starting (date of acceptance or occupancy, whichever comes first) that all products sold under the contract referenced above shall be free from defects in material and workmanship. Purchaser shall notify the manufacturer's representative immediately of any defective product. The manufacturer shall have a reasonable opportunity to inspect the goods. The purchaser shall return no product until receipt by purchaser of written shipping instructions from the manufacturer.

2.02 MATERIALS AND CONSTRUCTION

A. Fume Hood Superstructure Frame: A structure of steel support members shall be provided to support exterior panels and interior liner and baffle panels. To allow for maintenance and replacements, the baffle panels shall be removable without disassembly of the frame structure and outer steel panels. Likewise, the exterior steel panels shall be removable without disassembly of the frame structure and inner liner panels.

B. Fume Hood Interior Walls: Double wall ends, not more than 4.5" wide, with sash track flush with front vertical facia, shall be provided to maximize interior working area. The area between the double wall ends shall be closed to house the remote control valves. The front vertical facia shall be in a plane 45° from the hood face and end walls. This facia shall contain space for the required service controls and electrical devices.

C. Fume Hood Airfoil: A 12 gauge painted steel, (optional stainless steel) convergence z-cross section airfoil shall be mounted flush to the bottom of the hood opening. It shall
provide no open space between it and the top front edge of the worksurface. The foil shall assure a flow of air rearward within 1/2" above the worksurface at all hood operating face velocities.

D. Fume Hood Top Panels:

1. Bench Top Fume Hood Type: Fume hood top panel shall incorporate an LV type dynamic barrier bypass providing a clean air stream behind the sash plane.
2. Walk-In Fume Hood Type: Standard Grille Bypass Configuration: The top front panel shall be of the same material as the exterior fascia. It shall have an integral grille stamped into the upper portion. The top front panel of the hood shall have an integral vision panel. It shall be located directly above the sash opening and in such a manner that it allows viewing into the top portion of the hood without the operator having to stoop or place their face inside the hood.

E. Fume Hood Baffles:

1. Bench Top Fume Hood Type: The fume hood baffles shall be constructed of the same material as the hood lining. They shall consist of multiple sections with vertical slots and a continuous horizontal slot at the work surface. Each baffle panel shall be easily removable from the interior, without requiring liner disassembly.
2. Walk-In Fume Hood Type: A stable, non-adjustable baffle with three fixed horizontal slots shall be provided to aid in distributing the flow of air into and through the hood. The baffle shall be spaced out 2-1/4" from the back liner. The baffle shall be removable for cleaning.

F. Fume Hood Duct Collar:

1. Each fume hood up to six feet in length shall contain one (1) 12" polyethylene (optional stainless steel) bell-mouthed duct collar in the hood roof for exhausting the hood. Fume hoods over six feet in length shall contain two (2).
2. A 12" diameter polyethylene bell-mouthed duct collar shall be located in the top of the hood plenum chamber. Coated common steel duct collars are not acceptable.

G. Fume Hood Lighting: A one-tube, energy-efficient, T-5 fluorescent light fixture of the size given below shall be provided in the hood roof. Illumination at 13" above the worksurface shall be at least 100 foot-candles.

<table>
<thead>
<tr>
<th>Hood Size</th>
<th>Nominal Fixture Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4'</td>
<td>3'</td>
</tr>
<tr>
<td>5'</td>
<td>4'</td>
</tr>
<tr>
<td>6'</td>
<td>4'</td>
</tr>
<tr>
<td>8'</td>
<td>3' (2 Fixtures)</td>
</tr>
</tbody>
</table>

The light fixture shall be isolated from the hood interior by a 1/4" thick tempered glass panel sealed from the hood cavity. Fixture shall be UL listed.

H. Fume Hood Vertical Sash:

1. Bench Top Fume Hood Type: A vertical rising sash of 1/4" laminated safety glass shall be provided. The sash shall have a neutral colored polyvinyl chloride horizontal member at the top and a full-length aerodynamic aluminum handle at the bottom. The sash shall be counterbalanced with a single weight to prevent tilting and binding during operation. The sash shall be connected to the counterweight system with two, 1/2" wide stainless steel-reinforced polyurethane notched belts that engage a sprocketed shaft drive and be so configured that when lifted higher than 18", the
sash will return to the 18” operating position automatically. The sash shall provide a 35-1/2” viewing height, with a maximum opening of 28” and shall incorporate a mechanism for latching it in the full-open position for hood set-up.

2. Walk-In Fume Hood Type: Vertical Rising Sash - A vertical rising sash of 1/4” laminated safety float glass shall be provided. The sash shall have a neutral colored polyvinyl chloride horizontal member at the top and a full length metal handle at the bottom. The sash shall be counterbalanced with a single weight to prevent tilting and binding during operation. The sash track shall be a neutral colored polyvinyl chloride set flush with the interior liner panels to minimize turbulence. Bench hoods shall have one sash in a single slotted sash track. Walk-in hoods shall have two sashes in a double slotted sash track.

I. Fume Hood Plumbing Services: Plumbing services shall consist of remote control valves as selected located within the end panels, controlled by extension rods projecting through the control panels of the hood, with color coded plastic handles. Interior fitting for gases and water shall be nylon panel flanges and angle serrated hose connectors, color coded. Interior fittings for distilled water shall consist of a bronze tin lined, white color-coded, panel flange and angle serrated hose connector. Water goosenecks shall be cast bronze with a chemical resistant metallic bronze finish. All plumbing fittings shall be factory installed and piped between the valve and the outlet. Inlet piping shall have a single-point connection for each valve provided and carried to a point 1” above the fume hood roof or 1” above the worktop rear corner depending on the rough-in locations shown in the drawings. Points of final service connection by other trades shall be at the stub provided by the fume hood manufacturer.

J. Fume Hood Electrical Fixtures: The hood superstructure shall be pre-wired and contain a UL label certifying acceptable wire gauge, connections, fixtures and wire color-coding. Electrical fixtures shall consist of two duplex receptacles and a light switch. The duplex receptacles shall be 20 Amp., 125 volt AC, and 3-wire polarized grounded with ground fault interruption. The receptacles shall be specification grade, side wired only, to insure a positive connection. The light switch shall be 20 Amp, 125 volt AC, and 3-wire polarized grounded. Wiring shall terminate in one 6” x 6” x 4” service junction box located on the fume hood roof. Final wiring and circuit dedication shall be by others.

K. Hood Worksurface: Epoxy Resin: Hood worksurface shall be 1-1/4” thick molded epoxy resin made in the form of a watertight pan, not less than 3/8” deep to contain spillage with a 6” wide safety ledge across the front edge. Top shall be manufactured at the same manufacturing location as the fume hood to assure proper cutout alignment and coordinated shipping. A cup drain flush with the recessed worksurface shall be provided. The worksurface and cup drain shall be black in color. The nominal 3” X 6” cupsink shall be of an anti-splash design with a horizontal rear outlet not extending more than 7” below the worksurface.

L. Access Opening: The interior end liner panels shall be furnished with a triangular shaped opening that provides access to the service piping and valves to facilitate installation and maintenance. The openings shall be filled with a removable gasketed panel made from fume hood liner material.

M. Fume Hood Dimensions: Double wall end panel thickness shall not exceed 4.5”. Interior clear working height shall be not less than 38” at any location in the interior of the hood on bench hoods. Interior depth from the back of the sash to the front of the rear baffle shall not be less than 24”. The sash opening shall be not less than 28” in height above the worksurface on bench hoods.

N. Fume Hood Liners: KMER Epoxy Resin Lining: KMER epoxy resin liner shall be the manufacturing standard for liners in this specification. To assure proper punching and
coordination with remaining pieces of assembled fume hood superstructure, this liner material must be manufactured at the same geographic location as the fume hood superstructure. Interior liner panels shall be 1/4" thick epoxy resin sheets of a neutral color. Interior liner panels shall be fastened using stainless steel screws with plastic covered heads. The material shall have an ASTM E84 Class A flame spread rating (25 or less). Fiberglass reinforced plastics or polyesters shall not be acceptable substitute liner materials for epoxy resin.

O. Bench Top Type Fume Hood Base Cabinets

1. Standard Steel Unless otherwise indicated base units under hoods shall be fabricated of cold rolled prime grade roller leveled furniture steel. Gauges of steel used in construction shall be 18 gauge except as follows:
 a. Corner gussets for leveling bolts and apron corner braces, 12 gauge.
 b. Hinge reinforcements, 14 gauge.
 c. Top and intermediate front horizontal rails, apron rails and reinforcement gussets, 16 gauge.
 d. Door assemblies and adjustable shelves, 20 gauge.
 e. Performance of the painted surfaces shall match that of the fume hood outer panels.

2. Special Purpose Cabinets for Use Under Bench Top Type Fume Hoods:
 a. Acid Storage Cabinets: Provide acid storage base cabinets for all fume hoods in Laboratories 103, 104 and 105. Acid storage cabinets shall use the same gauges of steel and construction features as other base cabinets. In addition, they shall have a one-piece liner insert made of linear low-density polyethylene. The liner insert shall form a one-inch pan at the bottom to retain spillage. Each door will have a set of louvers at the top and bottom. The door shall be lined with a polyethylene sheet. Each cabinet shall be vented into the fume hood with a 1-1/2" vent pipe, providing a positive airflow directly into the fume hood exhaust system.

P. Special Purpose Cabinets to be Installed under Standard Countertops:

1. Solvent Storage Cabinets: Provide (1) 48" wide adjacent to each bench style fume hood in Laboratories 103, 104 and 105 (four total). Solvent storage cabinets shall be FM labeled and specifically designed for the storage of flammable and combustible liquids. Construction shall be based upon the requirements listed by UFC, OSHA, and NFPA No. 30 - 2003. The bottoms, top, sides and doors shall be fabricated of 18 gauge steel and shall be all double panel construction with a 1-1/2" air space between panels. All joints shall be welded, or screwed, to provide a rigid enclosure. The doors shall swing on full-length stainless steel piano hinges and shall be fully insulated. The right hand door shall be equipped with a three point latching device and the left-hand door shall have a full height astragal. The doors shall be self-closing and synchronized so that both doors will always fully close. The right hand door shall be equipped with a three-point latching system that automatically engages when the doors close. Each door shall be equipped with a fusible-link hold-open feature that will ensure the door closes should the temperature outside the cabinet exceed 165 degrees Fahrenheit. Units 24" long shall have only one door, self-closing, and equipped with a three-point latching system and hold-open feature. A 2" deep liquid tight pan that covers the entire bottom of the cabinet shall be furnished to contain liquid leaks and spills. A full-depth adjustable shelf shall also be provided. The shelf shall be perforated to allow air
circulation within the cabinet. Two diametrically opposed vents with spark screens shall be provided in the back of the cabinet as well as a grounding screw. The cabinet shall have an interior finish the same as the exterior and shall be labeled: "FLAMMABLE - KEEP FIRE AWAY".

Q. Accessories:

1. Digital Face Velocity Alarm System: All Fume Hoods shall be provided with an alarm system to detect low and high hood face velocities. The alarm system shall indicate the actual face velocity of the hood regardless of sash position. The system shall have an air velocity sensor mounted on the interior side liner of the hood where it is easily accessible for cleaning. The velocity monitor shall have a digital display of the air velocity through the hood face in feet per minute. The alarm signals shall activate any time the face velocity falls below the low velocity alarm set point. There shall be both visual and audible alarm signals. The audible alarm shall have a mute. Low and high alarm contacts shall be provided for remote monitoring. An hour-long "event timeline" detailing low velocity episodes shall be part of the alarm readout.

R. Fume Hood Finish: After the component parts have been completely welded together and before finishing, they shall be given a pre-paint treatment to provide excellent adhesion of the finish system to the steel and to aid in the prevention of corrosion. Physical and chemical cleaning of the steel shall be accomplished by washing with an alkaline cleaner, followed by a spray treatment with a complex metallic phosphate solution to provide a uniform fine grained crystalline phosphate surface that shall provide both an excellent bond for the finish and enhance the protection provided by the finish against humidity and corrosive chemicals.

After the phosphate treatment, the steel shall be dried and all steel surfaces shall be coated with a chemical and corrosion-resistant, environmentally friendly, electrostatically applied powder coat finish. All components shall be individually painted, insuring that no area be vulnerable to corrosion due to lack of paint coverage. The coating shall then be cured by baking at elevated temperatures to provide maximum properties of corrosion and wear resistance.

The completed finish in standard colors shall meet the performance test requirements specified under Section 2.02 A. Steel Paint Finish Performance Test Results.

2.03 PERFORMANCE REQUIREMENTS

A. Steel Paint Finish Performance Test Results (Chemical Spot Tests):

1. Testing Procedure: Chemical spot tests for non-volatile chemicals shall be made by applying 5 drops of each reagent to the surface to be tested and covering with a 1-1/4" dia. watch glass, convex side down to confine the reagent. Spot tests of volatile chemicals shall be tested by placing a cotton ball saturated with reagent on the surface to be tested and covering with an inverted 2-ounce wide mouth bottle to retard evaporation. All spot tests shall be conducted in such a manner that the test surface is kept wet throughout the entire test period, and at a temperature of 77° ±3° F. For both methods, leave the reagents on the panel for a period of one hour. At the end of the test period, the reagents shall be flushed from the surface with water, and the surface scrubbed with a soft bristle brush under running water, rinsed and dried. Volatile solvent test areas shall be cleaned with a cotton swab soaked in the solvent used on the test area. Immediately prior to evaluation, 16 to 24 hours after the reagents are removed, the test surface shall be scrubbed with a damp paper towel and dried with paper towels.

2. Test Evaluation: Evaluation shall be based on the following rating system.
Level 0 – No detectable change.
Level 1 – Slight change in color or gloss.
Level 2 – Slight surface etching or severe staining.
Level 3 – Pitting, cratering, swelling, or erosion of coating.
Obvious and significant deterioration.
After testing, panel shall show no more than three (3) Level 3 conditions.

3. Test Reagents:

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Chemical Reagent</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Acetate, Amyl</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>2.</td>
<td>Acetate, Ethyl</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>3.</td>
<td>Acetic Acid, 98%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>4.</td>
<td>Acetone</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>5.</td>
<td>Acid Dichromate, 5%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>6.</td>
<td>Alcohol, Butyl</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>7.</td>
<td>Alcohol, Ethyl</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>8.</td>
<td>Alcohol, Methyl</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>9.</td>
<td>Ammonium Hydroxide, 28%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>10.</td>
<td>Benzene</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>11.</td>
<td>Carbon Tetrachloride</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>12.</td>
<td>Chloroform</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>13.</td>
<td>Chromic Acid, 60%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>14.</td>
<td>Cresol</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>15.</td>
<td>Dichlor Acetic Acid</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>16.</td>
<td>Dimethylformamide</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>17.</td>
<td>Dioxane</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>18.</td>
<td>Ethyl Ether</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>19.</td>
<td>Formaldehyde, 37%</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>20.</td>
<td>Formic Acid, 90%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>21.</td>
<td>Furfural</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>22.</td>
<td>Gasoline</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>23.</td>
<td>Hydrochloric Acid, 37%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>24.</td>
<td>Hydrofluoric Acid, 48%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>25.</td>
<td>Hydrogen Peroxide, 3%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>26.</td>
<td>Iodine, Tincture of</td>
<td>Watch glass</td>
</tr>
<tr>
<td>27.</td>
<td>Methyl Ethyl Ketone</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>28.</td>
<td>Methylene Chloride</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>29.</td>
<td>Mono Chlorobenzene</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>30.</td>
<td>Naphthalene</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>31.</td>
<td>Nitric Acid, 20%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>32.</td>
<td>Nitric Acid, 30%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>33.</td>
<td>Nitric Acid, 70%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>34.</td>
<td>Phenol, 90%</td>
<td>Cotton ball & bottle</td>
</tr>
<tr>
<td>35.</td>
<td>Phosphoric Acid, 85%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>36.</td>
<td>Silver Nitrate, Saturated</td>
<td>Watch glass</td>
</tr>
<tr>
<td>37.</td>
<td>Sodium Hydroxide, 10%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>38.</td>
<td>Sodium Hydroxide, 20%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>39.</td>
<td>Sodium Hydroxide, 40%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>40.</td>
<td>Sodium Hydroxide, Flake</td>
<td>Watch glass</td>
</tr>
<tr>
<td>41.</td>
<td>Sodium Sulfide, Saturated</td>
<td>Watch glass</td>
</tr>
<tr>
<td>42.</td>
<td>Sulfuric Acid, 33%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>43.</td>
<td>Sulfuric Acid, 77%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>44.</td>
<td>Sulfuric Acid, 96%</td>
<td>Watch glass</td>
</tr>
<tr>
<td>45.</td>
<td>Sulfuric Acid, 77% and</td>
<td>Watch glass</td>
</tr>
</tbody>
</table>
Fume Hoods 11 61 00 – 10

Nitric Acid, 70%, equal parts

46. Toluene

47. Trichloroethylene

48. Xylene

49. Zinc Chloride, Saturated

Watch glass

Cotton ball & bottle

Cotton ball & bottle

Watch glass

* Where concentrations are indicated, percentages are by weight.

4. Performance Test Results (Heat Resistance): Hot water (190° F - 205° F) shall be allowed to trickle (with a steady stream at a rate not less than 6 ounces per minute) on the finished surface, which shall be set at an angle of 45° from horizontal, for a period of five minutes. After cooling and wiping dry, the finish shall show no visible effect from the hot water treatment.

5. Performance Test Results (Impact Resistance): A one-pound ball (approximately 2” diameter) shall be dropped from a distance of 12 inches onto the finished surface of steel panel supported underneath by a solid surface. There shall be no evidence of cracks or checks in the finish due to impact upon close eye-ball examination.

6. Performance Test Results (Bending Test): An 18 gauge steel strip, finished as specified, when bent 180° over a 1/2” diameter mandrel, shall show no peeling or flaking off of the finish.

7. Performance Test Results (Adhesion): Ninety or more squares of the test sample shall remain coated after the scratch adhesion test. Two sets of eleven parallel lines 1/16” apart shall be cut with a razor blade to intersect at right angle thus forming a grid of 100 squares. The cuts shall be made just deep enough to go through the coating, but not into the substrate. They shall then be brushed lightly with a soft brush. Examine under 100 foot-candles of illumination. Note: This test is based on ASTM D2197-68, "Standard Method of Test for Adhesion of Organic Coatings".

8. Performance Test Results (Hardness): The test sample shall have a hardness of 4-H using the pencil hardness test. Pencils, regardless of their brand are valued in this way: 8-H is the hardest, and next in order of diminishing hardness are 7-H, 6-H, 5-H, 4-H, 3-H, 2-H, F, HB, B (soft), 2-B, 3-B, 4-B, 5-B (which is the softest). The pencils shall be sharpened on emery paper to a wide sharp edge. Pencils of increasing hardness shall be pushed across the paint film in a chisel-like manner until one is found that will cut or scratch the film. The pencil used before that one—that is, the hardest pencil that will not rupture the film—is then used to express or designate the hardness.

B. Fume Hood Liner Performance:

1. Chemical Spot Tests - 24 Hours: Chemical spot test shall be made by applying 10 drops (approximately 1/2 cc) of each reagent to the surface to be tested. Each reagent (except those marked **) shall be covered with a 1-1/2” diameter watch glass, convex side down to confine the reagent. Spot tests of volatile solvents marked ** shall be tested as follows: A 1” or larger ball of cotton shall be saturated with the solvent and placed on the surfaces to be tested. The cotton ball shall then be covered by an inverted 2-ounce, wide mouth bottle to retard evaporation. All spot tests shall be conducted in such a manner that thetest surface is kept wet throughout the entire 24-hour test period and at a temperature of 77 degrees F. + 3 degrees F. At the end of the test period, the reagents shall be flushed from the surfaces with water and the surface scrubbed with a soft bristle brush under running water, rinsed, and dried. Volatile solvent test areas shall be cleaned with a cotton swab soaked in the solvent used on the test area. Spots where dyes have dried shall be cleaned with a cotton swab soaked in alcohol to remove the surface dye. The test panel shall then be evaluated immediately after drying.
2. Legend / Ratings:
1 - KMER (Kewaunee Modified Epoxy Resin) A = No effect or slight change in gloss
2 - Glass Reinforced Polyester B = Slight change in gloss or color
3 - Stainless Steel 304 C = Slight etching or severe staining
4 - Stainless Steel 316 D = Swelling, pitting, or severe etching
5 - Reinforced Phenolic Resin

3. RESULTS:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid 98%</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Acetone **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Acid Dichromate</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ammonium Hydroxide ** 28%</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Amyl Acetate **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Benzene **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Butyl Alcohol **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Carbon Tetrachloride **</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Chloroform **</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Chromic Acid 60%</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Cresol</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Dichloroacetic Acid</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Dimethylformamide</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Dioxane **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ethyl Acetate **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ethyl Ether **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Ethyl Alcohol **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Formic Acid 90%</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Furfural **</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Gasoline **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Hydrochloric Acid 37%</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Hydrofluoric Acid 48%</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>Hydrogen Peroxide 30%</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Methyl Alcohol **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Methylene Chloride **</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Monochlorobenzene **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Naphthalene **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Nitric Acid 20%</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Nitric Acid 30%</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Nitric Acid 70%</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Phenol ** 85%</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Phosphoric Acid 85%</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Silver Nitrate</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Sodium Hydroxide 40%</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sodium Hydroxide 20%</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sodium Hydroxide 10%</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sodium Hydroxide Flake</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sodium Sulfide</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sulfuric Acid 77%</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sulfuric Acid 96%</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Sulfuric Acid 33%</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Tincture of Iodine</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Toluene **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Trichlorethylene **</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>
PART 3 - EXECUTION

3.01 SITE EXAMINATION

A. The owner and/or his representative shall certify building conditions conducive to the installation of a finished goods product, including all critical dimensions.

3.02 INSTALLATION

A. Verify that surfaces to receive specialties are properly prepared, sized, and located. Prior to starting work, notify General Contractor of defects requiring correction. Do not start work until Do not begin installation until rough opening and structural support have been properly prepared. If substrate preparation is the responsibility of another installer, notify Owner’s Representative of unsatisfactory preparation before proceeding. Examine materials upon arrival at site. Notify the carrier and manufacturer of any damage.

B. Coordination: Coordinate the work of the Section with the schedule and other requirements of other work being performed in the area at the same time both with regard to mechanical and electrical connections to and in the fume hoods and the general construction work.

C. Performance: Install fume hoods, plumb, level, rigid, securely anchored to building and adjacent furniture in proper location, in accordance with manufacturer’s instructions and the approved shop drawings. Provide filler panels between top of hood and ceiling. Securely attach access panels but provide for easy removal and secure reattachment. Do not install any damaged units.

D. Adjust and Clean:

1. After installations are complete, adjust all moving parts for smooth operation.
2. Remove all packing materials and debris resulting from this work, and turn over the fume hoods to the Owner clean and polished both inside and out.
3. Repair or remove and replace defective work, as directed by owner and/or his representative upon completion of installation.

E. Protection:

1. Provide reasonable protective measures to prevent casework and equipment from being exposed to other construction activity.
2. Advise Owner’s Representative of procedures and precautions for protection of material, installed laboratory fixtures from damage by work of other trades.

F. Certification:

1. Fume Hood Manufacturer shall field test one random sample of the installed units using ANSI/ASHRAE 110-1995 to a control level of Al 0.02 ppm or better.
2. Project substantial completion shall be withheld until all required fume hood certification letters, tests, and reports have been submitted to and approved by the
3.04 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and defect-free.

END OF SECTION
DIVISION 12, FURNISHINGS
12 20 00 WINDOW TREATMENT

PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this Specifications and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 09 20 00 - Gypsum Drywall

1.03 PRODUCT DELIVER, STORAGE, AND HANDLING

A. Protect against damage, discoloration, and contamination. Deliver in manufacturer's original, unopened containers with legible labels intact.

1.04 PROTECTION

A. Protect other work against damage and discoloration caused by work of this section. Protect contacting dissimilar materials against electrolytic corrosion.

1.05 SCOPE

A. Provide window coverings at all windows shown on Finish Plan.

1.06 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

1.07 WARRANTY

A. Roller Shade Hardware, Chain and Shadecloth: Manufacturer's standard non-depreciating twenty-five year limited warranty.

PART 2 - PRODUCTS

2.01 ROLLER BLINDS

A. Manufacturer: Provide MechoShade Systems, Inc.; 42-03 35th Street, Long Island City, NY 11101. ASD. Tel: (718) 729-2020. Fax: (718) 729-2941. Email: www.mechoshade.com or approved equal.

B. Type: Manual operating, chain drive, sunscreen roller shades in all exterior windows as shown on the Drawings. Exterior window shades shall be mounted in window opening.

C. Shade Cloth: Visually Transparent Single-Fabric Shadecloth: MechoShade Systems, Inc., ThermoVeil group or approved equal, single thickness non-raveling 0.030-inch (0.762 mm) thick vinyl fabric, woven from 0.018-inch (0.457 mm) diameter extruded vinyl yarn comprising of 21 percent polyester and 79 percent reinforced vinyl. Provide Dense Basket Weave: “1300
series", 5 percent open, 2 by 2 dense basket-weave pattern. Color: #1304 Black/Brown.

D. Room darkening (PVC Free) Shadecloth with opaque acrylic backing: MechoShade Systems, Inc. or approved equal, "Midnite Blackout 0200 series", comprising of 73% acrylic, 27% polyester finish. Color: Smoke 0216.

E. Shade Bands: Construction of shade band includes the fabric, the hem weight, hem-pocket, shade roller tube, and the attachment of the shade band to the roller tube. Sewn hems and open hem pockets are not acceptable.

F. Shade fabrication: Fabricate units to completely fill openings from head to sill and jamb-to-jamb, unless specifically indicated otherwise. Fabricate shadecloth to hang flat without buckling or distortion. Fabricate with heat-sealed trimmed edges to hang straight without curling or raveling. Fabricate unguided shadecloth to roll true and straight without shifting sideways more than 1/8 inch (3.18 mm) in either direction per 8 feet (2438 mm) of shade height due to warp distortion or weave design.

G. Provide battens in standard shades as required to assure proper tracking and uniform rolling of the shade bands. Contractor shall be responsible for assuring the width-to-height (W:H) ratios shall not exceed manufacturer's standards or, in absence of such standards, shall be responsible for establishing appropriate standards to assure proper tracking and rolling of the shadecloth within specified standards. Battens shall be roll-formed stainless steel or tempered steel, as required.

H. Fascia: Continuous removable extruded aluminum fascia that attaches to shade mounting brackets without the use of adhesives, magnetic strips, or exposed fasteners. Fascia shall be able to be installed across two or more shade bands in one piece. Fascia shall fully conceal brackets, shade roller and fabric on the tube. Provide bracket / fascia end caps where mounting conditions expose outside of roller shade brackets. Notching of Fascia for manual chain shall not be acceptable.

PART 3 - EXECUTION

3.01 EXISTING CONDITIONS

A. Verify that surfaces and structure to receive window treatment are square, plumb, and accurately sized and located. Prior to starting work, notify Architect and Owner of defects requiring correction. Do not start work until conditions are satisfactory.

3.02 PREPARATION

A. Clean surfaces thoroughly prior to installation.

B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.03 INSTALLATION

A. Install window treatment level, plumb, square, and true according to manufacturer's written instructions, and located so shade band is not closer than 2 inches to interior face of glass. Allow proper clearances for window operation hardware.

B. Adjust and balance window treatment to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.
C. Clean window treatment surfaces after installation, according to manufacturer’s written instructions.

D. Train Owner’s maintenance personnel to adjust, operate and maintain window treatment systems.

3.04 PROTECTION

A. Protect installed products until Final Completion.

B. Touch-up, repair or replace damaged products before Substantial Completion.

3.05 PRODUCT CLEANING AND REPAIRING

A. Including work of other sections, clean, repair, and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Remove debris from project site upon work completion or sooner, if directed.

END OF SECTION
1.01 CONTRACT CONDITIONS
 A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions,
 and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE
 A. Section 06 64 00, Plastic Laminate

1.03 SCOPE OF WORK
 A. Provide plastic laminate facing at countertops and back splashes at cabinetry and window
 frame surrounds as noted on drawings.

1.04 PRODUCT DELIVERY, STORAGE AND HANDLING
 A. Protect against damage and discoloration.

1.05 WORK SPACE TEMPERATURES
 A. 65-degrees F. minimum.

1.06 WORK SPACE RELATIVE HUMIDITY
 A. 35% minimum
 B. 80 maximum.

1.07 WORK SPACE ILLUMINATION
 A. Maintain 30-foot candles minimum measured 3'-0" above floor during covering installation.

1.08 DELIVERY, STORAGE, AND HANDLING
 A. General: Comply with Division 1 Product Requirements Sections.
 B. Ordering: Comply with manufacturer's ordering instructions and lead time requirements to avoid
 construction delays.
 C. Delivery: Deliver materials in manufacturer's original, unopened, undamaged containers with
 identification labels intact.

1.09 PROTECTION
 A. Protect other materials against damage and discoloration by work of this section.

1.10 COORDINATION
 A. Coordinate with other trades affecting or affected by work of this section.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

B. Substitutions: Under provisions of Division 01.

2.02 MATERIALS

A. Solid Epoxy Resin:

1. Sheets cast from modified epoxy resin and non-asbestos inert fillers; compounded mixture cured and thermoset specifically from formulation to provide exceptional physical and chemical resistance required in medium to heavy duty laboratory environments.

2. Sheets monolithic throughout without surface coating application.

3. Physical properties; minimum acceptable physical performance in accordance with SEFA 3 testing procedures:

 a. Density/specific gravity: Tested to ASTM D792; minimum test rating of 134.8 PSF or 2.16 gcm.
 b. Rockwell hardness: Tested to ASTM D785; minimum M scale rating of 110.
 c. Fire resistance: tested to ASTM D635; classified as self-extinguishing.
 d. Surface burning characteristics: Tested to ASTM E84; flame spread index 7.4 and smoke developed index of 221.2.
 e. Surface burning characteristics in vertical position: Tested to ASTM D3801; maximum flame spread index of 7.4 and smoke developed index of 221.2.
 f. Coefficient of linear thermal expansion: Tested to ASTM D696; rating of 2.46 x 10-5.
 g. Heat deflection: Tested to ASTM D648; maximum 205 degrees F or 96 degrees C.
 h. Flexural strength: Tested to ASTM D790; minimum rating 14.9 KPSI or 103 Mpa.
 i. Flexural modulus: Tested to ASTM D790; 2,777,501 PSI or 19.2 Gpa.
 j. Water absorption, 24 hours: tested to ASTM D570; maximum 0.008 percent by weight.
 k. Compression strength: Tested to ASTM D695; minimum 38.4 kpsi or 265 Mpa.
 l. Chemical resistance; minimum acceptable chemical resistance performance in accordance with SEFA 8:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Tested Method</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyl Acetone</td>
<td>A 0</td>
<td></td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>A 1</td>
<td></td>
</tr>
<tr>
<td>Acetic Acid 98%</td>
<td>B 0</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>A 1</td>
<td></td>
</tr>
<tr>
<td>Acid Dichromate 5%</td>
<td>B 0</td>
<td></td>
</tr>
<tr>
<td>Butyl Alcohol</td>
<td>A 0</td>
<td></td>
</tr>
<tr>
<td>Ethyl Alcohol</td>
<td>A 0</td>
<td></td>
</tr>
<tr>
<td>Methyl Alcohol</td>
<td>A 0</td>
<td></td>
</tr>
<tr>
<td>Ammonium Hydroxide, 28%</td>
<td>B 0</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>A 1</td>
<td></td>
</tr>
</tbody>
</table>
4. Testing Method Descriptions:

a. Method A - Volatile chemicals (organic solvents): Cotton ball saturated with test reagent is placed in one-ounce bottle (20 x 75mm test tube or similar container) with reservoir of liquid above ball. Container is inverted on test material for period of 24 hours at standard temperature 23 degrees C plus or minus 2 degrees C (73 degrees F plus or minus 4 degrees F).

b. Method B - Non Volatile Chemicals: Five drops (1/4 cc) of test reagent are placed on test material surface. Reagent is then covered with watch glass (25 mm) for period of no less than 24 hours at standard temperature of 23 degrees C plus or minus 2 degrees C (73 degrees F plus or minus degrees F).

5. Result Definitions:
0 - No Effect: No detectible change in material surface.
1 - Good: Slight detectable change in color or gloss but no change to function or life of work surface material.
2 - Fair: Slight surface etching or severer staining. Clearly discernable change in color or gloss but no significant impairment of surface life or function.
3 - Poor: Pitting, cratering or erosion of work surface material; obvious and significant deterioration. Objectionable change in appearance due to surface discoloration.

2.03 ACCESSORIES

A. Provide solid epoxy resin laboratory shelving and back splashes where indicated.

B. Installation Materials: Manufacturer's joint adhesive, panel adhesive, and sealants as required to suit project conditions.

2.04 FABRICATION

A. Fabricated tops and accessories in accordance with manufacturer's recommendations, approved Shop Drawings, and SEFA 8.

B. Epoxy Resin Worksutfaces:

1. Thickness: 1 inch unless otherwise indicated.
 a. Check each sheet at factory for required thickness.
 b. Maximum variation in thickness: plus or minus 1/16 inch (1.6 mm) from corner to corner.

2. Warpage:
 a. Inspect tops for warpage prior to fabrication by placing on true flat surface.
 b. Maximum allowable warpage: 1/16 inch (1.5 mm) in 36 inch (900 mm) span or 3/16 inch (4.5 mm) in 96 inch (2400 mm) span.

3. Fabrication:
 a. Shop fabricate in longest practical lengths.
 b. Bond joints with highly chemical resistant cement with properties and color similar to base material.
 c. Provide 1/8 inch (3 mm) drip groove at underside of exposed edges, set back 1/2 inch from face.
 d. Finish exposed edges.

4. Fabricate tops [flat] [with 1/4 inch (6 mm) raised marine edge.] [Flat with 1/4 inch (6 mm) raised marine edge at epoxy sink locations.

5. Edge treatment: Standard 1/8 inch (2 mm) chamfered edge.

6. Corner treatment: exposed corners shall be eased slightly for safety.

7. Back and end splashes:
 a. Supplied loose for field installation.
 b. Same material and thickness as worksurfaces.
 c. 6 inches high unless otherwise indicated.
 d. Top-mounted end splash where worksurfaces abut adjacent construction at and locations indicated on Drawings.
8. Joints: Maximum 1/8 inch (2 mm), bonded with epoxy grout.

9. Make joints between two benches level.

10. Locate joints away from sinks and over or near supports.

12. Allowable tolerances:
 a. Square: Plus or minus 1/64 inch (0.4 mm) for each 12 inches (300 mm) of length.
 b. Location of cutouts and drilled openings: Plus or minus 1/8 inch (3 mm) of design dimension.
 c. Size of cutouts and drilled openings: Plus 1/8 inch (3 mm) or minus 0 inches (0 mm).

C. Epoxy Resin Sinks (see plumbing specifications):
 1. Mold sinks from thermosetting epoxy resin.
 2. Mold interior corners to radius. Slope sink base to drain outlet.
 3. Provide 1-1/2 inch (38 mm) outlet with open ended standpipe; standpipe overflow 2 inches (50mm) shorter than depth of sink.
 4. Unless otherwise indicated, fabricate sinks of drop-in design supported by upper flange from worksurface.
 5. Color: To match adjacent worksurface

PART 3 - EXECUTION

3.01 MANUFACTURER'S INSTRUCTIONS
 A. Compliance: Comply with manufacturer's product data, including product technical bulletins, product catalog installation instructions, and product carton instructions for installation.

3.02 EXAMINATION
 A. Site Verification of Conditions: Do not begin installation until cabinets have been installed. Verify substrate conditions are acceptable for product installation in accordance with manufacturer's instructions. Confirm that surfaces to receive tops are plumb and level, with maximum deflection of 1/4 inch (6 mm) in 20 feet (6 m).
 B. Material Inspection: In accordance with manufacturer's installation requirements, visually inspect materials prior to installation. Material with visual defects shall not be installed. Labor costs required to replace material installed with visual defects shall be the responsibility of the installation contractor.

3.03 PREPARATION
 A. Clean surfaces just prior to installation.
 B. Prepare surfaces using methods recommended by manufacturer.

3.04 INSTALLATION
 A. Install in accordance with manufacturer's instructions and approved Shop Drawings.
B. Install tops plumb and level.

C. Scribe to adjacent surfaces in accordance with manufacturer’s recommendations.

D. Fasten tops to supporting construction with adhesives appropriate for use with adjoining construction and as recommended by manufacturer.

E. Form field joints using manufacturer’s recommended adhesive. Form joints to be inconspicuous and nonporous.

F. Install using fasteners and adhesive appropriate for use with adjoining construction and as recommended by manufacturer.

3.06 CLEANING

A. Cleaning: Remove temporary coverings and protection of adjacent work areas. Repair or replace damaged installed products. Clean installed products in accordance with manufacturer’s instructions prior to owner’s acceptance. Remove construction debris from project site and legally dispose of debris.

3.07 PROTECTION

A. Protection: Protect installed product and finish surfaces from damage during construction. Remove and legally dispose of protective covering at time of Substantial Completion.
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Standard General Conditions, Supplementary Conditions, and Division 1 bound herewith in addition to this specification and accompanying drawings.

1.02 SUMMARY

A. Section includes: Hydraulic passenger elevators as shown and specified. Elevator work includes:
 2. Elevator car enclosures, hoistway entrances and signal equipment.
 3. Jack(s).
 4. Operation and control systems.
 5. Accessibility provisions for physically disabled persons.
 6. Equipment, machines, controls, systems and devices as required for safely operating the specified elevators at their rated speed and capacity.
 7. Materials and accessories as required to complete the elevator installation.

B. Related Sections:
 1. Division 3 Concrete: Installing inserts, sleeves and anchors in concrete.
 2. Division 4 Masonry: Installing inserts, sleeves and anchors in masonry.
 3. Division 5 Metals:
 a. Providing hoist beams, pit ladders, steel framing, auxiliary support steel and divider beams for supporting guide-rail brackets.
 b. Providing steel angle sill supports and grouting hoistway entrance sills and frames.
 4. Division 9 Finishes: Providing elevator car finish flooring and field painting unfinished and shop primed ferrous materials.
 5. Division 15 Plumbing:
 a. Sump pit and oil interceptor.
 6. Division 15: Heating, Ventilation and Air Conditioning
 a. Heating and ventilating hoistways and machine rooms.
 7. Division 16 Sections:
 a. Providing electrical service to elevators, including fused disconnect switches.
 b. Emergency power supply, transfer switch and auxiliary contacts.
 c. Heat and smoke sensing devices.
 d. Convenience outlets and illumination in machine room, hoistway and pit.

C. Work Not Included: General contractor shall provide the following in accordance with the requirements of the Model Building Code and ANSI A17.1 Code. For specific rules, refer to ANSI A17.1, Section 300 for hydraulic elevators. State or local requirements must be used if more stringent.

 1. Elevator hoist beam to be provided at top of elevator shaft. Beam must be able to accommodate proper loads and clearances for elevator installation and operation.
 2. Supply in ample time for installation by other trades, inserts, anchors, bearing plates, brackets, supports and bracing including all setting templates and diagrams for placement.
 3. Hatch walls require a minimum two hours of fire rating. Hoistway should be clear and plumb with variations not to exceed 1/2” at any point.
 4. Elevator hoistways shall have barricades, as required.
 5. Install bevel guards at 75° on all recesses, projections or setbacks over 2” (4” for A17.1
1. Provide rail bracket supports at pit, each floor and roof. For guide rail bracket supports, provide divider beams between hoistway at each floor and roof.
2. Pit floor shall be level and free of debris. Reinforce dry pit to sustain normal vertical forces from rails and buffers.
3. Where pit access is by means of the lowest hoistway entrance, a vertical ladder of non-combustible material extending 42" minimum, (48" minimum for A17.1-2000 areas) shall be provided at the same height, above sill of access door or handgrips.
4. Machine room to be enclosed and protected.
5. Provide red engraved plastic laminate sign at exterior face of elevator equipment room door to read as follows:

 6. ELEVATOR EQUIPMENT ROOM
 7. AUTHORIZED PERSONEL ONLY
 8. INSTALLATION OR STORAGE OF
 9. EQUIPMENT NOT PERTAINING TO
 10. THE ELEVATOR IS PROHIBITED

11. Machine Room temperature must be maintained between 55° and 90° F.
12. If machine room is remote from the elevator hoistway, clear access must be available above the ceiling or metal/concrete raceways in floor for oil line and wiring duct from machine room.
13. Access to the machinery space and machine room must be in accordance with the governing authority or code.
14. Provide an 8” x 16” cutout through machine room wall, for oil line and wiring duct, coordinated with elevator contractor at the building site.
15. All wire and conduit should run remote from either the hoistways or the machine room.
16. When heat, smoke or combustion sensing devices are required, connect to elevator machine room terminals. Contacts on the sensors should be sided for 120 volt D.C.
17. Install and furnish finished flooring in elevator cab.
18. Finished floors and entrance walls are not to be constructed until after sills and door frames are in place. Consult elevator contractor for rough opening size. The general contractor shall supply the drywall framing so that the wall fire resistance rating is maintained, when drywall construction is used.
19. Where sheet rock or drywall construction is used for front walls, it shall be of sufficient strength to maintain the doors in true lateral alignment. Drywall contractor to coordinate with elevator contractor.
20. Before erection of rough walls and doors; erect hoistway sills, headers, and frames. After rough walls are finished; erect fascias and toe guards. Set sill level and slightly above finished floor at landings.
21. To maintain legal fire rating (masonry construction), door frames are to be anchored to walls and properly grouted in place.
22. The elevator wall shall interface with the hoistway entrance assembly and be in strict compliance with the elevator contractor's requirements.
23. General Contractor shall fill and grout around entrances, as required.
24. Elevator sill supports shall be provided at each opening.
25. All walls and sill supports must be plumb where openings occur.
26. For applications with jack hole, free and clear access to the elevator pit area for the jack hole-drilling rig is required.
27. Where jack hole is required, remove all spoils from jack hole drilling.
28. When not provided by Elevator Contractor, jack hole shall accommodate the jack unit. If required the jack hole is to be provided in strict accordance with the elevator contractor's shop drawings.
29. Locate a light fixture and convenience outlet in pit with switch located adjacent to the access door.
30. A light switch and fused disconnect switch for each elevator should be located inside the machine room adjacent to the door, where practical, per the National Electrical Code.
(NFPA No. 70).
31. As indicated by elevator contractor, provide a light outlet for each elevator, in center of hoistway (or in the machine room).
32. For signal systems and power operated door: provide ground and branch wiring circuits, including main line switch. For car light and fan: provide a feeder and branch wiring circuits, including main line switch.
33. Wall thickness may increase when fixtures are mounted in drywall. These requirements must be coordinated between the general contractor and the elevator contractor.
34. Provide supports, patching and recesses to accommodate hall button boxes, signal fixtures, etc..
35. Locate telephone and convenience outlet on control panel.

1.03 SUBMITTALS

A. Product data: When requested, the elevator contractor will provide standard cab, entrance and signal fixture data to describe product for approval.

B. Shop drawings:
 1. Show equipment arrangement in the machine room/control space, pit and hoistway. Provide plans, elevations, sections and details of assembly, erection, anchorage, and equipment location.
 2. Indicate elevator system capacities, sizes, performances, safety features, finishes and other pertinent information.
 3. Show floors served, travel distances, maximum loads imposed on the building structure at points of support and all similar considerations of the elevator work.
 4. Indicate electrical power requirements and branch circuit protection device recommendations.

C. Baked enamel selection: Submit manufacturer’s standard selection charts for exposed finishes and materials.

D. Plastic laminate selection: Submit manufacturer’s standard selection charts for exposed finishes and materials.

E. Metal Finishes: Upon request, standard metal samples provided.

F. Operation and maintenance data. Include the following:
 2. Parts list, with recommended parts inventory.

1.04 QUALITY ASSURANCE

A. Manufacturer Qualifications: An approved manufacturer with minimum fifteen years experience in manufacturing, installing, and servicing elevators of the type required for the project.
 1. Must be the manufacturer of the power unit, controller, signal fixtures, door operators cab, entrances, and all other major parts of the elevator operating equipment.
 a. The major parts of the elevator equipment shall be manufactured in the United States, and not be an assembled system.
 2. The manufacturer shall have a documented, on-going quality assurance program.
 3. ISO-9001:2000 Manufacturer Certified

B. Installer Qualifications: The manufacturer or an authorized agent of the manufacturer with not less than fifteen years of satisfactory experience installing elevators equal in character and performance to the project elevators.
C. Regulatory Requirements:
1. ASME/ANSI A17.1 Safety Code for Elevators and Escalators, latest edition or as required by the local building code.
6. CAN/CSA C22.1 Canadian Electrical Code.

D. Fire-rated Entrance Assemblies: Opening protective assemblies including frames, hardware, and operation shall comply with ASTM E2074, CAN4-S104 (ULC-S104), UL10(B), and NFPA 80. Provide entrance assembly units bearing Class B or 1 1/2 hour label by a Nationally Recognized Testing Laboratory (2 hour label in Canada).

E. Inspection and testing: Elevator Installer shall obtain and pay for all required inspections, tests, permits and fees for elevator installation.
1. Arrange for inspections and make required tests.
2. Deliver to the Owner upon completion and acceptance of elevator work.

1.05 DELIVERY, STORAGE AND HANDLING

A. Manufacturer will deliver elevator materials, components and equipment and the Contractor is responsible to provide secure and safe storage on job site.

1.06 PROJECT CONDITIONS

A. Prohibited Use: Elevators shall not be used for temporary service or for any other purpose during the construction period before Substantial Completion and acceptance by the purchaser unless agreed upon by Elevator Contractor and General Contractor with signed temporary agreement.

B. Provide the hole for the jack unit (if required by the type of jack provided), based on excavation through normal soil or clay which can be removed by manual digging or by standard truck-mounted regular drilling unit. Provide a casing if required to retain the walls of the hole. General contractor shall remove excavation spoils deposited in the elevator pit.
1. If a physical obstruction or hindrance is encountered below the ground surface, including boulders, rock, gravel, wood, metal, pilings, sand, water, quick sand, caves, public utilities or any other foreign material, obtain written authorization to proceed with excavating using special excavation equipment.
2. Maintain a daily log of time and material costs involved.
3. Elevator contractor will be compensated on a time and material basis for additional costs incurred after encountering the physical obstruction or hindrance, including the cost of the special excavation equipment.

1.07 WARRANTY

A. Warranty: Submit elevator manufacturer's standard written warranty agreeing to repair, restore or replace defects in elevator work materials and workmanship not due to ordinary wear and tear or improper use or care for 12 months from date of Substantial Completion.

PART 2 PRODUCTS

2.01 MANUFACTURERS
HYDRAULIC ELEVATORS 14 24 00 - 5

A. Manufacturer: ThyssenKrupp Elevator AMEE 25C HLS or approved.

2.02 MATERIALS, GENERAL

A. Colors, patterns, and finishes: As selected by the Architect and Owners Authorized Representative from manufacturer’s standard colors, patterns, and finish charts.

B. Steel:
 1. Shapes and bars: Carbon.
 2. Sheet: Cold-rolled steel sheet, commercial quality, Class 1, matte finish.

C. Plastic laminate: Decorative high-pressure type, complying with NEMA LD3, Type GP-50 General Purpose Grade, nominal 0.050” thickness.

D. Carpet: By others.

2.03 HOISTWAY EQUIPMENT

A. Platform: Fabricated frame of formed or structural steel shapes, gusseted and rigidly welded with a wood subfloor. Underside of the platform shall be fireproofed.

B. Sling: Steel stiles affixed to a steel crosshead and bolstered with bracing members to remove strain from the car enclosure.

C. Guide Rails: Steel, omega shaped, fastened to the building structure with steel brackets.
 C. Guide Shoes: Slide guides shall be mounted on top and bottom of the car.

D. Buffers: Provide substantial buffers in the elevator pit. Mount buffers on a steel template that is fastened to the pit floor or continuous channels fastened to the elevator guide rail or securely anchored to the pit floor. Provide extensions if required by project conditions.

E. Jack: Jack unit shall be of sufficient size to lift the gross load the height specified. Factory test jack to insure adequate strength and freedom from leakage. Brittle material, such as gray cast iron, is prohibited in the jack construction. Provide the following jack type: Twin post holeless telescopic 2-stage. Two jacks piped together, mounted one on each side of the car with each having two telescopic sections designed to extend in a synchronized manner when oil is pumped into the Assembly. Each jack section will be guided from within the casing or the plunger assembly used to house the section. Each plunger shall have a high pressure sealing system which will not allow for seal movement or displacement during the course of operation. Each Jack Assembly shall have a check valve built into the assembly to allow for automatically re-syncing the two plunger sections by moving the jack to its fully contracted position. The jack shall be designed to be mounted on the pit floor or in a recess in the pit floor. Each jack section shall have a bleeder valve to discharge any air trapped in the section.

G. Automatic Self-Leveling: Provide each elevator car with a self-leveling feature to automatically bring the car to the landings and correct for overtravel or undertravel. Self-leveling shall, within its zone, be automatic and independent of the operating device. The car shall be maintained approximately level with the landing irrespective of its load.

H. Wiring, Piping, and Oil: Provide all necessary hoistway wiring in accordance with the National Electrical Code. All necessary code compliant pipe and fittings shall be provided to connect the power unit to the jack unit. Provide proper grade oil as specified by the manufacturer of the
2.04 POWER UNIT

A. Power Unit (Oil Pumping and Control Mechanism): A self-contained unit consisting of the following items:
 1. Oil reservoir with tank cover.
 2. An oil hydraulic pump.
 3. An electric motor.
 4. Oil control valve with the following components built into single housing; high pressure relief valve, check valve, automatic unloading up start valve, lowering and leveling valve, and electro-magnetic controlling solenoids.

B. Pump: Positive displacement type pump specifically manufactured for oil-hydraulic elevator service. Pump shall be designed for steady discharge with minimum pulsation to give smooth and quiet operation. Output of pump shall not vary more than 10 percent between no load and full load on the elevator car.

C. Motor: Standard manufacture motor specifically designed for oil-hydraulic elevator service. Duty rating shall be selected for specified speed and load.

D. Control System: Shall be microprocessor based and protected from environmental extremes and excessive vibrations in a NEMA 1 enclosure.

E. Oil Control Unit: The following components shall be built into a single housing. Welded manifolds with separate valves to accomplish each function are not acceptable. Adjustments shall be accessible and be made without removing the assembly from the oil line.
 1. Relief valve shall be externally adjustable and be capable of bypassing the total oil flow without increasing back pressure more than 10 percent above that required to barely open the valve.
 2. Up start and stop valve shall be adjustable and designed to bypass oil flow during start and stop of motor pump assembly. Valve shall close slowly, gradually diverting oil to or from the jack unit, ensuring smooth up starts and up stops.
 3. Check valve shall be designed to close quietly without permitting any perceptible reverse flow.
 4. Lowering valve and leveling valve shall be adjustable for down start speed, lowering speed, leveling speed and stopping speed to ensure smooth "down" starts and stops. The leveling valve shall be designed to level the car to the floor in the direction the car is traveling after slowdown is initiated.

2.05 HOISTWAY ENTRANCES

A. Doors and Frames: Provide complete hollow metal type hoistway entrances at each hoistway opening bolted/knock down construction.
 1. Manufacturer's standard entrance design consisting of hangers, doors, hanger supports, hanger covers, fascia plates, sight guards, and necessary hardware.
B. Interlocks: Equip each hoistway entrance with an approved type interlock tested as required by code. Provide door restriction devices as required by code.

C. Door Hanger and Tracks: Provide sheave type two point suspension hangers and tracks for each hoistway horizontal sliding door.
 1. Sheaves: Polyurethane tires with ball bearings properly sealed to retain grease.
 2. Hangers: Provide an adjustable device beneath the track to limit the up-thrust of the doors during operation.
 3. Tracks: Drawn steel shapes, smooth surface and shaped to conform to the hanger sheaves.

D. Hoistway Sills: Extruded metal, with groove(s) in top surface. Provide mill finish on aluminum.

2.06 CAR ENCLOSURE

A. Car Enclosure:
 1. Walls: Cab type TKAP, reinforced cold-rolled steel with two coats factory applied baked enamel finish, with applied vertical wood core panels covered on both sides with high pressure plastic laminate.
 a. Reveals and frieze: Baked enamel
 2. Canopy: Cold-rolled steel with hinged exit.
 3. Ceiling: Suspended type, fluorescent lighting with translucent diffuser mounted in a metal frame.
 5. Doors: Horizontal sliding car doors reinforced with steel for panel rigidity. Hang doors on sheave type hangers with polyurethane tires that roll on a polished steel track and are guided at the bottom by non-metallic sliding guides.
 b. Cab Sills: Extruded aluminum, mill finish.
 6. Handrail: Provide 1.5" diameter cylindrical metal on side and rear walls on front opening cars and side walls only on front and rear opening cars. Handrails shall have a stainless steel, no. 4 brushed finish.
 7. Ventilation: Manufacturer's standard exhaust fan, mounted on the car top.

B. Car Top Inspection: Provide a car top inspection station with an "Auto-Inspection" switch, an "emergency stop" switch, and constant pressure "up and down" direction and safety buttons to make the normal operating devices inoperative. The station will give the inspector complete control of the elevator. The car top inspection station shall be mounted in the door operator assembly.

2.07 DOOR OPERATION

A. Door Operation: Provide a direct current motor driven heavy duty operator designed to operate the car and hoistway doors simultaneously. Door movements shall be electrically cushioned at both limits of travel and the door operating mechanism shall be arranged for manual operation in event of power failure. Doors shall automatically open when the car arrives at the landing and automatically close after an adjustable time interval or when the car is dispatched to another landing. Closed-loop, microprocessor controlled motor-driven linear door operator, with adjustable torque limits, also acceptable. AC controlled units with oil checks or other deviations are not acceptable.

 1. Door nudging operation to occur if doors are prevented from closing for an adjustable period of time.
B. Door Protection Devices: Provide a door protection system using microprocessor controlled infra-red light beams. The beams shall project across the car opening detecting the presence of a passenger or object. If door movement is obstructed, the doors shall immediately reopen.

2.08 CAR OPERATING STATION

A. Car Operating Station, General: The main car control in each car shall contain the devices required for specific operation mounted in an integral swing return panel requiring no applied face plate. Swing return shall have a brushed stainless steel finish. The main car operating panel shall be mounted in the return and comply with handicap requirements. Pushbuttons that illuminate using long lasting LED’s shall be included for each floor served, and emergency buttons and switches shall be provided per code. Call buttons shall be Innovation Industries “Beaver Button” type similar to design used in Milam Hall on the OSU Campus, or approved. Switches for car light and accessories shall be provided.

B. Provide hall call buttons that fully illuminate and are bright and are easy to recognize when activated.
 1. Use flat-surfaced, raised buttons because they are easier to activate than convex buttons. Hall call buttons shall be located with the down button centered at a height of 35” above the floor. The up button shall not be located more than 43” above the floor.
 2. All car controls and emergency buttons (inside elevator) shall be located so that the lowest button is centered at a height of 35” and the highest buttons is centered at a height of 48” or less.

C. Emergency Communications System: Phone box provided. Instrument by others.

D. Auxiliary Operating Panel: Not Required

E. Column Mounted Car Riding Lantern: A car riding lantern shall be installed in the elevator cab and located in the entrance. The lantern, when illuminated, will indicate the intended direction of travel. The lantern will illuminate and a signal will sound when the car arrives at a floor where it will stop. The lantern shall remain illuminated until the door(s) begin to close.

2.09 CONTROL SYSTEMS

A. Controller: The elevator control system shall be microprocessor based and software oriented. Control of the elevator shall be automatic in operation by means of push buttons in the car numbered to correspond to floors served, for registering car stops, and by "up-down" push buttons at each intermediate landing and "call" push buttons at terminal landings.

2.10 HALL STATIONS

A. Hall Stations, General: Provide one pushbutton riser with faceplates having a brushed stainless steel finish.
 1. Phase 1 firefighter’s service key switch, with instructions, shall be incorporated into the hall station at the designated level.
 2. Call buttons shall be Innovation Industries “Beaver Button” type similar to design used in Milam Hall on the OSU Campus, or approved.

B. Floor Identification Pads: Provide door jamb pads at each floor. Jamb pads shall comply with Americans with Disabilities Act (ADA) requirements.

C. Hall Position Indicator: Not Applicable
D. Hall lanterns: Not required for this application.

2.11 MISCELLANEOUS ELEVATOR COMPONENTS

A. Oil Hydraulic Silencer: Install an oil hydraulic silencer (muffler device) at the power unit location. The silencer shall contain pulsation absorbing material inserted in a blowout proof housing arranged for inspecting interior parts without removing unit from oil line.

PART 3 EXECUTION

3.01 EXAMINATION

A. Before starting elevator installation, inspect hoistway, hoistway openings, pits and machine rooms/control space, as constructed and verify all critical dimensions, and examine supporting structures and all other conditions under which elevator work is to be installed. Do not proceed with elevator installation until unsatisfactory conditions have been corrected in a manner acceptable to the installer.

B. Installation constitutes acceptance of existing conditions and responsibility for satisfactory performance.

3.02 INSTALLATION

A. Install elevator systems components and coordinate installation of hoistway wall construction.
 1. Work shall be performed by competent elevator installation personnel in accordance with ASME A17.1, manufacturer's installation instructions and approved shop drawings.
 2. Comply with the National Electrical Code for electrical work required during installation.

B. Jack unit excavation: Drill or otherwise excavate below elevator pit construction as required to install the jack unit.
 1. Install casing for jack unit.
 2. Provide HDPE jack protection system for all in ground jacks.
 3. Set casing for jack unit assembly plumb, and partially fill with water-settled sand, eliminating voids. Back fill depth shall be sufficient to hold the bottom of the jack in place over time.

C. Coordination: Coordinate elevator work with the work of other trades, for proper time and sequence to avoid construction delays. Use benchmarks, lines, and levels designated by the Contractor, to ensure dimensional coordination of the work.

D. Alignment: Coordinate installation of hoistway entrances with installation of elevator guide rails for accurate alignment of entrances with cars. Where possible, delay final adjustment of sills and doors until car is operable in shaft. Reduce clearances to minimum safe, workable dimensions at each landing.

E. Lubricate operating parts of system where recommended by manufacturer.

3.03 FIELD QUALITY CONTROL

A. Acceptance testing: Upon completion of the elevator installation and before permitting use of elevator, perform acceptance tests as required by A17.1 Code and local authorities having jurisdiction. Perform other tests, if any, as required by governing regulations or agencies.
B. Advise Owner, Contractor, Architect, and governing authorities in advance of dates and times tests are to be performed on the elevator.

3.04 ADJUSTING

A. Make necessary adjustments of operating devices and equipment to ensure elevator operates smoothly and accurately.

3.05 CLEANING

A. Before final acceptance, remove protection from finished surfaces and clean and polish surfaces in accordance with manufacturer’s recommendations for type of material and finish provided. Stainless stall shall be cleaned with soap and water and dried with a non-abrasive surface; shall not be cleaned with bleached-based cleansers.

B. At completion of elevator work, remove tools, equipment, and surplus materials from site. Clean equipment rooms and hoistway. Remove trash and debris.

3.06 PROTECTION

A. At time of Substantial Completion of elevator work, or portion thereof, provide suitable protective coverings, barriers, devices, signs, or other such methods or procedures to protect elevator work from damage or deterioration. Maintain protective measures throughout remainder of construction period.

3.07 DEMONSTRATION

A. Instruct Owner’s personnel in proper use, operations, and daily maintenance of elevators. Review emergency provisions, including emergency access and procedures to be followed at time of failure in operation and other building emergencies. Train Owner’s personnel in normal procedures to be followed in checking for sources of operational failures or malfunctions.

B. Make a final check of each elevator operation, with Owner’s personnel present, immediately before date of substantial completion. Determine that control systems and operating devices are functioning properly.

3.08 ELEVATOR SCHEDULE

A. Elevator Qty. 1
 1. Elevator Model: AMEE 25
 2. Rated Capacity: 2500 lbs.
 3. Rated Speed: 150 ft./min.
 4. Operation System: TAC20
 5. Travel: 13'-11"
 6. Landings: 2 total
 7. Openings:
 a. Front: 2
 b. Rear: 0
 8. Clear Car Inside: 6' - 8" wide x 4' - 3" high
 9. Cab Height: 8'0" nominal
 10. Hoistway Entrance Size: 3' - 6" wide x 7'-0 high
 11. Door Type: Single Speed
 13. Seismic Requirements: Zone 3+
 14. Fixture & Button Style: Aurora
3.09 CLEANING AND REPAIRING

A. Remove debris from project site upon work completion or sooner, if directed. Including work of other sections, clean, repair and touch-up, or replace when directed, products which have been soiled, discolored, or damaged by work of this section. Leave installation clean and defect-free.

END OF SECTION
SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. GPT; an EnPro Industries company.
B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop.
C. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.
D. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).
5. Proco Products, Inc.

B. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20 psig minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
4. Pressure Plates: Carbon steel.
5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B 633 of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).
5. Proco Products, Inc.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.

C. Plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C 920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. GE Construction Sealants; Momentive Performance Materials Inc.
 c. Polymeric Systems, Inc.
 d. Schnee-Morehead, Inc., an ITW company.
 e. Sherwin-Williams Company (The).

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
3. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 “Penetration Firestopping.”
3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Use grout or silicone sealant, to seal the space around outside of sleeve-seal fittings.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Steel pipe sleeves.

5. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION 210517
SECTION 210518 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type.
d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 210518
SECTION 210523 - GENERAL-DUTY VALVES FOR WATER-BASED FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Iron butterfly valves with indicators.
2. Check valves.
3. Iron OS&Y gate valves.
4. NRS gate valves.
5. Indicator posts.
6. Trim and drain valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:

1. Main Level: HAMV - Fire Main Equipment.
 a. Level 1: HCBZ - Indicator Posts, Gate Valve.
 b. Level 1: HLOT - Valves.
 1) Level 3: HLUG - Ball Valves, System Control.
 2) Level 3: HLXS - Butterfly Valves.
 3) Level 3: HMER - Check Valves.
 4) Level 3: HMRZ - Gate Valves.

 a. Level 1: VQGU - Valves, Trim and Drain.

B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:

1. Automated Sprinkler Systems:
 a. Indicator posts.
 b. Valves.
 1) Gate valves.
2) Check valves.
 a) Single check valves.
 3) Miscellaneous valves.

C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.

D. ASME Compliance:
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B1.20.1 for threads for threaded-end valves.
 3. ASME B31.9 for building services piping valves.

E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

F. NFPA Compliance: Comply with NFPA 24 for valves.

G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.

H. Valve Sizes: Same as upstream piping unless otherwise indicated.

I. Valve Actuator Types:
 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 2. Handwheel: For other than quarter-turn trim and drain valves.
 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 IRON BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Anvil International.
 3. NIBCO INC.
 4. Tyco Fire & Building Products LP.
 5. Victaulic Company.
 6. Zurn Industries, LLC.

B. Description:
 1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
 3. Body Material: Cast or ductile iron.
 4. Seat Material: EPDM.
 5. Stem: Stainless steel.
 7. Actuator: Worm gear or traveling nut.
 8. Supervisory Switch: Internal or external.
2.3 CHECK VALVES

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. Anvil International.
3. Mueller Co.
4. NIBCO INC.
5. Reliable Automatic Sprinkler Co., Inc. (The).
6. Tyco Fire & Building Products LP.
7. Victaulic Company.

B. **Description:**

3. Type: Single swing check.
4. Body Material: Cast iron, ductile iron, or bronze.
5. Clapper: Bronze, ductile iron, or stainless steel.
6. Clapper Seat: Brass, bronze, or stainless steel.
7. Hinge Shaft: Bronze or stainless steel.

2.4 IRON OS&Y GATE VALVES

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. Hammond Valve.
2. Mueller Co.
3. NIBCO INC.
4. Victaulic Company.
5. Watts; a Watts Water Technologies company.
6. Zurn Industries, LLC.

B. **Description:**

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron, or bronze.
5. Wedge Seat: Cast or ductile iron, or bronze.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.
2.5 NRS GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mueller Co.
2. NIBCO INC.
3. Victaulic Company
4. Zurn Industries, LLC.

B. Description:

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron.
5. Wedge Seat: Cast or ductile iron, or bronze.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.6 INDICATOR POSTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kennedy Valve Company; a division of McWane, Inc.
2. Mueller Co.
3. NIBCO INC.

B. Description:

2. Type: Wall.
3. Base Barrel Material: Cast or ductile iron.
4. Cap: Cast or ductile iron.

2.7 TRIM AND DRAIN VALVES

A. Angle Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Fire Protection Products, Inc.
 b. NIBCO INC.
 c. United Brass Works, Inc.

2. Description:
b. Body Material: Brass or bronze.
c. Ends: Threaded.
d. Stem: Bronze.
e. Disc: Bronze.
f. Packing: Asbestos free.
g. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

A. Comply with requirements in the following Sections for specific valve installation requirements and applications:
 1. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the pipe center.

F. Install valves in position to allow full stem movement.

G. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.

H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

I. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION 210523
SECTION 210529 - HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal hanger-shield inserts.
5. Fastener systems.
6. Equipment supports.

B. Related Requirements:

1. Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment" for vibration isolation devices and seismic restraints.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

B. Structural Performance: Hangers and supports for fire-suppression piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment.

D. UL Compliance: Comply with UL 203.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

 1. Description: Factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 2. Galvanized Metallic Coatings: Pregalvanized or hot-dip galvanized.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with NFPA-approved, UL-listed, or FM-approved carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. B-line, an Eaton business.
b. Thomas & Betts Corporation; A Member of the ABB Group.
c. Unistrut; Part of Atkore International.

2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.

4. Channels: Continuous slotted carbon-steel channel with inturned lips.

5. Channel Width: Selected for applicable load criteria.

6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.5 THERMAL HANGER-SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
3. ERICO International Corporation.
5. Pipe Shields Inc.
6. Piping Technology & Products, Inc.
7. Rilco Manufacturing Co., Inc.
8. Value Engineered Products, Inc.

B. Insulation-Insert Material: Water-repellent-treated, ASTM C 533, Type I calcium silicate with 100-psi or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: NFPA-approved, UL-listed, or FM-approved threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Hilti, Inc.
 b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 c. MKT Fastening, LLC.
 d. Simpson Strong-Tie Co., Inc.
B. Mechanical-Expansion Anchors: NFPA-approved, UL-listed, or FM-approved, insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Empire Tool and Manufacturing Co., Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 e. MKT Fastening, LLC.

2. Indoor Applications: Zinc-coated or Stainless steel.

2.7 EQUIPMENT SUPPORTS

A. Description: NFPA-approved, UL-listed, or FM-approved, welded, shop- or field-fabricated equipment support, made from structural-carbon-steel shapes.

2.8 MATERIALS

A. Aluminum: ASTM B 221.

B. Carbon Steel: ASTM A 1011/A 1011M.

C. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

D. Stainless Steel: ASTM A 240/A 240M.

E. Grout: ASTM C 1107/C 1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout, suitable for interior and exterior applications.

 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with installation requirements of approvals and listings. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal strut systems.

D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Install in accordance with approvals and listings.
2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. Install in accordance with approvals and listings.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
1. Attach clamps and spacers to piping.
 a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A 780/A 780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with NFPA requirements for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

G. Use thermal hanger-shield inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Steel Pipe Clamps (MSS Type 4): For suspension of NPS 1/2 to NPS 24 if little or no insulation is required.
3. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
4. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
5. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
6. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Comply with NFPA requirements.

K. Building Attachments: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. C-Clamps (MSS Type 23): For structural shapes.
3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

L. Saddles and Shields: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

M. Comply with NFPA requirements for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

N. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

O. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
END OF SECTION 210529
SECTION 210533 - HEAT TRACING FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes heat tracing for fire-suppression piping with the following electric heating cables:
 1. Self-regulating, parallel resistance.
 B. Related Requirements:
 1. Section 220533 "Heat Tracing for Plumbing Piping."

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
 2. Schedule heating capacity, length of cable, spacing, and electrical power requirement for each electric heating cable required.
 B. Shop Drawings: For electric heating cable.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.
 B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For electric heating cables to include in operation and maintenance manuals.
1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace electric heating cable that fails in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SELF-REGULATING, PARALLEL-RESISTANCE HEATING CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Delta-Therm Corporation.
3. Raychem; Pentair Thermal Management.

B. Comply with IEEE 515.1.

C. Heating Element: Pair of parallel No. 16 AWG, tinned, stranded copper bus wires embedded in crosslinked conductive polymer core, which varies heat output in response to temperature along its length. Terminate with waterproof, factory-assembled, nonheating leads with connectors at one end, and seal the opposite end watertight. Cable shall be capable of crossing over itself once without overheating.

D. Electrical Insulating Jacket: Flame-retardant polyolefin.

E. Cable Cover: Tinned-copper braid and polyolefin outer jacket with ultraviolet inhibitor.

F. Maximum Operating Temperature (Power On): 150 deg F.

G. Maximum Exposure Temperature (Power Off): 185 deg F.

H. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

I. Capacities and Characteristics:

1. Maximum Heat Output: 6 W/ft..
2. Piping Diameter: 6 NPS.
3. Electrical Characteristics for Single-Circuit Connection:
 a. Volts: 120.
 b. Phase: 1.
 c. Hertz: 60.
 d. Minimum Circuit Ampacity: 15.
 e. Maximum Overcurrent Protection: 20.

2.2 CONTROLS

A. Remote bulb unit with adjustable temperature range from 30 to 50 deg F.
B. Snap action; open-on-rise, single-pole switch with minimum current rating adequate for connected cable.

C. Remote bulb on capillary, resistance temperature device, or thermistor for directly sensing pipe-wall temperature.

D. Corrosion-resistant, waterproof control enclosure.

2.3 ACCESSORIES

A. Cable Installation Accessories: Fiberglass tape, heat-conductive putty, cable ties, silicone end seals and splice kits, and installation clips all furnished by manufacturer or as recommended in writing by manufacturer.

B. Warning Tape: Continuously printed “Electrical Tracing”; vinyl, at least 3 mils thick, and with pressure-sensitive, permanent, waterproof, self-adhesive back.

 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine surfaces and substrates to receive electric heating cables for compliance with requirements for installation tolerances and other conditions affecting performance.

 1. Ensure surfaces and pipes in contact with electric heating cables are free of burrs and sharp protrusions.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install heat trace on all fire sprinkler piping subject to freezing (attics). Install to maintain a minimum of 45 degree F water. Coordinate with electrical contractor for quantity and location of 120VAC, 20A circuits required for heat tracing.

B. Install electric heating cable where indicated and according to NFPA 70 and NFPA 13.

C. Install electric heating cable across expansion joints according to manufacturer's written instructions; use cable to allow movement without damage to cable.

D. Install electric heating cables after piping has been tested and before insulation is installed.

E. Install electric heating cables according to IEEE 515.1.

F. Install insulation over piping with electric cables according to Section 210700 “Fire-Suppression Systems Insulation.”
G. Install warning tape on piping insulation where piping is equipped with electric heating cables.
H. Set field-adjustable switches and circuit-breaker trip ranges.

3.3 CONNECTIONS
A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
C. Connect heat-tracing controls to fire-alarm system according to NFPA 13. Comply with requirements in Section 284621.11 "Addressable Fire-Alarm Systems."

3.4 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
C. Perform the following tests and inspections:
 1. Perform tests after cable installation but before application of coverings such as insulation, wall or ceiling construction, or concrete.
 2. Test cables for electrical continuity and insulation integrity before energizing.
 3. Test cables to verify rating and power input. Energize and measure voltage and current simultaneously.
D. Repeat tests for continuity, insulation resistance, and input power after applying thermal insulation on pipe-mounted cables.
E. Cables will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports.

3.5 PROTECTION
A. Protect installed heating cables, including nonheating leads, from damage during construction.
B. Remove and replace damaged heat-tracing cables.

END OF SECTION 210533
SECTION 210548 - VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Restrained elastomeric isolation mounts.
 4. Restraint channel bracings.
 5. Seismic-restraint accessories.
 6. Mechanical anchor bolts.

1.2 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.

2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.

3. Size: Factory or field cut to match requirements of supported equipment.

4. Pad Material: Oil and water resistant with elastomeric properties.

5. Surface Pattern: Smooth pattern.

6. Infused nonwoven cotton or synthetic fibers.

7. Load-bearing metal plates adhered to pads.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.

2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.

2. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.6 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. TOLCO.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified.

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

D. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

I. Drilled-in Anchors:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Set anchors to manufacturer's recommended torque, using a torque wrench.

5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.2 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 211313 "Wet-Pipe Sprinkler Systems".

END OF SECTION 210548
SECTION 210553 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Craftmark Pipe Markers.
 c. Seton Identification Products.
 2. Material and Thickness: Brass, 0.032 inch thick, with predrilled holes for attachment hardware.
 3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 4. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Fasteners: Stainless-steel rivets or self-tapping screws.
 6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
b. Craftmark Pipe Markers.
c. Seton Identification Products.

2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.

3. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Craftmark Pipe Markers.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.

D. Background Color: Red.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.
I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Brady Corporation
 2. Craftmark Pipe Markers
 3. Seton Identification Products

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 LABEL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install or permanently fasten labels on each major item of mechanical equipment.

D. Locate equipment labels where accessible and visible.
E. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

END OF SECTION 210553
SECTION 210700 - FIRE-SUPPRESSION SYSTEMS INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Insulating indoor/outdoor piping.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties and equipment connections.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.
 8. Detail field application for fire-suppression water storage tanks.
C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 2. Sheet Form Insulation Materials: 12 inches square.
 5. Manufacturer’s Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation
materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields.

B. Coordinate clearance requirements with piping Installer for piping insulation application and equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville, a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.

 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2.4 **SEALANTS**

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Childers Brand; H. B. Fuller Construction Products.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.

2.5 **FACTORY-APPLIED JACKETS**

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 **TAPES**

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and applicable insulation joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.
3.7 FINISHES

A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.

 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

 1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

 2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

 1. Indoor fire-suppression piping located in spaces not subject to freezing.

 2. Underground piping.
3.10 INDOOR PIPING INSULATION SCHEDULE

3.11 INDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE (WHERE SUBJECT TO FREEZING (ATTICS))

A. Fire-Suppression Water Piping Subject to Freezing (attcis):
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inches thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed subject to damage:
 1. PVC: 20 mils thick.

END OF SECTION 210700
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 PROJECT SUMMARY

A. The goal of this project is to fully sprinkler Merryfield Hall on the Oregon State University Campus.

B. The University’s insurance underwriter is FM Global. The entire sprinkler system to be designed to meet the requirements of FM Global.

C. Signage for room containing main fire sprinkler controls shall have label, "FIRE SPRINKLER CONTROLS’ in red 1” high letters on white background.

D. Prior to bid the contractor shall verify whether a fire pump shall be required for this project. It is anticipated that a pump will not be required, but bidders shall verify prior to submitting a bid. If a pump is required the contractor shall notify OSU immediately.

E. The contractor shall provide a schedule and phasing plan for this project. This plan shall be approved by Oregon State University.

F. The contractor shall be responsible for patching and painting all walls, ceiling, floors, etc. damaged or flawed during construction. There may be locations throughout the facility where gypboard may need to be removed for work.

G. Contractor shall replace all damaged/soiled (dirty) ceiling tiles.

H. Protection
 1. The contractor shall provide protection to existing building and objects within the building. The protection shall include water and dust protection.
 2. The contractor will be required to work in small areas at one time and those areas shall be separated from other portions of the building for dust and noise protection.
 3. Roto hammering and noise producing construction shall be performed during off hours.
 4. No work shall be allowed during finals week.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.3 SUMMARY

A. Section Includes:

 1. Pipes, fittings, and specialties.
 2. Cover system for sprinkler piping.
 4. Sprinklers.
 5. Alarm devices.
7. Control panels.
8. Pressure gages.

B. Related Requirements:
 1. Section 230523 "General-Duty Valves for Water-Based Fire-Suppression Piping" for ball, butterfly, check, gate, post-indicator, and trim and drain valves.

1.4 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. Compressed air piping.
 3. HVAC hydronic piping.
 4. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

B. Qualification Data: For qualified Installer and professional engineer.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Fire-hydrant flow test report.
F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

G. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.9 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer’s responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.10 FIELD CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:

1. Notify Owner no fewer than two days in advance of proposed interruption of sprinkler service.
2. Do not proceed with interruption of sprinkler service without Owner’s written permission.
2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. Delegated Design: Engage a qualified professional engineer to design wet-pipe sprinkler systems.

1. Available fire-hydrant flow test records indicate the following conditions:
 b. Time: 11:18 a.m.
 c. Performed by: Jacob Backer of Corvallis Fire Department.
 d. Location of Residual Fire Hydrant R: 184.
 e. Location of Flow Fire Hydrant F: 689.
 f. Static Pressure at Residual Fire Hydrant R: 60 psig.
 h. Residual Pressure at Residual Fire Hydrant R: 55 psig.

2. Sprinkler system design shall be approved by authorities having jurisdiction.
 a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 b. Sprinkler Occupancy Hazard Classifications:
 1) Building Service Areas: Ordinary Hazard, Group 1.
 2) Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 3) General Storage Areas: Ordinary Hazard, Group 1.
 5) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 6) Office and Public Areas: Light Hazard.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
 e. Special Occupancy Hazard: As determined by authorities having jurisdiction.

4. Maximum Protection Area per Sprinkler: According to UL listing.

D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.
2.2 STEEL PIPE AND FITTINGS

A. Standard-Weight, Galvanized- and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Galvanized- and Uncoated-Steel Couplings: ASTM A 865/A 865M, threaded.

E. Malleable- or Ductile-Iron Unions: UL 860.

F. Cast-Iron Flanges: ASME 16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or EPDM rubber gasket.
 b. Class 150 and Class 300, Ductile-Iron or Steel, Raised-Face Flanges: Ring-type gaskets.

 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.

I. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Anvil International.
 b. National Fittings, Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
B. Pressure Rating:

C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Flanged or grooved.

F. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco Fire & Building Products LP.
 d. Venus Fire Protection Ltd.
 e. Victaulic Company.
 f. Viking Corporation.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application

G. Automatic (Ball Drip) Drain Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco Fire & Building Products LP.
 4. Type: Automatic draining, ball check.

2.4 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Anvil International.
b. National Fittings, Inc.
c. Shurjoint Piping Products.
d. Tyco Fire & Building Products LP.
e. Victaulic Company.

5. Type: Mechanical-tee and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded or grooved.

C. Branch Line Testers:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer LLC.

2. Standard: UL 199.

5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
a. AGF Manufacturing Inc.
b. Triple R Specialty.
c. Tyco Fire & Building Products LP.
d. Victaulic Company.
e. Viking Corporation.

4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Aegis Technologies, Inc.
 b. CECA, LLC.
 c. Corcoran Piping System Co.
 d. Merit Manufacturing.

5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

F. Flexible Sprinkler Hose Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fivalco Inc.
 b. FlexHead Industries, Inc.
 c. Gateway Tubing, Inc.
 d. Victaulic Company.

3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
5. Size: Same as connected piping, for sprinkler.

2.5 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

2. Reliable Automatic Sprinkler Co., Inc. (The).
3. Tyco Fire & Building Products LP.
4. Venus Fire Protection Ltd.
5. Victaulic Company.

B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

C. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

D. Automatic Sprinklers with Heat-Responsive Element:
 2. Nonresidential Applications: UL 199.
 3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

E. Sprinkler Finishes: Chrome plated.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 2. Standard: UL 199.
 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.6 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Notifier.
 c. Potter Electric Signal Company, LLC.
3. Type: Vibrating, metal alarm bell.
4. Size: 8-inch minimum diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application

C. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.
 e. Viking Corporation.
 f. Watts; a Watts Water Technologies company.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

D. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Kennedy Valve Company; a division of McWane, Inc.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application

2.7 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. AGF Manufacturing Inc.
2. AMETEK, Inc.
3. Ashcroft Inc.
5. WIKA Instrument Corporation.

B. Standard: UL 393.
C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
D. Pressure Gage Range: 0- to 250-psig minimum.
E. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION
A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING
A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements. Coordinate with Civil.
B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping.

3.3 PIPING INSTALLATION
A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.
C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.
D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
G. Install “Inspector’s Test Connections” in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

K. Install alarm devices in piping systems.

L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 210548 “Vibration and Seismic Controls for Fire-Suppression Piping and Equipment.”

M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

N. Fill sprinkler system piping with water.

O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing.

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 “Sleeves and Sleeve Seals for Fire-Suppression Piping.”

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 “Sleeves and Sleeve Seals for Fire-Suppression Piping.”

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping.”

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

I. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to “Quality Assurance” Article.

1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

J. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

K. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

L. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:

1. Install valves in vertical position for proper direction of flow, in main supply to system.
2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.
3. Install deluge valves in vertical position, in proper direction of flow, and in main supply to deluge system. Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
3.6 SPRINKLER INSTALLATION
A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
B. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.

3.7 IDENTIFICATION
A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
B. Identify system components, wiring, cabling, and terminals.

3.8 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Verify that equipment hose threads are same as local fire department equipment.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
C. Prepare test and inspection reports.

3.9 CLEANING
A. Clean dirt and debris from sprinklers.
B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.10 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.11 PIPING SCHEDULE
A. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends, grooved-end fittings, grooved-end-pipe couplings, and grooved joints.
B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 3. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 3. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.

E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
 1. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 2. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.12 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Recessed sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.

END OF SECTION 211313
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. GPT; an EnPro Industries company.

B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.

C. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.

D. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
E. PVC Pipe Sleeves: ASTM D 1785, Schedule 40.

F. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

G. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).
5. Proco Products, Inc.

B. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20 psig minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
4. Pressure Plates: Carbon steel.
5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B 633 of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).
5. Proco Products, Inc.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.

C. Plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C 920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. GE Construction Sealants; Momentive Performance Materials Inc.
 c. Polymeric Systems, Inc.
 d. Schnee-Morehead, Inc., an ITW company.
 e. Sherwin-Williams Company (The).

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout or silicone sealant, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.
E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Use grout or silicone sealant to seal the space around outside of sleeve-seal fittings.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Steel pipe sleeves.

5. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 DEFINITIONS

A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed and salvaged, or removed and reinstalled.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BrassCraft Manufacturing Co.; a Masco company.
 2. Dearborn Brass.
 4. Keeney Manufacturing Company (The).
 5. Mid-America Fittings, Inc.
 6. ProFlo; a Ferguson Enterprises, Inc. brand.

2.2 ESCUTCHEONS

A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Stainless-Steel Type: With polished stainless-steel finish.
C. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
D. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped steel with polished, chrome-plated finish and spring-clip fasteners.

E. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.

F. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed and exposed-rivet hinge; and spring-clip fasteners.

2.3 FLOOR PLATES

A. Split Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping and Relocated Existing Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Chrome-Plated Piping: One-piece steel with polished, chrome-plated finish.
 c. Insulated Piping: One-piece steel with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece steel with polished, chrome-plated finish.
 g. Bare Piping in Equipment Rooms: One-piece steel with polished, chrome-plated finish.

2. Escutcheons for Existing Piping to Remain:
 a. Chrome-Plated Piping: Split-casting, stamped steel with concealed or exposed-rivet hinge with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped steel with concealed or exposed-rivet hinge with polished, chrome-plated finish.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped steel with concealed or exposed-rivet hinge with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped steel with concealed or exposed-rivet hinge with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: Split-plate, stamped steel with concealed or exposed-rivet hinge with polished, chrome-plated finish.
 f. Bare Piping in Equipment Rooms: Split-plate, stamped steel with [concealed] [or] [exposed-rivet] hinge with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.
D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping and Relocated Existing Piping: One-piece, floor plate.
2. Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Thermowells.
 3. Dial-type pressure gages.
 4. Gage attachments.
 5. Test plugs.
 6. Test-plug kits.
 7. Sight flow indicators.
 B. Related Requirements:
 1. Section 221119 "Domestic Water Piping Specialties" for water meters.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS
 A. Plastic-Case, Compact-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. WATTS.
b. Weiss Instruments, Inc.
c. Weksler Glass Thermometer Corp.
d. WIKA Instrument Corporation.

4. Case Form: Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 3. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
 9. Window: Glass or plastic.
 10. Ring: Metal.
11. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and [piston] [porous-metal]-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Peterson Equipment Co., Inc.
2. Trenice, H. O. Co.
3. WATTS.
4. Weiss Instruments, Inc.
5. Weksler Glass Thermometer Corp.

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

G. Install valve and snuber in piping for each pressure gage for fluids.
H. Install test plugs in piping tees.

I. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlets and outlets of each domestic water heat exchanger.
 3. Inlet and outlet of each domestic hot-water storage tank.

J. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each pressure-reducing valve.
 3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 1. Direct-mounted, metal-case, vapor-actuated type.
 2. Test plug with EPDM self-sealing rubber inserts.

B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.

B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F.

3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be the following:
 1. Liquid-filled, direct-mounted, metal case.
 2. Test plug with EPDM self-sealing rubber inserts.

B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be the following:
 1. Liquid-filled, direct-mounted, metal case.
 2. Test plug with EPDM self-sealing rubber inserts.
3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 100 psi.

B. Scale Range for Domestic Water Piping: 0 to 100 psi.

END OF SECTION 220519
SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Handlever: For quarter-turn valves smaller than NPS 4 (DN 100).

H. Valves in Insulated Piping:
 1. Include 2-inch (50-mm) stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

A. Two-Piece, Brass Ball Valves with Full Port and Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Hammond Valve.
 c. KITZ Corporation.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Stockham; Crane Energy Flow Solutions.

2. Description:
 b. CWP Rating: 600 psig (4140 kPa).
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

2.3 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port, and Bronze or Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts; a Watts Water Technologies company.
 g. Zurn Industries, LLC.

2. Description:
 b. CWP Rating: 600 psig (4140 kPa).
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
i. Port: Full.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION
A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
B. Locate valves for easy access and provide separate support where necessary.
C. Install valves in horizontal piping with stem at or above center of pipe.
D. Install valves in position to allow full stem movement.

3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
B. Select valves with the following end connections:
 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.

3.3 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG () OR LESS)
A. Pipe NPS 2 (DN 50) and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Two-piece, brass ball valves with full port and brass trim.
 3. Two-piece, bronze ball valves with full port and bronze or brass trim.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
A. Pipe NPS 2 (DN 50) and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Two-piece, brass ball valves with full port and brass trim.
 3. Two-piece, bronze ball valves with full port and bronze or brass trim.

END OF SECTION 220523.12
SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze lift check valves.
 2. Bronze swing check valves.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B1.20.1 for threads for threaded end valves.
2. ASME B16.1 for flanges on iron valves.
3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
4. ASME B16.18 for solder joint.
5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE LIFT CHECK VALVES

A. Bronze Lift Check Valves with Bronze Disc, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane; Crane Energy Flow Solutions.
 b. Jenkins Valves; Crane Energy Flow Solutions.
 c. Stockham; Crane Energy Flow Solutions.

2.3 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Jenkins Valves; Crane Energy Flow Solutions.
 d. NIBCO INC.
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Check Valves: Install check valves for proper direction of flow.

 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3.3 **ADJUSTING**

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 **GENERAL REQUIREMENTS FOR VALVE APPLICATIONS**

A. If valve applications are not indicated, use the following:

1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered or press-ends.

3.5 **DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE**

A. Pipe NPS 2 and Smaller:

1. Bronze swing check valves with bronze disc, Class 125, with soldered or threaded end connections.
2. Bronze swing check valves with press-end connections.

END OF SECTION 220523.14
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Pipe positioning systems.
 6. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.
C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig (688-kPa) ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.
2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.

5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F (566 deg C), pipes NPS 4 to NPS 24 (DN 100 to DN 600), requiring up to 4 inches (100 mm) of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 (DN 20 to DN 900), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8 (DN 15 to DN 200).
5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.

7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.

8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30 (DN 25 to DN 750), from two rods if longitudinal movement caused by expansion and contraction might occur.

9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 (DN 50 to DN 1050) if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).

2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 (DN 20 to DN 600) if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.

2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.

3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.

6. C-Clamps (MSS Type 23): For structural shapes.

7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb (340 kg).
 b. Medium (MSS Type 32): 1500 lb (680 kg).
 c. Heavy (MSS Type 33): 3000 lb (1360 kg).

8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, rolled hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220533 - HEAT TRACING FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes plumbing piping heat tracing for freeze prevention, and domestic hot-water-temperature maintenance, following electric heating cables:
 1. Self-regulating, parallel resistance.

B. Related Requirements:
 1. Section 210533 "Heat Tracing for Fire-Suppression Piping."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
 2. Schedule heating capacity, length of cable, spacing, and electrical power requirement for each electric heating cable required.

B. Shop Drawings: For electric heating cable.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For electric heating cables to include in operation and maintenance manuals.
1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace electric heating cable that fails in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SELF-REGULATING, PARALLEL-RESISTANCE HEATING CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Delta-Therm Corporation.
3. Raychem; Pentair Thermal Management.

B. Comply with IEEE 515.1.

C. Heating Element: Pair of parallel No. 16 AWG, tinned, stranded copper bus wires embedded in crosslinked conductive polymer core, which varies heat output in response to temperature along its length. Terminate with waterproof, factory-assembled, nonheating leads with connectors at one end, and seal the opposite end watertight. Cable shall be capable of crossing over itself once without overheating.

D. Electrical Insulating Jacket: Flame-retardant polyolefin.

E. Cable Cover: Tinned-copper braid and polyolefin outer jacket with ultraviolet inhibitor.

F. Maximum Operating Temperature (Power On): 150 deg F.

G. Maximum Exposure Temperature (Power Off): 185 deg F.

H. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

I. Capacities and Characteristics:

1. Maximum Heat Output: 5 W/ft..
2. Piping Diameter: 2 NPS.
3. Number of Parallel Cables: 1.
4. Electrical Characteristics for Single-Circuit Connection:

 a. Volts: 120.
 b. Phase: 1.
 c. Hertz: 60.
 d. Minimum Circuit Ampacity: 16.
 e. Maximum Overcurrent Protection: 20.
2.2 CONTROLS

A. Pipe-Mounted Thermostats for Freeze Protection:

1. Remote bulb unit with adjustable temperature range from 30 to 50 deg F.
2. Snap action; open-on-rise, single-pole switch with minimum current rating adequate for connected cable.
3. Remote bulb on capillary, resistance temperature device, or thermistor for directly sensing pipe-wall temperature.

2.3 ACCESSORIES

A. Cable Installation Accessories: Fiberglass tape, heat-conductive putty, cable ties, silicone end seals and splice kits, and installation clips all furnished by manufacturer, or as recommended in writing by manufacturer.

B. Warning Labels: Refer to Section 220553 "Identification for Plumbing Piping and Equipment."

C. Warning Tape: Continuously printed "Electrical Tracing": vinyl, at least 3 mils thick, and with pressure-sensitive, permanent, waterproof, self-adhesive back.

2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine surfaces and substrates to receive electric heating cables for compliance with requirements for installation tolerances and other conditions affecting performance.

1. Ensure surfaces and pipes in contact with electric heating cables are free of burrs and sharp protrusions.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Install the following types of electric heating cable for the applications described:

1. Freeze Protection (located in attics) for Domestic Water, Non-Potable Water and Deionized Water: Self-regulating, parallel-resistance heating cable.
3.3 INSTALLATION

A. Install heat trace on all domestic cold, non-potable and deionized water piping subject to freezing (attics). Install to maintain a minimum of 45 degree F water. Coordinate with electrical contractor for quantity and location of 120VAC, 20A circuits required for heat tracing.

B. Install heat trace on all domestic hot water piping for temperature maintenance. Install to maintain a minimum of 110 degree F water. Coordinate with electrical contractor for quantity and location of 120VAC, 20A circuits required for heat tracing.

C. Install electric heating cable across expansion, construction, and control joints according to manufacturer's written instructions; use cable-protection conduit and slack cable to allow movement without damage to cable.

D. Electric Heating-Cable Installation for Freeze Protection for Piping:
 1. Install electric heating cables after piping has been tested and before insulation is installed.
 2. Install electric heating cables according to IEEE 515.1.
 3. Install insulation over piping with electric cables according to Section 220719 "Plumbing Piping Insulation."
 4. Install warning tape on piping insulation where piping is equipped with electric heating cables.

E. Electric Heating-Cable Installation for Temperature Maintenance for Domestic Hot Water:
 1. Install electric heating cables after piping has been tested and before insulation is installed.
 2. Install insulation over piping with electric heating cables according to Section 220719 "Plumbing Piping Insulation."
 3. Install warning tape on piping insulation where piping is equipped with electric heating cables.

F. Set field-adjustable switches and circuit-breaker trip ranges.

3.4 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:
1. Perform tests after cable installation but before application of coverings such as insulation, wall or ceiling construction, or concrete.
2. Test cables for electrical continuity and insulation integrity before energizing.
3. Test cables to verify rating and power input. Energize and measure voltage and current simultaneously.

D. Repeat tests for continuity, insulation resistance, and input power after applying thermal insulation on pipe-mounted cables.

E. Cables will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

3.6 PROTECTION

A. Protect installed heating cables, including nonheating leads, from damage during construction.

B. Remove and replace damaged heat-tracing cables.

END OF SECTION 220533
SECTION 210548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Restraint channel bracings.
5. Seismic-restraint accessories.
6. Mechanical anchor bolts.

1.2 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Includes design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.
B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.

2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.

3. Size: Factory or field cut to match requirements of supported equipment.

4. Pad Material: Oil and water resistant with elastomeric properties.

5. Surface Pattern: Smooth pattern.

6. Infused nonwoven cotton or synthetic fibers.

7. Load-bearing metal plates adhered to pads.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.

2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restained Elastomeric Isolation Mounts:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.

2. **Description:** All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 RESTRAINT CHANNEL BRACINGS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International.

B. **Description:** MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.6 SEISMIC-RESTRAINT ACCESSORIES

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. TOLCO.

B. **Hanger-Rod Stiffener:** Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.
C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified.

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

D. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

I. Drilled-in Anchors:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Set anchors to manufacturer's recommended torque, using a torque wrench.

5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.2 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 211313 "Wet-Pipe Sprinkler Systems".

END OF SECTION 210548
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Craftmark Pipe Markers.
 c. Seton Identification Products.
 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.
 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 7. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number.
and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.
3. Craftmark Pipe Markers.
4. Seton Identification Products.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping.

PART 3 - EXECUTION

3.1 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.2 PIPE LABEL INSTALLATION

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
B. Pipe Label Color Schedule:

1. Low-Pressure Compressed Air Piping:
 a. Background: Safety blue.

2. Domestic Water Piping
 a. Background: Safety green.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

B. Comply with the following applicable standards and other requirements specified for miscellaneous components:

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.
 2. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

C. **ASJ Adhesive, and FSK Jacket Adhesive:** Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. **Vapor-Barrier Mastic:** Water based; suitable for indoor use on below-ambient services.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand; H. B. Fuller Construction Products.
 b. Vimasco Corporation.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).

4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.5 SEALANTS

A. Joint Sealants:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
 e. Pittsburgh Corning Corporation.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Childers Brand; H. B. Fuller Construction Products.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc.; an American Biltrite company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 3 inches (75 mm).
3. Thickness: 11.5 mils (0.29 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.8 SECUREMENTS

A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. RPR Products, Inc.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

C. Wire: 0.080-inch (2.0-mm) nickel-copper alloy.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.3 PENETRATIONS

A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
4. Seal jacket to wall flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

D. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement. For below-ambient services, provide a design that maintains vapor barrier.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.5 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.6 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.7 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
3.8 INDOOR PIPING INSULATION SCHEDULE

A. Domestic, Cold, Hot and Recirculated Hot Water: Insulation shall be the following:
 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

1.2 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.3 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS
A. Hard Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B) water tube, drawn temper.
B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
E. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.
2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch (3.2 mm) thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.
 f. Zurn Industries, LLC.
 3. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install shutoff valve immediately upstream of each dielectric fitting.

D. Install domestic water piping level without pitch and plumb.

E. Install seismic restraints on piping.

F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

I. Install piping to permit valve servicing.

J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

K. Install piping free of sags and bends.

L. Install fittings for changes in direction and branch connections.

M. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

N. Install thermometers on outlet piping from each water heater.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."
3.2 **JOINT CONSTRUCTION**

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 **TRANSITION FITTING INSTALLATION**

A. Install transition couplings at joints of dissimilar piping.

3.4 **DIELECTRIC FITTING INSTALLATION**

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.

3.5 **HANGER AND SUPPORT INSTALLATION**

A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet (30 m) if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.
C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch (10 mm).

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 (DN 20) and Smaller: 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
2. NPS 1 and NPS 1-1/4 (DN 25 and DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
4. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with 1/2-inch (13-mm) rod.
5. NPS 3 to NPS 5 (DN 80 to DN 125): 10 feet (3 m) with 1/2-inch (13-mm) rod.
6. NPS 6 (DN 150): 10 feet (3 m) with 5/8-inch (16-mm) rod.
7. NPS 8 (DN 200): 10 feet (3 m) with 3/4-inch (19-mm) rod.

E. Install supports for vertical copper tubing every 10 feet (3 m).

F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
2. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
3. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 (DN 65) and larger.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.

b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.

c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:

 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.

 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Aboveground domestic water piping, NPS 2 (DN 50) and smaller, shall be the following:

1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B); cast- or wrought-copper, solder-joint fittings; and soldered joints.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vacuum breakers.
2. Backflow preventers.
4. Temperature-actuated, water mixing valves.
5. Strainers.
6. Outlet boxes.
7. Hose bibbs.
8. Water-hammer arresters.
9. Air vents.
10. Trap-seal primer valves.
11. Trap-seal primer systems.
12. Flexible connectors.

B. Related Requirements:

1. Section 220519 "Meters and Gauges for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Section 221116 "Domestic Water Piping" for water meters.
3. Section 224500 "Emergency Plumbing Fixtures" for water tempering equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.

1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61.

B. Comply with NSF 372 for low lead.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Laboratory-Faucet Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. WATTS.
 c. Woodford Manufacturing Company.
 d. Zurn Industries, LLC.

5. End Connections: Threaded.
6. Finish: Chrome plated.

2.4 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. WATTS.
 c. Zurn Industries, LLC.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle third of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight-through flow.
8. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

B. Double-Check, Backflow-Prevention Assemblies:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. WATTS.
 c. Zurn Industries, LLC.
 3. Operation: Continuous-pressure applications unless otherwise indicated.
 4. Pressure Loss: 5 psig maximum, through middle third of flow range.
 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 7. Configuration: Designed for horizontal, straight-through flow.
 8. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.5 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. ITT Corporation.
 c. NIBCO INC.
 d. TACO Comfort Solutions, Inc.
 e. WATTS.
 2. Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.
 3. Body: Brass or bronze.
 4. Size: Same as connected piping, but not larger than NPS 2.
 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Apollo Flow Controls; Conbraco Industries, Inc.
b. Leonard Valve Company.
c. POWERS; A WATTS Brand.
d. Symmons Industries, Inc.
e. WATTS.
f. Zurn Industries, LLC.

4. Type: Thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 110 deg F.

B. Primary, Thermostatic, Water Mixing Valves:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Apollo Flow Controls; Conbraco Industries, Inc.
b. Armstrong International, Inc.
c. Cash Acme, A Division of Reliance Worldwide Corporation.
d. Leonard Valve Company.
e. POWERS; A WATTS Brand.
f. Symmons Industries, Inc.
g. Zurn Industries, LLC.

3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 60 deg F.
10. Valve Finish: Chrome plated.
11. Piping Finish: Copper.
12. Cabinet: Factory fabricated, stainless steel, for surface mounting and with hinged, stainless-steel door.

C. Individual-Fixture, Water Tempering Valves:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
b. Apollo Flow Controls; Conbraco Industries, Inc.
c. Honeywell.
d. Leonard Valve Company.
e. POWERS; A WATTS Brand.
f. WATTS.
g. Zurn Industries, LLC.

2. Standard: ASSE 1016, thermostatically controlled, water tempering valve.
3. Pressure Rating: 125 psig minimum unless otherwise indicated.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.
8. Tempered-Water Setting: 105 deg F.

2.7 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.

2.8 HOSE BIBBS

A. Hose Bibbs:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Tyler Pipe; a subsidiary of McWane Inc.
 c. WATTS.
 d. Woodford Manufacturing Company.
 e. Zurn Industries, LLC.
2. Standard: ASME A112.18.1 for sediment faucets.
5. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
8. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
9. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Service Areas: Rough bronze.
11. Finish for Finished Rooms: Chrome or nickel plated.
12. Operation for Equipment Rooms: Wheel handle or operating key.
15. Include operating key with each operating-key hose bibb.
16. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.9 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

B. Stop-and-Waste Drain Valves:
 1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
 2. Pressure Rating: 200-psig minimum CWP or Class 125.
 5. Drain: NPS 1/8 side outlet with cap.

2.10 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 c. Josam Company.
 d. Precision Plumbing Products.
 e. Sioux Chief Manufacturing Company, Inc.
 f. Tyler Pipe; a subsidiary of McWane Inc.
 g. WATTS.
 h. Zurn Industries, LLC.
 3. Type: Metal bellows.
 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.
2.11 AIR VENTS

A. Bolted-Construction Automatic Air Vents:
 1. Body: Bronze.
 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
 3. Float: Replaceable, corrosion-resistant metal.
 5. Size: NPS 1/2 minimum inlet.

B. Welded-Construction Automatic Air Vents:
 2. Pressure Rating: 150-psig minimum pressure rating.
 3. Float: Replaceable, corrosion-resistant metal.

2.12 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Precision Plumbing Products.
 d. Sioux Chief Manufacturing Company, Inc.
 e. WATTS.
 f. Zurn Industries, LLC.
 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.13 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Metraflex Company (The).
 5. Universal Metal Hose.
B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Backflow Preventers: Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.

B. Balancing Valves: Install in locations where they can easily be adjusted.

C. Temperature-Actuated, Water Mixing Valves: Install with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install cabinet-type units recessed in or surface mounted on wall as specified.

D. Y-Pattern Strainers: For water, install on supply side of each control valve and pump.

E. Water-Hammer Arresters: Install in water piping according to PDI-WH 201.

F. Air Vents: Install vents at high points of water piping.

G. Supply-Type, Trap-Seal Primer Device: Install with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.
C. Comply with requirements for grounding equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

3.3 IDENTIFICATION

A. Plastic Labels for Equipment: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Carbonated-beverage-machine backflow preventers.
7. Reduced-pressure-detector, fire-protection, backflow-preventer assemblies.
10. Automatic water shutoff valves.
11. Calibrated balancing valves.
12. Primary, thermostatic, water mixing valves.
15. Primary water tempering valves.
16. Outlet boxes.
17. Hose stations.
18. Supply-type, trap-seal primer valves.
19. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each pressure vacuum breaker, reduced-pressure-principle backflow preventer double-check, backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.
C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipe, tube, and fittings.
2. Specialty pipe fittings.
3. Encasement for underground metal piping.

B. Related Sections:
1. Section 221329 "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

2. Waste, Force-Main Piping: 50 psig (345 kPa).

B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For sovent drainage system. Include plans, elevations, sections, and details.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.
1.6 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Architect no fewer than two days in advance of proposed interruption of sanitary waste service.
2. Do not proceed with interruption of sanitary waste service without Architect's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Heavy-Duty, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.3 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
C. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B), water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Fernco Inc.
 3) Froet Industries LLC.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2) Mission Rubber Company, LLC; a division of MCP Industries.

c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

5. Pressure Transition Couplings:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2) JCM Industries, Inc.
4) Viking Johnson.

c. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.
d. Center-Sleeve Material: Manufacturer's standard.
e. Gasket Material: Natural or synthetic rubber.
f. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

2. Dielectric Unions:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) A.Y. McDonald Mfg. Co.
2) Capitol Manufacturing Company.
3) Jomar Valve.
4) Watts; a Watts Water Technologies company.
5) Wilkins.
6) Zurn Industries, LLC.

b. Description:

1) Standard: ASSE 1079.
2) Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
3) End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction...
loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping.

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

L. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:

1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 1 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."
P. Install engineered soil and waste drainage and vent piping systems as follows:
 2. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."
 1. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.

R. Install force mains at elevations indicated.

S. Plumbing Specialties:
 1. Install backwater valves in sanitary waster gravity-flow piping. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."

T. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

B. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.
3.3 **SPECIALTY PIPE FITTING INSTALLATION**

A. **Transition Couplings:**

1. Install transition couplings at joints of piping with small differences in OD's.
4. In Underground Force Main Piping:
 a. NPS 1-1/2 (DN 40) and Smaller: Fitting-type transition couplings.
 b. NPS 2 (DN 50) and Larger: Pressure transition couplings.

B. **Dielectric Fittings:**

1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.

3.4 **VALVE INSTALLATION**

A. General valve installation requirements are specified in Section 220523.12 “Ball Valves for Plumbing Piping.”

B. **Shutoff Valves:**

1. Install shutoff valve on each sewage pump discharge.

C. **Check Valves:** Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

3.5 **HANGER AND SUPPORT INSTALLATION**

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 “Hangers and Supports for Plumbing Piping and Equipment.”

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. **Vertical Piping:** MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet (30 m) if Indicated: MSS Type 49, spring cushion rolls.
5. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
6. **Base of Vertical Piping:** MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches (300 mm) of each fitting, valve, and coupling.

C. Support vertical piping and tubing at base and at each floor.
D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 2. NPS 3 (DN 80): 60 inches (1500 mm) with 1/2-inch (13-mm) rod.
 3. NPS 4 and NPS 5 (DN 100 and DN 125): 60 inches (1500 mm) with 5/8-inch (16-mm) rod.
 4. NPS 6 and NPS 8 (DN 150 and DN 200): 60 inches (1500 mm) with 3/4-inch (19-mm) rod.
 5. NPS 10 and NPS 12 (DN 250 and DN 300): 60 inches (1500 mm) with 7/8-inch (22-mm) rod.
 6. Spacing for 10-foot (3-m) lengths may be increased to 10 feet (3 m). Spacing for fittings is limited to 60 inches (1500 mm).

F. Install supports for vertical cast-iron soil piping every 15 feet (4.5 m).

G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4 (DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
 2. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
 3. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with 1/2-inch (13-mm) rod.
 4. NPS 3 and NPS 5 (DN 80 and DN 125): 10 feet (3 m) with 1/2-inch (13-mm) rod.
 5. NPS 6 (DN 150): 10 feet (3 m) with 5/8-inch (16-mm) rod.
 6. NPS 8 (DN 200): 10 feet (3 m) with 3/4-inch (19-mm) rod.

H. Install supports for vertical copper tubing every 10 feet (3 m).

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer’s written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
5. Comply with requirements for cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."

6. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 (DN 65) and larger.

D. Connect force-main piping to the following:

1. Sanitary Sewer: To exterior force main.
2. Sewage Pump: To sewage pump discharge.

E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

F. Make connections according to the following unless otherwise indicated:

1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water (30 kPa). From 15 minutes
before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg (250 Pa). Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

2. Cap and subject piping to static-water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours.Leaks and loss in test pressure constitute defects that must be repaired.

3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

4. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 (DN 100) and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

C. Aboveground, vent piping NPS 4 (DN 100) and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

D. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 (DN 40 and DN 50) shall be the following:
1. Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.

E. Underground sanitary-sewage force mains NPS 4 (DN 100) and smaller shall be the following:

1. Hard copper tube, Type L (Type B); wrought-copper pressure fittings; and soldered joints.
2. Fitting-type transition coupling for piping smaller than NPS 1-1/2 (DN 40) and pressure transition coupling for NPS 1-1/2 (DN 40) and larger if dissimilar pipe materials.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Backwater valves.
2. Cleanouts.
3. Floor drains.
4. Roof flashing assemblies.
5. Miscellaneous sanitary drainage piping specialties.
6. Flashing materials.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for grease interceptors.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Cast-Iron Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. WATTS.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
3. Size: Same as connected drainage piping
4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
B. Cast-Iron Floor Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Oatey.
 d. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; a subsidiary of McWane Inc.
 f. WATTS.
 g. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M for adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Adjustable housing.
5. Body or Ferrule: Cast iron.
7. Closure: Brass plug with straight threads and gasket Cast-iron plug.
8. Adjustable Housing Material: Cast iron with threads.
10. Frame and Cover Shape: Round.
11. Top Loading Classification: Heavy Duty.
12. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. WATTS.
 f. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

b. Josam Company.
c. Sioux Chief Manufacturing Company, Inc.
d. Wade; a subsidiary of McWane Inc.
e. WATTS.
f. Zurn Industries, LLC.

2. Standard: ASME A112.6.3.
5. Seepage Flange: Required.
6. Anchor Flange: Required.
7. Clamping Device: Required.
8. Outlet: Bottom.
10. Sediment Bucket: Not required.
11. Top or Strainer Material: Nickel bronze.
13. Top Shape: Round.
15. Funnel: Not required.
16. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
17. Trap Material: Cast iron.

2.3 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Thaler Metal Industries Ltd.
 c. Zurn Industries, LLC.

2. Description: Manufactured assembly made of 6.0-lb/sq. ft. (30-kg/sq. m), 0.0938-inch-(2.4-mm-) thick, lead flashing collar and skirt extending at least 8 inches (200 mm) from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Floor-Drain, Trap-Seal Primer Fittings:

1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
2. Size: Same as floor drain outlet with NPS 1/2 (DN 15) side inlet.

B. Air-Gap Fittings:
1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

C. Vent Caps:
1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
2. Size: Same as connected stack vent or vent stack.

2.5 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Use: 4.0-lb/sq. ft. (20-kg/sq. m), 0.0625-inch (1.6-mm) thickness.
 2. Vent Pipe Flashing: 3.0-lb/sq. ft. (15-kg/sq. m), 0.0469-inch (1.2-mm) thickness.
 3. Burning: 6-lb/sq. ft. (30-kg/sq. m), 0.0938-inch (2.4-mm) thickness.

B. Fasteners: Metal compatible with material and substrate being fastened.

C. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

D. Solder: ASTM B 32, lead-free alloy.

E. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches (750 mm) or Less: Equivalent to 1 percent slope, but not less than 1/4-inch (6.35-mm) total depression.
 b. Radius, 30 to 60 Inches (750 to 1500 mm): Equivalent to 1 percent slope.
 c. Radius, 60 Inches (1500 mm) or Larger: Equivalent to 1 percent slope, but not greater than 1-inch (25-mm) total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

K. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

L. Install vent caps on each vent pipe passing through roof.

M. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.
3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft. (30-kg/sq. m), 0.0938-inch (2.4-mm) thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft. (20-kg/sq. m), 0.0625-inch (1.6-mm) thickness or thinner.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches (250 mm), and skirt or flange extending at least 8 inches (200 mm) around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each grease interceptor.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 221323 - SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1.2 ACTION SUBMITTALS

A. Product Data: For each type of interceptor.

B. Shop Drawings: For each type and size of precast concrete interceptor indicated.
 1. Include materials of construction, dimensions, rated capacities, retention capacities, location and size of each pipe connection, furnished specialties, and accessories.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Interceptors, drawn to scale, and coordinated with each other, using input from installers of the items involved:
 1. Piping connections. Include size, location, and elevation of each.
 2. Interface with underground structures and utility services.

PART 2 - PRODUCTS

2.1 SOLIDS INTERCEPTORS

A. Plastic Solids Interceptors:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. Striem.
 c. Zurn Industries, LLC.
 2. Type: Factory-fabricated interceptor made for removing and retaining lint from wastewater.
 4. Installation: Below Grade.
 5. Inlet/Outlet Size: 4" diameter.
6. Liquid Capacity: 125 gallons
7. Solids Capacity: 62.5 gallons
8. Rating: Highway rated, bolted, gas/water tight composite covers. 16,000lb load.
9. Max operating temperature: 190 degrees F.
10. Filters: Coarse filter with 0.30x.27 openings, medium filter with 0.10x0.08" openings, fine filter with 0.03x0.025" openings.
11. Provide with filed adjustable risers for extending covers to grade.
12. Provide with high water anchor kit.
13. Provide with rated pickable cast iron cover.

PART 3 - EXECUTION

3.1 EARTHWORK
A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 INSTALLATION
A. Install precast concrete interceptors according to ASTM C 891.
B. Set interceptors level and plumb.
C. Install manhole risers from top of underground concrete interceptors to manholes and gratings at finished grade.
D. Set tops of manhole frames and covers flush with finished surface in pavements.
 1. Set tops 3 inches above finish surface elsewhere unless otherwise indicated.
E. Set tops of grating frames and grates flush with finished surface.
F. Set plastic interceptors level and plumb.
G. Install solids interceptors with cleanout immediately downstream from interceptors that do not have integral cleanout on outlet.
 1. Install trap on interceptors that do not have integral trap and are connected to sanitary drainage and vent systems.

3.3 CONNECTIONS
A. Piping installation requirements are specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Make piping connections between interceptors and piping systems.
3.4 IDENTIFICATION

A. Identification materials and installation are specified in Section 312000 "Earth Moving."
 1. Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.
 2. Use warning tapes or detectable warning tape over ferrous piping.
 3. Use detectable warning tape over nonferrous piping and over edges of underground structures.

B. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

END OF SECTION 221323
SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Commercial, electric, storage, domestic-water heaters.
 2. Domestic-water heater accessories.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated.

B. Shop Drawings:

 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Data: For commercial domestic-water heaters, accessories, and components, from manufacturer.

B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

C. Source quality-control reports.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Electric, Storage, Domestic-Water Heaters:
 1) Storage Tank: Three years.
 2) Controls and Other Components: Three years.
 b. Compression Tanks: Five years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

A. Commercial, Electric, Storage, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A. O. Smith Corporation.
 c. Rheem Manufacturing Company.

 a. Tappings: Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.
1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges, and according to ASME B16.24 for copper and copper-alloy flanges.

b. Pressure Rating: 150 psig.
c. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending lining material into tappings.

4. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 c. Insulation: Comply with ASHRAE/IESNA 90.1.
 d. Jacket: Steel with enameled finish.
 e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three.
 f. Temperature Control: Adjustable thermostat.
 g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.
 h. Relief Valves: ASME rated and stamped for combination temperature-and-pressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

B. Capacity and Characteristics: See Plans

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A. O. Smith Corporation.
 b. AMTROL, Inc.
 c. State Industries.
 2. Description: Steel pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.
4. Capacity and Characteristics:
 a. Working-Pressure Rating: 100 psig.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. Heat-Trap Fittings: ASHRAE 90.2.

E. Pressure-Reducing Valves: ASSE 1003 for water. Set at 25-psig-maximum outlet pressure unless otherwise indicated.

F. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

G. Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than domestic-water heater working-pressure rating.

I. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Include dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

J. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

C. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base.

1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."

C. Install commercial, electric, domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

D. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

E. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
F. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

G. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.

H. Fill electric, domestic-water heaters with water.

I. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

END OF SECTION 223300
SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.
 4. Supports.

1.3 DEFINITIONS
 A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than one <Insert number> of each type.
PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

A. Water Closets: Wall mounted, top spud, accessible.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard
 b. Kohler Co.

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve.
 e. Height: Standard.
 f. Rim Contour: Elongated.
 g. Water Consumption: 1.6 gal. per flush.
 h. Spud Size and Location: NPS 1-1/2; top.

3. Flushometer Valve: .

2.2 FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Sloan Valve Company

4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless steel.
9. Consumption: 1.1/1.6 gal. per flush. Dual Flush

2.3 TOILET SEATS

A. Toilet Seats:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Bemis Manufacturing Company.
 c. Church Seats; Bemis Manufacturing Company.
 d. Kohler Co.

4. Type: Commercial (Heavy duty).
5. Shape: Elongated rim, open front.
6. Hinge: Check.
8. Seat Cover: Not required.

2.4 SUPPORTS

A. Water Closet Carrier:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Zurn Industries, LLC.
 c. Kohler.
 2. Standard: ASME A112.6.1M.
 3. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:
 1. Install level and plumb according to roughing-in drawings.
2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.

3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
2. Use carrier supports with waste-fitting assembly and seal.
3. Install floor-mounted, back-outlet water closets attached to building floor substrate, onto waste-fitting seals; and attach to support.
4. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.

C. Flushometer-Valve Installation:

1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
4. Install actuators in locations that are easy for people with disabilities to reach.
5. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:

1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Joint Sealing:

1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to water-closet color.
3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.
3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers’ recommended cleaning methods and materials.

B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13
SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Lavatories.
2. Faucets.
5. Supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Servicing and adjustments of automatic faucets.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Faucet Washers and O-Rings: Equal to [10] <Insert number> percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to [5] <Insert number> percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory: Vitreous china, wall mounted, with back.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kohler Co.

2. Fixture:
 b. Type: For wall hanging.
 d. Mounting Material: Chair carrier.

3. Faucet:
4. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1.

2.2 SOLID-BRASS, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF 372 for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, two-handle mixing, commercial, solid-brass valve.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Chicago Faucets; Geberit Company.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
5. Finish: Polished chrome plate.
6. Maximum Flow Rate: 0.5 gpm.
7. Valve Handle(s): Wrist blade, 4 inches.
8. Spout: Rigid, gooseneck type.
2.3 SUPPLY FITTINGS
 A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.
 B. Standard: ASME A112.18.1/CSA B125.1.
 C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.
 D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
 E. Operation: Loose key.
 F. Risers:
 1. NPS 1/2.
 2. Chrome-plated, rigid-copper-pipe and brass straight or offset tailpieces riser.

2.4 WASTE FITTINGS
 A. Standard: ASME A112.18.2/CSA B125.2.
 B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
 C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.

2.5 SUPPORTS
 A. Type II Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
 B. Examine counters and walls for suitable conditions where lavatories will be installed.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-mounted lavatories.

C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.

D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13
SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Sink faucets.
 3. Laminar-flow, faucet-spout outlets.
 4. Supports.
 5. Supply fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 KITCHEN SINKS

A. Kitchen Sinks: Stainless steel, counter mounted.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elkay Manufacturing Co.
 b. Just Manufacturing.
 c. Kohler.

 2. Fixture:
 b. Type: Ledge back.
c. Metal Thickness: 0.050 inch.

3. Faucet(s): See below.

4. Supply Fittings:
 b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.

 1) Operation: Loose key.
 2) Risers: NPS 1/2, ASME A112.18.6, braided or corrugated stainless-steel flexible hose.

5. Waste Fittings:
 b. Trap(s):

 1) Size: NPS 2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

2.2 SINK FAUCETS

A. NSF Standard: Comply with NSF 372 for faucet-spout materials that will be in contact with potable water.

B. Sink Faucets: Manual type, two-lever-handle mixing valve.

1. Commercial, Solid-Brass Faucets:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) American Standard.
 2) Chicago Faucets; Geberit Company.
 3) Kohler Co.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
4. See plans for additional requirements.
2.3 **SUPPLY FITTINGS**

A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2.
 2. ASME A112.18.6, braided or corrugated stainless-steel flexible hose.

2.4 **WASTE FITTINGS**

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **INSTALLATION**

A. Install sinks level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-hung sinks.
C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.

D. Install water-supply piping with stop on each supply to each sink faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.

E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

G. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.
D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16
SECTION 224500 - EMERGENCY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Combination units.
 2. Supplemental equipment.
 3. Water-tempering equipment.

1.3 DEFINITIONS
A. Accessible Fixture: Emergency plumbing fixture that can be approached, entered, and used by people with disabilities.
B. Plumbed Emergency Plumbing Fixture: Fixture with fixed, potable-water supply.
D. Tepid: Moderately warm.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include flow rates and capacities, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Product Certificates: Submit certificates of performance testing specified in "Source Quality Control" Article.
B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For emergency plumbing fixtures to include in operation and maintenance manuals.
1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment."

C. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for fixture materials that will be in contact with potable water.

PART 2 - PRODUCTS

2.1 COMBINATION UNITS

A. Standard, Plumbed Emergency Shower with Eyewash Combination Units:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Acorn Safety.
 b. Bradley Corporation.
 c. Haws Corporation.

2. Piping:

 b. Unit Supply: NPS 1-1/2.
 c. Unit Drain: Outlet at back or side near bottom.

3. Shower:

 a. Capacity: Not less than 20 gpm for at least 15 minutes.
 b. Supply Piping: NPS 1 with flow regulator and stay-open control valve.
 c. Control-Valve Actuator: Pull rod.
 d. Shower Head: 8-inch-minimum diameter, plastic.
 e. Mounting: Pedestal.

4. Eyewash Unit:

 a. Capacity: Not less than 0.4 gpm for at least 15 minutes.
 b. Supply Piping: NPS 1/2 with flow regulator and stay-open control valve.
 d. Spray-Head Assembly: Two receptor-mounted spray heads.
 e. Receptor: Chrome-plated brass or stainless-steel bowl.
 f. Mounting: Attached shower pedestal.
2.2 WATER-TEMPERING EQUIPMENT

A. Hot- and Cold-Water, Water-Tempering Equipment:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Safety.
 b. Bradley Corporation.
 c. Haws Corporation.

2. **Description:** Factory-fabricated equipment with thermostatic mixing valve.
 a. Thermostatic Mixing Valve: Designed to provide 65 deg F tepid, potable water at emergency plumbing fixtures, to maintain temperature at plus or minus 5 deg F throughout required 15-minute test period, and in case of unit failure to continue cold-water flow, with union connections, controls, metal piping, and corrosion-resistant enclosure.
 b. Supply Connections: For hot and cold water.

2.3 SOURCE QUALITY CONTROL

A. Certify performance of emergency plumbing fixtures by independent testing organization acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water piping systems to verify actual locations of piping connections before plumbed emergency plumbing fixture installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EMERGENCY PLUMBING FIXTURE INSTALLATION

A. Assemble emergency plumbing fixture piping, fittings, control valves, and other components.

B. Install fixtures level and plumb.

C. Fasten fixtures to substrate.

D. Install shutoff valves in water-supply piping to fixtures. Use ball or gate valve if specific type valve is not indicated. Install valves chained or locked in open position if permitted. Install valves in locations where they can easily be reached for operation. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping".

1. Exception: Omit shutoff valve on supply to group of plumbing fixtures that includes emergency equipment.

2. Exception: Omit shutoff valve on supply to emergency equipment if prohibited by authorities having jurisdiction.
E. Install dielectric fitting in supply piping to emergency equipment if piping and equipment connections are made of different metals. Comply with requirements for dielectric fittings specified in Section 221116 "Domestic Water Piping."

F. Install thermometers in supply and outlet piping connections to water-tempering equipment. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

G. Install trap and waste piping on drain outlet of emergency equipment receptors that are indicated to be directly connected to drainage system. Comply with requirements for waste piping specified in Section 221316 "Sanitary Waste and Vent Piping."

H. Install indirect waste piping on drain outlet of emergency equipment receptors that are indicated to be indirectly connected to drainage system. Comply with requirements for waste piping specified in Section 221316 "Sanitary Waste and Vent Piping."

I. Install escutcheons on piping wall and ceiling penetrations in exposed, finished locations. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 CONNECTIONS

A. Connect cold-water-supply piping to plumbed emergency plumbing fixtures not having water-tempering equipment. Comply with requirements for cold-water piping specified in Section 221116 "Domestic Water Piping."

B. Connect hot- and cold-water-supply piping to hot- and cold-water, water-tempering equipment. Connect output from water-tempering equipment to emergency plumbing fixtures. Comply with requirements for hot- and cold-water piping specified in Section 221116 "Domestic Water Piping."

C. Directly connect emergency plumbing fixture receptors with trapped drain outlet to sanitary waste and vent piping. Comply with requirements for waste piping specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Indirectly connect emergency plumbing fixture receptors without trapped drain outlet to sanitary waste or storm drainage piping.

E. Where installing piping adjacent to emergency plumbing fixtures, allow space for service and maintenance of fixtures.

3.4 IDENTIFICATION

A. Install equipment nameplates or equipment markers on emergency plumbing fixtures and equipment and equipment signs on water-tempering equipment. Comply with requirements for identification materials specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Mechanical-Component Testing: After plumbing connections have been made, test for compliance with requirements. Verify ability to achieve indicated capacities.
B. Tests and Inspections:

1. Perform each visual and mechanical inspection.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Emergency plumbing fixtures and water-tempering equipment will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust or replace fixture flow regulators for proper flow.

B. Adjust equipment temperature settings.

END OF SECTION 224500
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Compressed-air piping and specialties for nonmedical laboratory facilities, designated "laboratory air."

B. Related Requirements:
 1. Section 226119 "Compressed-Air Equipment for Laboratory and Healthcare Facilities" for air compressors and specialties.

1.3 DEFINITIONS

A. Nonmedical compressed-air piping systems include laboratory air piping systems.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Data: Certificates, for compressed-air manifolds, accessories, and components, from manufacturer.

 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Retain "Field Quality-Control Reports" Paragraph below if Contractor is retaining "Brazing" Paragraph in "Quality Assurance" Article.

D. Field quality-control reports: Brazing certificates.

E. Source Quality Control Reports:
1. Certificates of Shop Inspection and Data Report for Bulk Gas Storage Tanks: As required by ASME Boiler and Pressure Vessel Code Section VIII.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE
A. Installer Qualifications:
 2. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.
B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is an NRTL, and that is acceptable to authorities having jurisdiction.
 1. Qualify testing personnel according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.
C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
A. Laboratory air operating at 150 psig.

2.2 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Compressed-air manifolds shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the manifold will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor is 1.0.

2.3 PIPES, TUBES, AND FITTINGS
A. Comply with ASME B31.1, "Power Piping," for laboratory air piping operating at more than 150 psig.
B. Comply with ASME B31.9, "Building Services Piping," for laboratory air piping operating at 150 psig or less.

C. Copper Medical Gas Tube: ASTM B 819, and Type L, seamless, drawn temper. Include standard color marking "MED" or "OXY/MED" in green for Type K tube and in blue for Type L tube.

D. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type.

E. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.

F. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.

G. Flexible Pipe Connectors:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
 c. Hyspan Precision Products, Inc.
 d. Mercer Rubber Co.
 e. Metraflex Company (The).
 f. Proco Products, Inc.
 g. Unaflex.
 h. Universal Metal Hose.
 2. Description: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 a. Working-Pressure Rating: 200 psig minimum.
 b. End Connections: Plain-end copper tube.

2.4 JOINING MATERIALS

A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.

B. Threaded-Joint Tape: PTFE.

2.5 VALVES

A. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Healthcare Products Inc.
 b. Amico Corporation.
 c. Apollo Flow Controls; Conbraco Industries, Inc.
d. BeaconMedaes.
e. Marwin Valve; Richards Industries.
f. NIBCO INC.
g. Ohio Medical Corporation.
h. Tri-Tech Medical.

3. Description: Three-piece body, brass or bronze.
4. Pressure Rating: 300 psig minimum.
5. Ball: Full-port, chrome-plated brass.
6. Seats: PTFE or TFE.
8. Stem: Blowout proof with PTFE or TFE seal.
10. Positive pressure medical air valves shall have been manufacturer cleaned, purged, and sealed as for oxygen service, according to CGA G-4.1.

 a. Valves shall be delivered sealed and labeled and kept sealed until prepared for installation.

B. Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Healthcare Products Inc.
 b. Amico Corporation.
 c. Apollo Flow Controls; Conbraco Industries, Inc.
 d. BeaconMedaes.
 e. Ohio Medical Corporation.
 f. Tri-Tech Medical.

2. Description: In-line pattern, bronze.
3. Pressure Rating: 300 psig minimum.
6. Positive pressure compressed air valves shall have been manufacturer cleaned, purged, and sealed as for oxygen service, according to CGA G-4.1.

 a. Valves shall be delivered sealed and labeled and kept sealed until prepared for installation.

C. Compressed-Air Safety Valves:

1. Bronze body.
2. ASME-construction, poppet, pressure-relief type.
3. Settings to match system requirements.
4. Positive pressure compressed air valves shall have been manufacturer cleaned, purged, and sealed as for oxygen service, according to CGA G-4.1.

 a. Valves shall be delivered sealed and labeled and kept sealed until prepared for installation.

D. Pressure Regulators:
1. Bronze body and trim.
2. Spring-loaded, diaphragm-operated, relieving type.
4. Rated for 250-psig minimum inlet pressure.
5. Capable of controlling delivered air pressure within 0.5 psig for each 10-psig inlet pressure.
6. Positive pressure medical air regulators shall have been manufacturer cleaned, purged, and sealed as for oxygen service, according to CGA G-4.1.
 a. Valves shall be delivered sealed and labeled and kept sealed until prepared for installation.

2.6 MEDICAL COMPRESSED-AIR SERVICE CONNECTIONS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Allied Healthcare Products Inc.
 2. Amico Corporation.
 4. Ohio Medical Corporation.
 5. Tri-Tech Medical.

B. General Requirements for Medical Compressed-Air Service Connections:
 1. All positive pressure compressed air service connections shall be manufacturer cleaned, purged, and sealed as for oxygen service in accordance with CGA G-4.
 2. Suitable for specific medical air pressure and service listed.
 3. Include roughing-in assemblies, finishing assemblies, and cover plates.
 4. Individual cover plates are not required if service connection is in multiple unit or assembly with cover plate.
 5. Recessed-type units made for concealed piping unless otherwise indicated.

C. Roughing-in Assembly:
 1. Steel outlet box for recessed mounting and concealed piping.
 2. Brass-body outlet block with secondary check valve that will prevent gas flow when primary valve is removed.
 3. Double seals that will prevent air leakage.
 4. ASTM B 819, NPS 3/8 copper outlet tube brazed to valve with service marking and tube-end dust cap.

D. Finishing Assembly:
 1. Brass housing with primary check valve.
 2. Double seals that will prevent air leakage.
 3. Cover plate with gas-service label.

E. Quick-Coupler Pressure Service Connections:
 1. Outlets for instrument air with noninterchangeable keyed indexing to prevent interchange between services.
 2. Constructed to permit one-handed connection and removal of equipment.
 3. With positive-locking ring that retains equipment stem in valve during use.
F. Cover Plates:
 1. One piece.
 2. Aluminum or stainless steel.
 3. Permanent, color-coded, identifying label matching corresponding service.

2.7 NITROGEN

A. Comply with USP 32 - NF 27 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:

 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 a. Scrub to ensure complete cleaning.
 b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.

E. Install piping adjacent to equipment and specialties to allow service and maintenance.

F. Install compressed-air piping with 1 percent slope downward in direction of flow.
G. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than system pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.

H. Install eccentric reducers, if available, where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

I. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.

J. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 220519 "Meters and Gages for Plumbing Piping."

K. Install piping to permit valve servicing.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and for branch connections.

N. Piping Restraint Installation: Install seismic restraints on compressed-air piping. Seismic-restraint devices are specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

O. Install compressed-air service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.

P. Connect compressed-air piping to air compressors and to compressed-air outlets and equipment requiring compressed-air service.

Q. Install unions in copper compressed-air tubing adjacent to each valve and at final connection to each machine, specialty, and piece of equipment.

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 VALVE INSTALLATION

A. Install shutoff valve at each connection to and from compressed-air equipment and specialties.

B. Install check valves to maintain correct direction of compressed-air flow from compressed-air equipment.

C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.

D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.

E. Install pressure regulators on compressed-air piping where reduced pressure is required.
F. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.

3.4 JOINT CONSTRUCTION

A. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.

B. Threaded Joints: Apply appropriate tape to external pipe threads.

C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" chapter. Continuously purge joint with oil-free dry nitrogen during brazing.

D. Flanged Joints: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

B. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

C. Vertical Piping: MSS Type 8 or Type 42, clamps.

D. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.

E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for trapeze hangers.

F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch-minimum rods.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.
 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 9. NPS 3: 14 feet with 1/2-inch rod.
10. NPS 3-1/2: 15 feet with 1/2-inch rod.
11. NPS 4: 16 feet with 1/2-inch rod.
12. NPS 5: 18 feet with 1/2-inch rod.
14. NPS 8: 23 feet with 3/4-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

3.6 IDENTIFICATION

A. Install identifying labels and devices for nonmedical laboratory compressed-air piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."

3.7 FIELD QUALITY CONTROL FOR COMPRESSED-AIR PIPING IN NONMEDICAL LABORATORY FACILITIES

A. Testing Agency: Engage qualified testing agency to perform tests and inspections of compressed-air piping in nonmedical laboratory facilities and to prepare test and inspection reports.

B. Tests and Inspections:

1. Piping Leak Tests for Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill compressed-air piping with oil-free dry nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
2. Repair leaks and retest until no leaks exist.
3. Inspect filters and pressure regulators for proper operation.

C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.8 PROTECTION

A. Protect tubing from damage.

B. Retain sealing plugs in tubing, fittings, and specialties until installation.

C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

3.9 PIPING SCHEDULE

A. Connect new tubing to existing tubing with memory-metal couplings.

B. Flanges may be used where connection to flanged equipment is required.

C. Laboratory Air Piping except Laboratory Air Piping Larger Than NPS 3 and Operating at More Than 185 psig: Type L, copper medical gas tube; wrought-copper fittings; and brazed joints.
D. Laboratory Air Piping Larger Than NPS 3 and Operating at More Than 185 psig: Type K, copper medical gas tube; wrought-copper fittings; and brazed joints.

3.10 VALVE SCHEDULE

A. Shutoff Valves: Ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.

END OF SECTION 226113
SECTION 226119 - COMPRESSED-AIR EQUIPMENT FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Oil-Less Scroll air compressors.
 2. Inlet-air filters.
 3. Desiccant compressed-air dryers.
 4. Compressed-air filter assemblies.

1.3 DEFINITIONS

A. Actual Air: Air delivered at air-compressor outlet. Flow rate is compressed air delivered and measured in acfm.

B. Laboratory Air Equipment: Compressed-air equipment and accessories for nonmedical laboratory facilities.

C. Standard Air: Free air at 68 deg F and 1 atmosphere before compression or expansion and measured in scfm.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For air compressors, compressed-air dryers,

 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 4. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Seismic Qualification Certificates: For air compressors, accessories, and components from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For compressed-air equipment to include in operation and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Air-Compressor, Inlet-Air Filter Elements: Equal to 10 percent of quantity installed.
 2. Belts: One \(<\text{Insert number}\)> for each belt-driven compressor.

1.8 QUALITY ASSURANCE
A. Installer Qualifications:
 1. Laboratory Air Equipment for Nonmedical Laboratory Facilities: An employer of workers trained and approved by manufacturer.

B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the compressed-air equipment testing indicated, that is an NRTL and that is acceptable to authorities having jurisdiction.
 1. Qualify testing personnel according to ASSE 6020 for inspectors and ASSE 6030 for verifiers.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design compressed-air equipment mounting.

B. Seismic Performance: Air compressors and accessories shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the air compressor and receiver will remain in place without separation of any parts when subjected to the seismic forces specified."

2. Component Importance Factor: 1.0.

2.2 GENERAL REQUIREMENTS FOR AIR COMPRESSORS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Description: Factory-assembled, -wired, -piped, and -tested; electric-motor-driven; air-cooled; continuous-duty air compressors and receivers that deliver air of quality equal to intake air.

C. Control Panels: Automatic control station with load control and protection functions. Comply with NEMA ICS 2 and UL 508.

1. **Enclosure:** NEMA ICS 6, Type 12 control panel unless otherwise indicated.
2. **Motor Controllers:** Full-voltage, combination-magnetic type with undervoltage release feature and motor-circuit-protector-type disconnecting means and short-circuit protective device.
3. **Control Voltage:** 120-V ac or less, using integral control power transformer.
4. **Motor Overload Protection:** Overload relay in each phase.
5. **Starting Devices:** Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.
6. **Automatic control switches to sequence lead-lag air compressors for multiplex air compressors.**
7. **Instrumentation:** Include discharge-air and receiver pressure gages, air-filter maintenance indicator, hour meter, air-compressor discharge-air and coolant temperature gages, and control transformer.
8. **Alarm Signal Device:** For connection to alarm system to indicate when backup air compressor is operating.

D. Receivers: Steel tank constructed according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1. **Pressure Rating:** At least as high as highest discharge pressure of connected air compressors and bearing appropriate code symbols.
2. **Interior Finish:** Corrosion-resistant coating.
3. **Accessories:** Include safety valve, pressure gage, automatic drain, and pressure regulator.

E. Mounting Frame: Fabricate base and attachment to air compressor and components with reinforcement strong enough to resist movement during a seismic event when base is anchored to building structure.

2.3 OIL-LESS SCROLL AIR COMPRESSORS

A. Scroll Air Compressors:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. **Powerex, Inc.**
2. Description: Packaged unit.

3. Air Compressor(s): Single-stage, oil-free, rotary, oscillating-volute type of construction that prohibits oil from entering compression chamber.

B. Capacities and Characteristics: See schedule on Drawings.

2.4 INLET-AIR FILTERS

A. Description: Combination inlet-air filter-silencer, suitable for remote installation, for each air compressor.
 1. Construction: Weatherproof housing for replaceable, dry-type filter element, with silencer tubes or other method of sound reduction.
 2. Capacity: Match capacity of air compressor, with collection efficiency of 99 percent retention of particles larger than 10 micrometers.

2.5 COMPRESSED-AIR DRYERS

A. Desiccant Compressed-Air Dryers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BeaconMedaes.
 b. Donaldson Company, Inc.
 2. Description: Twin-tower unit with purge system, mufflers, and capability to deliver plus 10 deg F, 100-psig air at dew point. Include dew point controlled purge, step-down transformers, disconnect switches, inlet and outlet pressure gages, thermometers, automatic controls, and filters.

2.6 COMPRESSED-AIR FILTER ASSEMBLIES

A. Compressed-Air Filter Assemblies:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Donaldson Company, Inc.
 b. Ingersoll-Rand.
 2. Description: Filter assemblies suitable for compressed air, in parallel duplex arrangement. Size each assembly for maximum capacity of connected equipment and operating pressure of compressed-air system. Include automatic ejection of condensate from airstream, inlet and outlet pressure gages, and shutoff valves.
 a. Option: Factory-fabricated filter system consisting of three air filters equivalent to those specified, pipe, fittings, valves, differential pressure switch, and enclosure; and with additional automatic drain traps and gages.
3. Size filter assemblies for 5-psig maximum air-pressure drop when filters are new and clean, at system rated capacity, and at 100-psig pressure.
4. Differential Pressure Switch: Adjustable, diaphragm type, with electrical connections for alarm system, to indicate when air-pressure drop through filters rises to more than 2 psig greater than when new and clean.
5. Particulate Filters: Collection efficiency of 98 percent retention of particles 1 micrometer and larger.
7. Coalescing Filters: Collection efficiency of 99.9 percent retention of particles 0.3 micrometer and smaller.
8. Include automatic drain trap for each filter.

2.7 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

PART 3 - EXECUTION (Not Applicable)

3.1 PREPARATION

A. Clean compressed-air equipment, accessories, and components that have not been cleaned for oxygen service and sealed or that are furnished unsuitable for laboratory air applications, according to CGA G-4.1, "Cleaning Equipment for Oxygen Service."

3.2 COMPRESSED-AIR EQUIPMENT INSTALLATION

A. General Requirements for Compressed-Air Equipment Installation:

1. Install compressed-air equipment to allow maximum headroom unless specific mounting heights are indicated.
2. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces unless otherwise indicated.
3. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
4. Install equipment to allow right of way for piping installed at required slope.
5. Install the following devices on compressed-air equipment:
 a. Thermometer, Pressure Gage, and Safety Valve: Install on each compressed-air receiver.
 b. Pressure Regulators: Install downstream from air compressors, dryers, purification units, and filter assemblies.
 c. Drain Valves: Install on aftercoolers, receivers, and dryers. Discharge condensate over nearest floor drain.

B. Nonmedical Laboratory Compressed-Air Equipment Installation:

1. Install compressed-air equipment, except wall-mounted equipment, on cast-in-place concrete equipment bases.
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment"
3. Comply with requirements for vibration isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."

3.3 CONNECTIONS

A. Comply with requirements for drain piping specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Comply with requirements for compressed-air piping specified in Section 226113 "Compressed-Air Piping for Laboratory and Healthcare Facilities." Drawings indicate general arrangement of piping, fittings, and specialties.
C. Where installing piping adjacent to equipment, allow space for service and maintenance.
D. Connect compressed-air piping to compressed-air equipment, accessories, and specialties with shutoff valve and union or flanged connection.

3.4 IDENTIFICATION

A. Identify nonmedical laboratory compressed-air equipment system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check for lubricating oil in lubricated-type equipment.
3. Check belt drives for proper tension.
4. Verify that air-compressor inlet filters and piping are clear.
5. Check for equipment vibration-control supports and flexible pipe connectors and verify that equipment is properly attached to substrate.
6. Check safety valves for correct settings. Ensure that settings are higher than air-compressor discharge pressure, but not higher than rating of system components.
7. Check for proper seismic restraints.
8. Drain receiver tank(s).
9. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
10. Test and adjust controls and safeties.

B. Prepare written report documenting testing procedures and results.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air compressors, compressed-air dryers and compressed-air filter assemblies.
END OF SECTION 226119
SECTION 226213 - VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Laboratory low-vacuum piping, designated "laboratory low vacuum."
 2. Laboratory high-vacuum piping, designated "laboratory high vacuum."

B. Related Requirements:
 1. Section 115313 "Laboratory Fume Hoods" for vacuum inlets in laboratory fume hoods.
 2. Section 123553 "Laboratory Casework" for vacuum inlets in laboratory casework.
 3. Section 226219 "Vacuum Equipment for Laboratory and Healthcare Facilities" for vacuum producers and accessories.

1.3 DEFINITIONS

A. Nonmedical laboratory vacuum piping systems include laboratory low-vacuum and laboratory high-vacuum piping systems.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Brazing certificates.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For vacuum piping specialties to include in emergency, operation, and maintenance manuals.
1.7 QUALITY ASSURANCE

A. Installer Qualifications:

2. Pressure-Seal Joining Procedure for Copper Tubing: An authorized representative who is trained and approved by manufacturer.
3. Extruded-Tee Outlet Procedure: An authorized representative who is trained and approved by manufacturer.
4. Shape-Memory-Metal Coupling Joints: An authorized representative who is trained and approved by manufacturer.

B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum piping testing indicated, that is an NRTL, and that is acceptable to authorities having jurisdiction.

1. Qualify testing personnel according to ASSE Standard #6020 for medical-gas-system inspectors and ASSE Standard #6030 for medical-gas-system verifiers.

C. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Laboratory low vacuum operating at 20 in. Hg.

2.2 PIPES, TUBES, AND FITTINGS

A. Copper Medical Gas Tube: ASTM B 819, Type L, seamless, drawn temper that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking "OXY," "MED," "OXY/MED," "OXY/ACR," or "ACR/MED" in blue.

B. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service.

C. Copper Unions: ASME B16.22 or MSS SP-123, wrought-copper or cast-copper alloy.

D. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150.

1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness, full-face type.
2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.

E. Flexible Pipe Connectors:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Flex-Hose Co., Inc.
b. Flexicraft Industries.
c. Hyspan Precision Products, Inc.
d. Mercer Rubber Co.
e. Metraflex Company (The).
f. Proco Products, Inc.
g. Unaflex.
h. Universal Metal Hose.

2. **Description:** Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

a. **Working-Pressure Rating:** 200 psig minimum.
b. **End Connections:** Plain-end copper tube.

2.3 JOINING MATERIALS

A. **Solder Filler Metals:** ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

B. **Brazing Filler Metals:** AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.

C. **Threaded-Joint Tape:** PTFE.

2.4 VALVES

A. **General Requirements for Valves:** Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.

1. **Exception:** Factory cleaning and bagging are not required for valves for WAGD service.

B. **Copper-Alloy Ball Valves:**

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Allied Healthcare Products Inc.
b. BeaconMedaes.
c. NIBCO INC.

2. **Standard:** MSS SP-110.
3. **Description:** Three-piece body, brass or bronze.
4. **Pressure Rating:** 300 psig minimum.
5. **Ball:** Full-port, chrome-plated brass.
6. **Seats:** PTFE or TFE.
7. **Handle:** Lever.
8. **Stem:** Blowout proof with PTFE or TFE seal.
9. **Ends:** Manufacturer-installed ASTM B 819, copper-tube extensions.

C. **Check Valves:**
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. **Allied Healthcare Products Inc.**
b. **BeaconMedaes.**

2. **Description:** In-line pattern, bronze.
3. **Pressure Rating:** 300 psig minimum.
4. **Operation:** Spring loaded.
5. **Ends:** Manufacturer-installed ASTM B 819, copper-tube extensions.

2.5 NITROGEN

A. Comply with USP 32 - NF 27 for oil-free dry nitrogen.

PART 3 - EXECUTION

3.1 PREPARATION

A. **Cleaning of Medical Gas Tubing:** If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:

 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.

a. **Scrub** to ensure complete cleaning.
b. **Rinse** with clean, hot water to remove cleaning solution.

3.2 PIPING INSTALLATION

A. **Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping.** Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, vacuum producer sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. **Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.**

C. **Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls.** Diagonal runs are prohibited unless specifically indicated otherwise.

D. **Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.**
E. Install piping adjacent to equipment and specialties to allow service and maintenance.

F. Install vacuum piping with 1 percent slope downward in direction of flow.

G. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.

H. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

I. Provide drain leg and drain trap at end of each main and branch and at low points.

J. Install thermometer and vacuum gage on inlet piping to each vacuum producer and on each receiver and separator. Comply with requirements in Section 220519 "Meters and Gages for Plumbing Piping."

K. Install piping to permit valve servicing.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and for branch connections. Extruded-tee branch outlets in copper tubing may be made where specified.

N. Install medical vacuum piping from medical vacuum service connections specified in this Section, to equipment specified in Section 226219 "Vacuum Equipment for Laboratory and Healthcare Facilities," and to equipment specified in other Sections requiring medical vacuum service.

O. Piping Restraint Installation: Install seismic restraints on vacuum piping. Seismic-restraint devices are specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

P. Install medical vacuum service connections recessed in walls. Attach roughing-in assembly to substrate; attach finishing assembly to roughing-in assembly.

Q. Install medical vacuum bottle bracket adjacent to each wall-mounted medical vacuum service connection suction inlet.

R. Connect vacuum piping to vacuum producers and to equipment requiring vacuum service.

S. Install unions in copper vacuum tubing adjacent to each valve and at final connection to each machine, specialty, and piece of equipment.

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 VALVE INSTALLATION

A. Install shutoff valve at each connection to and from vacuum equipment and specialties.
B. Install check valves to maintain correct direction of vacuum flow to vacuum-producing equipment.

C. Install valve boxes recessed in wall and anchored to substrate. Single boxes may be used for multiple valves that serve same area or function.

D. Install zone valves and gages in valve boxes. Rotate valves to angle that prevents closure of cover when valve is in closed position.

E. Install flexible pipe connectors in suction inlet piping to each vacuum producer.

3.4 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Apply appropriate tape to external pipe threads.

E. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" chapter. Do not use flux. Continuously purge joint with oil-free dry nitrogen during brazing.

F. Soldered Joints: Apply ASTM B 813, water-flushable flux to tube end. Join copper tube and fittings according to ASTM B 828.

G. Flanged Joints:
 1. Copper Tubing: Install flange on copper tubes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
 2. PVC Piping: Install PVC flange on PVC pipes. Use pipe-flange gasket between flanges. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

B. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

C. Vertical Piping: MSS Type 8 or Type 42, clamps.

D. Individual, Straight, Horizontal Piping Runs:
 1. 100 Feet and Less: MSS Type 1, adjustable, steel, clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable, roller hangers.
E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze. Comply with requirements in Section 220529 “Hangers and Supports for Plumbing Piping and Equipment” for trapeze hangers.

F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch-minimum rods.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.
 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 9. NPS 3: 14 feet with 1/2-inch rod.
 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 11. NPS 4: 16 feet with 1/2-inch rod.
 12. NPS 5: 18 feet with 1/2-inch rod.
 14. NPS 8: 23 feet with 3/4-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

3.6 IDENTIFICATION

A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements in Section 220553 “Identification for Plumbing Piping and Equipment.”

3.7 FIELD QUALITY CONTROL FOR LABORATORY FACILITY NONMEDICAL VACUUM PIPING

A. Testing Agency: Engage qualified testing agency to perform field tests and inspections of vacuum piping in nonmedical laboratory facilities and to prepare test and inspection reports.

B. Tests and Inspections:

 1. Piping Leak Tests for Vacuum Piping: Test new and modified parts of existing piping. Cap and fill vacuum piping with oil-free, dry nitrogen. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.

 a. Test Pressure for Copper Tubing: 150 psig.

 2. Repair leaks and retest until no leaks exist.

 3. Inspect filters for proper operation.
C. Remove and replace components that do not pass tests and inspections and retest as specified above.

3.8 PROTECTION

A. Protect tubing from damage.

B. Retain sealing plugs in tubing, fittings, and specialties until installation.

C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

3.9 PIPING SCHEDULE

A. Connect new copper tubing to existing copper tubing with memory-metal couplings.

B. Flanges may be used where connection to flanged equipment is required.

C. Laboratory Low-Vacuum Piping: Use one of the following piping materials for each size range:

1. NPS 4 and Smaller: Copper medical gas or water tube, wrought-copper fittings, and brazed joints.

3.10 VALVE SCHEDULE

A. Shutoff Valves:

1. Copper Tubing: Copper-alloy ball valve with manufacturer-installed ASTM B 819, copper-tube extensions.

END OF SECTION 226213
SECTION 226219 - VACUUM EQUIPMENT FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Rotary, sliding-vane vacuum pumps.

1.3 DEFINITIONS
 A. Actual Air: Air delivered at vacuum producer inlet. Flow rate is air measured in acfm.
 B. Laboratory Vacuum Equipment: Vacuum producers and accessories for nonmedical laboratory facilities.
 C. Standard Air: Free air at 68 deg F and 1 atmosphere before compression or expansion and measured in scfm.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For vacuum producers.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 4. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
 B. Seismic Qualification Certificates: For vacuum producers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For vacuum equipment to include in operation and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One for each belt-driven vacuum producer.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:

1. Laboratory Vacuum Equipment for Nonmedical Laboratory Facilities: An employer of workers trained and approved by manufacturer.

B. Testing Agency Qualifications: An independent testing agency, with the experience and capability to conduct the vacuum equipment testing indicated, that is an NRTL, and that is acceptable to authorities having jurisdiction.

1. Qualify testing personnel according to ASSE 6020 for inspectors and ASSE 6030 for verifiers.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vacuum equipment mounting.

B. Seismic Performance: Vacuum producers and accessories shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the vacuum producer and receiver or separator will remain in place without separation of any parts when subjected to the seismic forces specified."
2. Component Importance Factor: 1.0.
2.2 GENERAL REQUIREMENTS FOR VACUUM PUMPS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 544, "Medical and Dental Equipment," for medical vacuum equipment.

C. Description: Factory-assembled, -wired, -piped, and -tested; electric-motor-driven; air-cooled; continuous-duty vacuum pumps and receivers.

D. Control Panels: Automatic control station with load control and protection functions. Comply with NEMA ICS 2 and UL 508.
 1. Enclosure: NEMA ICS 6, Type 12 control panel unless otherwise indicated.
 3. Control Voltage: 120-V ac or less, using integral control power transformer.
 5. Starting Devices: Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.
 6. Automatic control switches to alternate lead-lag vacuum pumps for duplex vacuum pumps.
 7. Instrumentation: Include vacuum pump inlet and receiver vacuum gages, hour meter, vacuum pump discharge-air and coolant temperature gages, and control transformer.
 8. Alarm Signal Devices: For connection to alarm system to indicate when backup vacuum pump is operating.

E. Receivers: Steel tank constructed according to ASME Boiler and Pressure Vessel Code, Section VIII, Division 1; bearing appropriate code symbols.
 1. Interior Finish: Corrosion-resistant coating.
 2. Accessories: Include vacuum relief valve, vacuum gage, and drain.

F. Mounting Frames: Fabricate base and attachment to vacuum pump and components with reinforcement strong enough to resist movement during a seismic event when base is anchored to building structure.

2.3 ROTARY, SLIDING-VANE VACUUM PUMPS

A. Oil-Sealed, Rotary, Sliding-Vane Vacuum Pumps:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Powerex, Inc.
 2. Description: Packaged unit.
 a. Cleanable inlet screens.
 b. Outlet silencers and oil-mist separators on discharge connections.
B. Capacities and Characteristics: See Schedule on Drawings.

2.4 MOTORS
A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

PART 3 - EXECUTION

3.1 PREPARATION
A. Clean vacuum equipment, accessories, and components that have not been cleaned for oxygen service and sealed or that are furnished unsuitable for laboratory vacuum applications, according to CGA G4.1, "Cleaning Equipment for Oxygen Service."

3.2 VACUUM EQUIPMENT INSTALLATION
A. Install vacuum equipment for healthcare facilities according to ASSE 6010 and NFPA 99.
B. Equipment Mounting:
 1. Install vacuum producers on cast-in-place concrete equipment base(s).
 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
C. Install vacuum equipment anchored to substrate.
D. Orient equipment so controls and devices are accessible for servicing.
E. Maintain manufacturer's recommended clearances for service and maintenance.
F. Install the following devices on vacuum equipment:
 1. Thermometer, Vacuum Gage, and Pressure Relief Valve: Install on each vacuum pump receiver.
 2. Drain Valves: Install on receivers. Discharge receiver condensate over nearest floor drain. Discharge separator oral evacuation fluids by direct connection into sanitary waste piping system.

3.3 CONNECTIONS
A. Comply with requirements for water-supply piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Comply with requirements for drain piping specified in Section 221316 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
C. Comply with requirements for vacuum piping specified in Section 226213 "Vacuum Piping for Laboratory and Healthcare Facilities." Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to equipment, allow space for service and maintenance.

E. Connect vacuum piping to vacuum equipment, accessories, and specialties with shutoff valve and union or flanged connection.

3.4 IDENTIFICATION

A. Identify nonmedical laboratory vacuum equipment system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check for lubricating oil in lubricated-type equipment.
3. Check belt drives for proper tension.
4. Verify that vacuum producer outlet piping is clear.
5. Check for equipment vibration-control supports and flexible pipe connectors and verify that equipment is properly attached to substrate.
6. Check safety valves for correct settings.
7. Check for proper seismic restraints.
8. Drain receiver tank(s).
9. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
10. Test and adjust controls and safeties.

B. Verify that vacuum equipment is installed and connected according to the Contract Documents.

C. Verify that electrical wiring installation complies with manufacturer's submittal and written installation requirements in electrical Sections.

D. Prepare written report documenting testing procedures and results.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain vacuum producers.

END OF SECTION 226219
SECTION 226600 - CHEMICAL-WASTE SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 2. Piping specialties.
 4. Neutralization systems.
 5. Manholes.

1.3 DEFINITIONS
 A. FPM: Vinylidene fluoride (hexafluoro propylene copolymer rubber).

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For neutralization system and leak-detection system. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail neutralization-system assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Detail leak-detection-system assemblies and indicate required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 C. Delegated-Design Submittal: For seismic restraints of aboveground piping.
 1. Include design calculations for selecting seismic restraints.

1.5 INFORMATIONAL SUBMITTALS
 A. Profile Drawings for Outdoor Underground Piping: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet and vertical scale of not less than 1 inch equals 5 feet. Indicate underground structures and pipes. Show types, sizes, materials, and elevations of other utilities crossing system piping.
B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For chemical-waste specialties and neutralization tanks, to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Neutralization-Tank Limestone: Equal to 200 percent of amount required for each tank sump initial charge. Furnish limestone in 50-lb bags.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store piping and specialties with sealing plugs in ends or with end protection.
B. Do not store plastic pipe or fittings in direct sunlight.
C. Protect pipe, fittings, and seals from dirt and damage.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NFPA Compliance: Comply with NFPA 70.

2.2 PERFORMANCE REQUIREMENTS

A. Single-Wall Piping Pressure Rating: 5-psig air test pressure.

2.3 SINGLE-WALL PIPE AND FITTINGS

A. PP Drainage Pipe and Fittings: ASTM F 1412 pipe extruded and drainage-pattern fittings molded, with Schedule 40 dimensions and with fire-retardant additive complying with ASTM D 4101; with fusion- and mechanical-joint ends.
 1. Exception: Pipe and fittings made from PP resin without fire-retardant additive may be used for underground installation.
 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
a. Georg Fischer Inc. Fuseal (Interior Piping)
b. Duriron (Exterior Piping)

B. Adapters and Transition Fittings: Assemblies with combinations of clamps, couplings, adapters, and gaskets; compatible with piping and system liquid; made for joining different piping materials.

2.4 JOINING MATERIALS

A. Couplings: Assemblies with combinations of clamps, gaskets, sleeves, and threaded or flanged parts; compatible with piping and system liquid; and made by piping manufacturer for joining system piping.

B. Adapters and Transition Fittings: Assemblies with combinations of clamps, couplings, adapters, gaskets, and threaded or flanged parts; compatible with piping and system liquid; and made for joining different piping materials.

C. Flanges: Assemblies of companion flanges and gaskets complying with ASME B16.21 and compatible with system liquid, and bolts and nuts.

2.5 PIPING SPECIALTIES

A. Corrosion-Resistant Traps:
 1. Type: P-trap or drum trap.
 2. Size: NPS 1-1/2 or NPS 2, as required to match connected piping.
 3. High-Silicon Iron: ASTM A 861, with horizontal outlet and hub-and-plain or plain ends to match connecting piping.
 4. PP: ASTM D 4101, with mechanical-joint pipe connections.

B. PP Sink Outlets:
 1. Description: NPS 1-1/2, with clamping device, stopper, and 7-inch-high overflow fitting.

2.6 NEUTRALIZATION TANKS

A. Plastic Neutralization Tanks: See schedule of drawings for additional information.

1. Description: Corrosion-resistant plastic materials; with removable, gastight cover; interior, sidewall, dip-tube inlet; outlet; vent; and threaded or flanged, sidewall pipe connections.

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Georg Fischer Inc.
 b. Streim.

3. Limestone: Chips or lumps, with more than 90 percent calcium carbonate content and 1-to 3-inch diameter.
2.7 MANHOLES

A. Description: ASTM F 1759, fabricated from PE components. Include bottom, sidewalls, and top sections; corrosion-resistant, manhole frame and cover; fusion or other watertight joints; and design to prohibit flotation.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ayer Sales, Inc.
2. ISCO Industries, LLC.
3. Performance Pipe.
4. Plastic Fusion Fabricators, Inc.
5. PolyPipe Brand: Dura-Line.
6. Zurn Industries, LLC.

C. Construction: Single wall.

D. Bottom: Channeled.

E. Connections: Inlets and outlet matching or suitable for piping.

F. Steps: Manufacturer’s standard, fusion welded to sidewall. Omit steps for manholes less than 60 inches deep.

G. Top: Include 24-inch nominal-diameter frame and cover.

PART 3 - EXECUTION

3.1 CONCRETE BASES

A. Equipment Mounting:

1. Install neutralization tanks on cast-in-place concrete equipment base(s).
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 “Vibration and Seismic Controls for Plumbing Piping and Equipment.”
3. Comply with requirements for vibration isolation devices specified in Section 220548.13 “Vibration Controls for Plumbing Piping and Equipment.”

B. Anchor neutralization tanks to concrete bases.

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 19-inch centers around full perimeter of base.
2. For installed equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be imbedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.2 PIPING INSTALLATION

A. Chemical-Waste Sewerage Outside the Building:
1. Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground chemical-waste sewerage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

2. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

3. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

4. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

5. Tunneling: Install pipe under streets or other obstructions that cannot be disturbed by tunneling, jacking, or combination of both.

6. Install drainage piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.

7. Install drainage piping with 36-inch minimum cover.

8. Clear interior of piping and structures of dirt and superfluous material as work progresses. Maintain a swab or drag inside piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

B. Chemical-Waste Piping Inside the Building:

1. Install piping next to equipment, accessories, and specialties to allow service and maintenance.

2. Transition and special fittings with pressure ratings at least equal to piping pressure rating may be used unless otherwise indicated.

3. Flanges may be used on aboveground piping unless otherwise indicated.

4. Install underground fiberglass piping according to ASTM D 3839.

5. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

6. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

7. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

8. Install piping at indicated slopes.

9. Install piping free of sags and bends.

10. Install fittings for changes in direction and branch connections.

11. Verify final equipment locations for roughing-in.

12. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

13. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

3.3 PIPING SPECIALTY INSTALLATION

A. Fasten grates to drains if indicated.
B. Set floor drains with tops flush with pavement surface.

C. Install cleanouts and riser extension from sewer pipe to cleanout at grade. Use fittings of same material as sewer pipe at branches for cleanouts and riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in pipe.

3.4 JOINT CONSTRUCTION

A. Chemical-Waste Sewerage Outside the Building:

2. Join dissimilar pipe materials with adapters compatible with pipe materials being joined.

B. Chemical-Waste Piping Inside the Building:

2. Dissimilar-Material Piping Joints: Make joints using adapters compatible with both system materials.

3.5 HANGER AND SUPPORT INSTALLATION

A. Pipe sizes in this article refer to aboveground single-wall piping.

B. Comply with requirements in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

C. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices. Install the following:

1. **Vertical Piping:** MSS Type 8 or MSS Type 42 riser clamps.
2. **Individual, Straight, Horizontal Piping Runs:**
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
3. **Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer:** MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. **Base of Vertical Piping:** MSS Type 52 spring hangers.

D. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for installation of supports.

E. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

F. Support vertical piping and tubing at base and at each floor.

G. Rod diameter may be reduced one size for double-rod hangers, to minimum of 3/8 inch.

H. Install vinyl-coated hangers for PP piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 2: 33 inches with 3/8-inch rod.
2. NPS 2-1/2 and NPS 3: 42 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
4. NPS 6: 48 inches with 3/4-inch rod.
5. NPS 8: 48 inches with 7/8-inch rod.

I. Install supports for vertical PP piping every 72 inches.

J. Support piping and tubing not listed above according to MSS SP-58.

3.6 NEUTRALIZATION TANK INSTALLATION

A. Install exterior neutralization tanks, complete with appurtenances indicated.

1. Set tops of tank covers flush with finished surface where covers occur in pavements. Set covers 3 inches above finished surface elsewhere unless otherwise indicated.
2. Include initial fill of limestone for neutralization tanks.

3.7 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Set tops of manhole frames and covers flush with finished surface where manholes occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

3.8 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Make connections to existing piping, so finished Work complies as nearly as practical with requirements specified for new Work.

C. Use commercially manufactured wye fittings for sewerage piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

D. Protect existing piping to prevent concrete or debris from entering while making connections. Remove debris or other extraneous material that may accumulate.

E. Install piping adjacent to equipment to allow service and maintenance.

3.9 LABELING AND IDENTIFICATION

A. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for labeling of equipment and piping.

1. Use detectable warning tape over nonferrous piping and over edges of underground structures.
3.10 FIELD QUALITY CONTROL

A. Inspect interior of sewerage piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place and again at completion of Project.

1. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between inspection points.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Crushed, broken, cracked, or otherwise damaged piping.
 d. Hydrostatic Tests for Drainage Piping:
 1) Allowable leakage is a maximum of 50 gal./inch of nominal pipe size per mile of pipe during 24-hour period.
 2) Close openings in system and fill with water.
 3) Purge air and refill with water.
 4) Disconnect water supply.
 5) Test and inspect joints for leaks.

 e. Air Tests for Drainage Piping: Comply with UNI-B-6.

2. Leaks and loss in test pressure constitute defects that must be repaired.
3. Submit separate reports for each test.

B. Replace leaking sewerage piping using new materials, and repeat testing until leakage is within allowances specified.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform the following tests and inspections:

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect assembled neutralization systems and their installation, including piping and electrical connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Chemical-waste piping will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.11 STARTUP SERVICE

A. Perform startup service for neutralization systems.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Neutralization Systems:
a. Verify that neutralization system is installed and connected according to the Contract Documents.
b. Verify that electrical wiring installation complies with manufacturer's submittal.
c. Install neutralizing solutions and limestone.
d. Energize circuits.
e. Start and run systems through complete sequence of operations.
f. Adjust operating controls.
g. Leak-Detection Systems:
h. Verify that electrical wiring installation complies with manufacturer's submittal.
i. Energize circuits.
j. Adjust operating controls.

3.12 ADJUSTING

A. Adjust neutralization-system set points.

3.13 CLEANING

A. Use procedures prescribed by authorities having jurisdiction or, if not prescribed, use procedures described below:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Clean piping by flushing with potable water.

3.14 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain.

3.15 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping pressure rating may be used in applications below unless otherwise indicated.

B. Single-Wall, Chemical-Waste Sewerage Piping: Use the following piping materials for each size range:
 1. NPS 1-1/2 to NPS 4: PP drainage pipe and fittings and fusion joints.

C. Aboveground Chemical-Waste Piping: Use the following piping materials for each size range:
 1. NPS 1-1/2 to NPS 6: PP drainage piping and fusion joints.

END OF SECTION 226600
SECTION 226700 - PROCESSED WATER SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes deionized-water piping.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure Ratings:
 1. Deionized-Water Piping: 100 psig unless otherwise indicated.

B. Seismic Performance: Water piping shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Data: For water piping, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

PART 2 - PRODUCTS

2.1 PLASTIC PIPE AND FITTINGS
 A. Schedule 80, CPVC Pipe and Fittings: ASTM F 441/F 441M pipe; with plain ends for solvent-cemented joints and ASTM F 439, socket-type fittings.

2.2 TRANSITION FITTINGS
 A. Transition Fittings: Couplings, flanges, or other manufactured fittings; same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.3 CPVC VALVES
 A. CPVC Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Georg Fischer Inc.
 b. NIBCO INC.
 2. Description:
 b. Pressure Rating: 150 psig at 73 deg F.
 d. Body Design: Union type.
 e. End Connections: Detachable, socket.
 g. Port: Full.
 h. Seats: PTFE.
 i. Stem: ASTM D 1784, CPVC compound.
 k. Handle: Tee shaped.
 B. CPVC Ball-Check Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Georg Fischer Inc.
 b. NIBCO INC.
 2. Description:
 b. Pressure Rating: 150 psig at 73 deg F.
 d. Body Design: Union type.
 e. End Connections: Detachable, socket.
g. Seat and Seals: EPDM-rubber O-rings.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of water piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer’s written instructions.

B. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for removal of ceiling panel, and coordinate with other services occupying that space.

F. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

G. Install piping to permit valve servicing.

H. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure ratings unless otherwise indicated.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

L. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

M. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Where specific joint construction is not indicated, follow piping manufacturer’s written instructions.
B. CPVC Piping Solvent-Cemented Joints: Comply with ASTM F 402 for handling solvent cements, primers, and cleaners; make joints according to ASTM D 2846/D 2846M Appendix.

C. Join dissimilar pipe materials with transition fittings compatible with pipe materials being joined.

3.3 VALVE INSTALLATION

A. Install sectional valves close to mains on each branch and riser serving equipment.

B. Install shutoff valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

C. Locate valves for easy access and provide separate support where necessary.

D. Install valves of same size as the pipe or tube in which they are installed unless otherwise indicated.

E. Install plastic valves of the same material as the plastic pipe in which they are installed.

F. Install valves in horizontal piping with stem at or above center of pipe.

G. Install valves in position to allow full movement of stem and lever handle.

H. Install ball-check valves in horizontal or vertical position so ball will unseat during normal flow.

I. Install swing-check valves in horizontal position with the hinge pin level.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
4. Clamps for Vertical Piping: MSS Type 8 or Type 42.
5. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
6. Multiple, Straight, Horizontal Piping Runs, 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
7. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.
E. Rod diameter may be reduced one size for double-rod hangers, to minimum 3/8 inch.

F. Install padded hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 3. NPS 2-1/2 and NPS 3: 48 inches with 1/2-inch rod.

G. Install padded supports for vertical CPVC piping NPS 2-1/2 and larger every 120 inches and midstory for NPS 2 and smaller.

H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

C. Connect deionized-water piping to equipment and service outlets with unions or flanges.

3.6 IDENTIFICATION

A. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.7 FIELD QUALITY CONTROL

A. Test new piping, and parts of existing piping that have been altered, extended, or repaired, for leaks and defects.

 1. Schedule tests and their inspections by Owner, with at least 24 hours’ advance notice.
 2. Do not cover piping or put into service before inspection and approval.
 3. Test completed piping according to authorities having jurisdiction. If authorities having jurisdiction do not have published procedures, perform tests as follows:
 a. Hydrostatic Tests: Test piping at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 100 psig.
 1) Exception: Do not subject glass piping to pressure above manufacturer's pressure rating for size.
 4. Replace leaking joints with new materials and retest until no leaks exist.
 5. Submit separate reports for each test.
3.8 CLEANING

A. Use procedures prescribed by authorities having jurisdiction or, if not prescribed, use procedures described below:
 1. Before using, purge new piping and parts of existing piping that have been altered, extended, or repaired.
 2. Clean piping by flushing with deionized water.

3.9 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping, and of same or compatible material, may be used in applications below.

B. Deionized-Water Piping: Use the following piping materials for each pipe size range:
 1. NPS 3 and Smaller: CPVC pipe and fittings.

3.10 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 2. Throttling Duty: Install ball valves in piping NPS 2 and smaller.

END OF SECTION 226700
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.
D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.
E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.
 4. Silicone sealants.
 B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. GPT: an EnPro Industries company.
 B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
 C. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, anti-corrosion coated or zinc coated, with plain ends and integral welded waterstop collar.
 D. Galvanized-Steel Sheet Pipe Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. CALPICO, Inc.
2. Metraflex Company (The).
3. Proco Products, Inc.

B. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20-psig.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
4. Pressure Plates: Carbon steel.
5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B 633 of length required to secure pressure plates to sealing elements.

2.3 GROUT

A. Description: Nonshrink, recommended for interior and exterior sealing openings in nonfire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C 920, Type S, Grade NS, Class 25, use NT.

B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke-Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION
A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal-system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE
A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls Above Grade:
 a. Piping Smaller Than NPS 6: Steel-pipe sleeves.
2. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs Above Grade:
 a. Piping Smaller Than NPS 6: Steel-pipe sleeves.

4. Interior Partitions:
 a. Piping Smaller Than NPS 6: Galvanized-steel pipe sleeves.

END OF SECTION 230517
SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type.
d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 230518
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use
operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Open-spring isolators.
5. Housed-spring isolators.
6. Restrained-spring isolators.
8. Pipe-riser resilient supports.
9. Resilient pipe guides.
10. Elastomeric hangers.
11. Spring hangers.
12. Snubbers.
13. Restraint channel bracings.
15. Seismic-restraint accessories.
16. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Mason.
 c. Vibration Eliminator Co., Inc.

2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.

3. Size: Factory or field cut to match requirements of supported equipment.

4. Pad Material: Oil and water resistant with elastomeric properties.

5. Surface Pattern: Ribbed pattern.

6. Infused nonwoven cotton or synthetic fibers.

7. Load-bearing metal plates adhered to pads.

2.2 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.
 d. Vibration Isolation.
 e. Vibration Mountings & Controls, Inc.

2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.
2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.

2. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

a. Housing: Cast-ductile iron or welded steel.
b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.5 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt.

2.6 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.

2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.

3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.

2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.

3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch-thick neoprene.

1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.
2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.11 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Mason Industries, Inc.
 c. Vibration Eliminator Co., Inc.

2. **Frame:** Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.

3. **Outside Spring Diameter:** Not less than 80 percent of the compressed height of the spring at rated load.

4. **Minimum Additional Travel:** 50 percent of the required deflection at rated load.

5. **Lateral Stiffness:** More than 80 percent of rated vertical stiffness.

6. **Overload Capacity:** Support 200 percent of rated load, fully compressed, without deformation or failure.

7. **Elastomeric Element:** Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.

8. **Adjustable Vertical Stop:** Steel washer with neoprene washer "up-stop" on lower threaded rod.

9. **Self-centering hanger-rod cap** to ensure concentricity between hanger rod and support spring coil.

2.12 SNUBBERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Novia; A Division of C&P.
4. Vibration Mountings & Controls, Inc.

B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.

2.13 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the
other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.14 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mason Industries, Inc.
2. Vibration & Seismic Technologies, LLC.
3. Vibration Mountings & Controls, Inc.

B. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.15 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. Vibration & Seismic Technologies, LLC.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.2 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:

1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

E. Piping Restraints:

1. Comply with requirements in MSS SP-127.
2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
3. Brace a change of direction longer than 12 feet.

F. Install cables so they do not bend across edges of adjacent equipment or building structure.

G. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

K. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling.
Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Set anchors to manufacturer's recommended torque, using a torque wrench.

5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 232113 "Hydronic Piping" for piping flexible connections.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.

4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.

5. Test to 90 percent of rated proof load of device.

7. Measure isolator deflection.

8. Verify snubber minimum clearances.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.
B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Equipment labels.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Craftmark Pipe Markers.
 c. Seton Identification Products.
 2. Material and Thickness: Brass, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Craftmark Pipe Markers.
 c. Seton Identification Products.
2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable air volume systems.

1.2 DEFINITIONS
 C. TAB: Testing, adjusting, and balancing.
 D. TABB: Testing, Adjusting, and Balancing Bureau.
 E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
 F. TDH: Total dynamic head.

1.3 ACTION SUBMITTALS
 A. TAB Report: Documentation indicating that Work complies with ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.4 INFORMATIONAL SUBMITTALS
 B. Certified TAB reports.

1.5 QUALITY ASSURANCE
 A. TAB Specialists Qualifications: Certified by AABC.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC as a TAB technician.
B. TAB Specialists Qualifications: Certified by NEBB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB.
 2. TAB Technician: Employee of the TAB specialist and certified by NEBB as a TAB technician.

C. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.
I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

L. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures for balancing the systems.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

 1. Airside:
 a. Duct systems are complete with terminals installed.
 b. Volume, smoke, and fire dampers are open and functional.
 c. Clean filters are installed.
 d. Fans are operating, free of vibration, and rotating in correct direction.
 e. Variable-frequency controllers’ startup is complete and safeties are verified.
 f. Automatic temperature-control systems are operational.
 g. Ceilings are installed.
 h. Windows and doors are installed.
 i. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."

3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.

 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.

d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:

a. Measure static pressure directly at the fan outlet or through the flexible connection.

b. Measure static pressure directly at the fan inlet or through the flexible connection.

c. Measure static pressure across each component that makes up the air-handling system.

d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.

2. Adjust submain and branch duct volume dampers for specified airflow.

3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.

2. Measure inlets and outlets airflow.

3. Adjust each inlet and outlet for specified airflow.

4. Re-measure each inlet and outlet after they have been adjusted.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.

2. Verify that the system is under static pressure control.

3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
d. Adjust controls so that terminal is calling for minimum airflow.
e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
b. Measure static pressure directly at the fan inlet or through the flexible connection.
c. Measure static pressure across each component that makes up the air-handling system.
d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
b. Re-measure and confirm that total airflow is within design.
c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
d. Mark final settings.
e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
f. Verify tracking between supply and return fans.

3.7 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.8 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers’ test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect’s name and address.
6. Engineer’s name and address.
7. Contractor’s name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:

a. Indicated versus final performance.
b. Notable characteristics of systems.
c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Filter static-pressure differential in inches wg.
f. Preheat-coil static-pressure differential in inches wg.
g. Cooling-coil static-pressure differential in inches wg.
h. Heating-coil static-pressure differential in inches wg.
i. Outdoor airflow in cfm.
j. Return airflow in cfm.
k. Outdoor-air damper position.
l. Return-air damper position.
m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
b. Location.
c. Coil type.
d. Number of rows.
e. Fin spacing in fins per inch o.c.
f. Make and model number.
g. Face area in sq. ft.
h. Tube size in NPS.
i. Tube and fin materials.
j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
b. Average face velocity in fpm.
c. Air pressure drop in inches wg.
d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
e. Return-air, wet- and dry-bulb temperatures in deg F.
f. Entering-air, wet- and dry-bulb temperatures in deg F.
g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Water flow rate in gpm.
i. Water pressure differential in feet of head or psig.
j. Entering-water temperature in deg F.
k. Leaving-water temperature in deg F.
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.
o. Inlet steam pressure in psig.

G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
b. Location.
c. Coil identification.
d. Capacity in Btu/h.
e. Number of stages.
f. Connected volts, phase, and hertz.
g. Rated amperage.
h. Airflow rate in cfm.
i. Face area in sq. ft.
j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):

a. Heat output in Btu/h.
b. Airflow rate in cfm.
c. Air velocity in fpm.
d. Entering-air temperature in deg F.
e. Leaving-air temperature in deg F.
f. Voltage at each connection.
g. Amperage for each phase.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:

a. System identification.
b. Location.
c. Make and type.
d. Model number and size.
e. Manufacturer's serial number.
f. Arrangement and class.
g. Sheave make, size in inches, and bore.
h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:

a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Suction static pressure in inches wg.

I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:

a. System and air-handling-unit number.
b. Location and zone.
c. Traverse air temperature in deg F.
d. Duct static pressure in inches wg.
e. Duct size in inches.
f. Duct area in sq. ft..
g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

J. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in deg F.
 f. Leaving-air temperature in deg F.

K. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.9 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Architect.

B. Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
E. If TAB work fails, proceed as follows:

1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.

F. Prepare test and inspection reports.

3.10 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Related Sections:
 1. Section 233113 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in “Duct Insulation Schedule, General,” “Indoor Duct and Plenum Insulation Schedule,” and “Aboveground, Outdoor Duct and Plenum Insulation Schedule” articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in “Factory-Applied Jackets” Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2.3 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

5. Color: Aluminum.

2.4 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. **FSK Jacket:** Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.5 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 3 inches.

3. Thickness: 6.5 mils.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lbf/inch in width.

7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer’s written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.6 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, exposed return located in unconditioned space.
 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 7. Outdoor, concealed supply and return.
 8. Outdoor, exposed supply and return.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.

3.7 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Supply, Return, Outdoor Air and Exhaust-Air Duct and Plenum Insulation: Mineral-fiber blanket, 2 inches thick and 0.75-lb/cu. ft. nominal density.

END OF SECTION 230713
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following HVAC piping systems:
 1. Refrigerant suction and hot-gas piping, indoors and outdoors.

B. Related Sections:
 1. Section 230713 "Duct Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. K-Flex USA.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville: a Berkshire Hathaway company
 b. Knauf Insulation
 c. Manson Insulation Inc
 d. Owens Corning
 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. K-Flex USA.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

E. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation.

2.4 SEALANTS

A. Joint Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
 e. Pittsburgh Corning Corporation.
2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Permanently flexible, elastomeric sealant.

4. Service Temperature Range: Minus 100 to plus 300 deg F.

5. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

5. Color: Aluminum.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Childers Brand; H. B. Fuller Construction Products.

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. **ASJ-SSL:** ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.6 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
b. P.I.C. Plastics, Inc.
c. Proto Corporation.
d. Speedline Corporation.

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 1. Sheet and roll stock ready for shop or field sizing.
 2. Finish and thickness are indicated in field-applied jacket schedules.
 3. Moisture Barrier for Indoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 4. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 5. Factory-Fabricated Fitting Covers:

 a. Same material, finish, and thickness as jacket.
 b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 c. Tee covers.
 d. Flange and union covers.
 e. End caps.
 f. Beveled collars.
 g. Valve covers.
 h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a cross-laminated polyethylene film covered with stucco-embossed aluminum-foil facing.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Polyguard Products, Inc.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
e. **Venture Tape.**

2. Width: 3 inches.

3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. **PVC Tape:** White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Compac Corporation.
 c. Venture Tape.

2. Width: 2 inches.

3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

C. **Aluminum-Foil Tape:** Vapor-retarder tape with acrylic adhesive.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 2 inches.

3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

PART 3 - EXECUTION

3.1 PREPARATION

A. **Surface Preparation:** Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.

 a. For below-ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install
insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.

4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.

4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

A. Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric or Mineral-fiber, preformed pipe insulation, 1.5 inch thick.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Flexible elastomeric or Mineral-fiber, preformed pipe insulation, 1.5 inch thick.

C. Low Pressure Steam and Low pressure condensate: Mineral-fiber, preformed pipe insulation, 3 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping: Insulation shall be one of the following:
 1. Flexible Elastomeric: 2 inches thick.
 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

B. Refrigerant Suction and Hot-Gas Flexible Tubing: Insulation shall be one of the following:
 1. Flexible Elastomeric: 2 inches thick.
 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC: 20 mils thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. If more than one material is listed, selection from materials listed is Contractor’s option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC: 30 mils thick.

END OF SECTION 230719
SECTION 230923 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. DDC system for monitoring and controlling of HVAC systems.
 2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.

B. Related Requirements:
 1. Section 230993.11 "Sequence of Operations for HVAC DDC" for control sequences in DDC systems.
 2. Raceways:
 a. Section 260533 "Raceways and Boxes for Electrical Systems" for raceways for low-voltage control cable.

1.2 DEFINITIONS

A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.

B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.

C. BACnet Specific Definitions:
 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
 5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.

D. Binary: Two-state signal where a high signal level represents "ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.

E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.
F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.

G. COV: Changes of value.

H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.

I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.

J. DOCSIS: Data-Over Cable Service Interface Specifications.

K. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.

L. HLC: Heavy load conditions.

M. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.

N. LAN: Local area network.

O. LNS: LonWorks Network Services.

P. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

Q. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.

S. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.

T. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.

U. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.

V. Peer to Peer: Networking architecture that treats all network stations as equal partners.

W. POT: Portable operator's terminal.

X. RAM: Random access memory.
Y. RF: Radio frequency.

Z. Router: Device connecting two or more networks at network layer.

AA. TCP/IP: Transport control protocol/Internet protocol.

BB. UPS: Uninterruptible power supply.

CC. USB: Universal Serial Bus.

DD. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.

EE. VAV: Variable air volume.

FF. WLED: White light emitting diode.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product include the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
4. Installation, operation and maintenance instructions including factors effecting performance.
5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.

 a. Workstations.
 b. Gateways.
 c. Routers.
 d. Protocol analyzers.
 e. DDC controllers.
 f. Enclosures.
 g. Electrical power devices.
 h. UPS units.
 i. Accessories.
 j. Instruments.
 k. Control dampers and actuators.
 l. Control valves and actuators.
6. When manufacturer’s product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

B. Software Submittal:

1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.
2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.
3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
5. Listing and description of each engineering equation used with reference source.
6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
7. Description of operator interface to alphanumeric and graphic programming.
8. Description of each network communication protocol.
9. Description of system database, including all data included in database, database capacity and limitations to expand database.
10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.
11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

C. Shop Drawings:

1. Include plans, elevations, sections, and mounting details where applicable.
2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Detail means of vibration isolation and show attachments to rotating equipment.
4. Plan Drawings indicating the following:
 a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
 b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 c. Each desktop workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 e. Network communication cable and raceway routing.
 f. Proposed routing of wiring, cabling, conduit, and tubing, coordinated with building services for review before installation.
5. Schematic drawings for each controlled HVAC system indicating the following:
a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
c. A graphic showing location of control I/O in proper relationship to HVAC system.
d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.
g. Narrative sequence of operation.
h. Graphic sequence of operation, showing all inputs and output logical blocks.

6. Control panel drawings indicating the following:
a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
c. Front, rear, and side elevations and nameplate legend.
d. Unique drawing for each panel.

7. DDC system network riser diagram indicating the following:
a. Each device connected to network with unique identification for each.
b. Interconnection of each different network in DDC system.
c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

8. DDC system electrical power riser diagram indicating the following:
a. Each point of connection to field power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
c. Each product requiring power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
d. Power wiring type and size, race type, and size for each.

9. Monitoring and control signal diagrams indicating the following:
a. Control signal cable and wiring between controllers and I/O.
b. Point-to-point schematic wiring diagrams for each product.
c. Control signal tubing to sensors, switches and transmitters.
d. Process signal tubing to sensors, switches and transmitters.

10. Color graphics indicating the following:
a. Itemized list of color graphic displays to be provided.
b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.

c. Intended operator access between related hierarchical display screens.

D. System Description:

1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.

2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.

3. System and product operation under each potential failure condition including, but not limited to, the following:

 a. Loss of power.
 b. Loss of network communication signal.
 c. Loss of controller signals to inputs and outputs.
 d. Operator workstation failure.
 e. Gateway failure.
 f. Network failure
 g. Controller failure.
 h. Instrument failure.
 i. Control damper and valve actuator failure.

4. Complete bibliography of documentation and media to be delivered to Owner.

5. Description of testing plans and procedures.

6. Description of Owner training.

E. Samples:

1. For each exposed product, installed in finished space for approval of selection of aesthetic characteristics.

F. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.

1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.

2. Schedule and design calculations for control dampers and actuators.

 a. Flow at Project design and minimum flow conditions.
 b. Face velocity at Project design and minimum airflow conditions.
 c. Pressure drop across damper at Project design and minimum airflow conditions.
 d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 e. Maximum close-off pressure.
 f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 g. Torque required at worst case condition for sizing actuator.
 h. Actuator selection indicating torque provided.
 i. Actuator signal to control damper (on, close or modulate).
 j. Actuator position on loss of power.
 k. Actuator position on loss of control signal.

3. Schedule and design calculations for control valves and actuators.
a. Flow at Project design and minimum flow conditions.
b. Pressure-differential drop across valve at Project design flow condition.
c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
d. Design and minimum control valve coefficient with corresponding valve position.
e. Maximum close-off pressure.
f. Leakage flow at maximum system pressure differential.
g. Torque required at worst case condition for sizing actuator.
h. Actuator selection indicating torque provided.
i. Actuator signal to control damper (on, close or modulate).
j. Actuator position on loss of power.
k. Actuator position on loss of control signal.

4. Schedule and design calculations for selecting flow instruments.
 a. Instrument flow range.
 b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter and output signal for remote control.
 c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter and output signal for remote control.
 d. Pressure-differential loss across instrument at Project design flow conditions.
 e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plan drawings, reflected ceiling plan(s), and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.

B. Qualification Data:
 1. Systems Provider Qualification Data:
 a. Resume of project manager assigned to Project.
 b. Resumes of application engineering staff assigned to Project.
 c. Resumes of installation and programming technicians assigned to Project.
 d. Resumes of service technicians assigned to Project.
 e. Brief description of past project including physical address, floor area, number of floors, building system cooling and heating capacity and building’s primary function.
 f. Description of past project DDC system, noting similarities to Project scope and complexity indicated.
 g. Names of staff assigned to past project that will also be assigned to execute work of this Project.
 h. Owner contact information for past project including name, phone number, and e-mail address.
 i. Contractor contact information for past project including name, phone number, and e-mail address.
 j. Architect contact information for past project including name, phone number, and e-mail address.
 2. Manufacturer's qualification data.
 3. Testing agency’s qualifications data.
C. Welding certificates.

D. Product Certificates:

 1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.

E. Product Test Reports: For each product that requires testing to be performed by manufacturer.

F. Preconstruction Test Reports: For each separate test performed.

G. Source quality-control reports.

H. Field quality-control reports.

I. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.

 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 c. As-built versions of submittal Product Data.
 d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 g. Engineering, installation, and maintenance manuals that explain how to:

 1) Design and install new points, panels, and other hardware.
 2) Perform preventive maintenance and calibration.
 3) Debug hardware problems.
 4) Repair or replace hardware.

 h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
 j. List of recommended spare parts with part numbers and suppliers.
 k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
l. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
m. Licenses, guarantees, and warranty documents.
n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
o. Owner training materials.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Include product manufacturers’ recommended parts lists for proper product operation over four-year period following warranty period. Parts list shall be indicated for each year.

C. Furnish parts, as indicated by manufacturer’s recommended parts list, for product operation during one-year period following warranty period.

D. Furnish quantity indicated of matching product(s) in Project inventory for each unique size and type of following:

 1. Network Controller: One.
 2. Programmable Application Controller: One.
 3. Application-Specific Controller: One.
 4. Room Carbon Dioxide Sensor and Transmitter: One.
 5. Room Temperature Sensor and Transmitter: One.
 11. Transformer: One.
 12. DC Power Supply: One.
 13. Supply of 20 percent spare optical fiber cable splice organizer cabinets for several re-terminations.

1.8 QUALITY ASSURANCE

A. DDC System Manufacturer Qualifications:

 1. Nationally recognized manufacturer of DDC systems and products.
 2. DDC systems with similar requirements to those indicated for a continuous period of five years within time of bid.
 3. DDC systems and products that have been successfully tested and in use on at least three past projects.
 4. Having complete published catalog literature, installation, operation and maintenance manuals for all products intended for use.
 5. Having full-time in-house employees for the following:

 a. Product research and development.
 b. Product and application engineering.
c. Product manufacturing, testing and quality control.
d. Technical support for DDC system installation training, commissioning and troubleshooting of installations.
e. Owner operator training.

B. DDC System Provider Qualifications:

1. Authorized representative of, and trained by, DDC system manufacturer.
2. In-place facility located within 75 miles of Project.
3. Demonstrated past experience with installation of DDC system products being installed for period within three consecutive years before time of bid.
4. Demonstrated past experience on five projects of similar complexity, scope and value.
5. Each person assigned to Project shall have demonstrated past experience.
6. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
7. Service and maintenance staff assigned to support Project during warranty period.
8. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
9. DDC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

C. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

D. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

E. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.

a. Install updates only after receiving Owner's written authorization.

3. Warranty service shall occur during normal business hours and commence within 24 hours of Owner's warranty service request.
4. Warranty Period: Two year(s) from date of Substantial Completion.

a. For Gateway: Two-year parts and labor warranty for each.
PART 2 - PRODUCTS

2.1 DDC SYSTEM MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Siemens (Match Existing System)

2.2 DDC SYSTEM DESCRIPTION

A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.

1. DDC system shall consist of a peer-to-peer network of distributed DDC controllers, operator interfaces, and software.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 WEB ACCESS

A. DDC system shall be web based or web compatible.

1. Web-Based Access to DDC System:

 a. DDC system software shall be based on server thin-client architecture, designed around open standards of web technology. DDC system server shall be accessed using a web browser over DDC system network, using Owner's LAN, and remotely over Internet.

 b. Intent of thin-client architecture is to provide operators complete access to DDC system via a web browser. No special software other than a web browser shall be required to access graphics, point displays, and trends; to configure trends, points, and controllers; and to edit programming.

 c. Web access shall be password protected.

2. Web-Compatible Access to DDC System:

 a. Workstation and or server shall perform overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.

 b. DDC system shall support web browser access to building data. Operator using a standard web browser shall be able to access control graphics and change adjustable set points.

 c. Web access shall be password protected.

2.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.
1. System Performance Objectives:
 a. DDC system shall manage HVAC systems.
 b. DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
 c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
 d. DDC system shall operate while unattended by an operator and through operator interaction.
 e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.

B. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths shall comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

C. Network Bandwidth: Design each network of DDC system to include at least 30 percent available spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage, and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions.

D. DDC System Data Storage:
 1. Include capability to archive not less than 60 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends and other information indicated.
 2. Local Storage:
 a. Provide workstation with data storage indicated.
 3. Cloud Storage:
 a. Provide application-based and web browser interfaces to configure, upload, download, and manage data, and service plan with storage adequate to store all data for term indicated. Cloud storage shall use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.

E. DDC Data Access:
 1. When logged into the system, operator shall be able to also interact with any DDC controller connected to DDC system as required for functional operation of DDC system.
 2. System(s) shall be used for application configuration; for archiving, reporting and trending of data; for operator transaction archiving and reporting; for network information management; for alarm annunciation; and for operator interface tasks and controls application management.

F. Future Expandability:
 1. DDC system size shall be expandable to an ultimate capacity of at least two times total I/O points indicated.
2. Additional DDC controllers, I/O and associated wiring shall be all that is needed to achieve ultimate capacity. Initial network infrastructure shall be designed and installed to support ultimate capacity.

3. Operator interfaces installed initially shall not require hardware and software additions and revisions for ultimate capacity.

G. Input Point Displayed Accuracy: Input point displayed values shall meet following end-to-end overall system accuracy, including errors associated with meter, sensor, transmitter, lead wire or cable, and analog to digital conversion.

1. Energy:
 a. Electric Power: Within 1 percent of reading.
 b. Requirements indicated on Drawings for meters not supplied by utility.

2. Flow:
 a. Air: Within 2 percent of design flow rate.
 b. Water: Within 2 percent of design flow rate.

3. Gas:
 a. Carbon Dioxide: Within 50 ppm.

4. Moisture (Relative Humidity):
 a. Air: Within 5 percent RH.
 b. Space: Within 5 percent RH.
 c. Outdoor: Within 5 percent RH.

5. Temperature, Dry Bulb:
 a. Air: Within 1 deg F.
 b. Space: Within 1 deg F.
 c. Outdoor: Within 1 deg F.

H. Precision of I/O Reported Values: Values reported in database and displayed shall have following precision:

1. Current:
 a. Milliamperes: Nearest 1/100th of a milliampere.
 b. Amperes: Nearest 1/10th of an ampere up to 100 A; nearest ampere for 100 A and more.

2. Energy:
 a. Electric Power:
 1) Rate (Watts): Nearest 1/10th of a watt through 1000 W.
 2) Rate (Kilowatts): Nearest 1/10th of a kilowatt through 1000 kW; nearest kilowatt above 1000 kW.
 3) Usage (Kilowatt-Hours): Nearest kilowatt through 10,000 kW; nearest 10 kW between 10,000 and 100,000 kW; nearest 100 kW for above 100,000 kW.

 b. Thermal, Rate:
1) Heating: For Btu/h, nearest Btu/h up to 1000 Btu/h; nearest 10 Btu/h between 1000 and 10,000 Btu/h; nearest 100 Btu/h for above 10,000 Btu/h. For Mbh, round to nearest Mbh up to 1000 Mbh; nearest 10 Mbh between 1000 and 10,000 Mbh; nearest 100 Mbh above 10,000 Mbh.

2) Cooling: For tons, nearest ton up to 1000 tons; nearest 10 tons between 1000 and 10,000 tons; nearest 100 tons above 10,000 tons.

c. Thermal, Usage:

1) Heating: For Btu, nearest Btu up to 1000 Btu; nearest 10 Btu between 1000 and 10,000 Btu; nearest 100 Btu for above 10,000 Btu. For Mbtu, round to nearest Mbtu up to 1000 Mbtu; nearest 10 Mbtu between 1000 and 10,000 Mbtu; nearest 100 Mbtu above 10,000 Mbtu.

2) Cooling: For ton-hours, nearest ton-hours up to 1000 tons-hours; nearest 10 ton-hours between 1000 and 10,000 ton-hours; nearest 100 tons above 10,000 tons.

3. Flow:

a. Air: Nearest 1/10th of a cfm through 100 cfm; nearest cfm between 100 and 1000 cfm; nearest 10 cfm between 1000 and 10,000 cfm; nearest 100 cfm above 10,000 cfm.

b. Water: Nearest 1/10th gpm through 100 gpm; nearest gpm between 100 and 1000 gpm; nearest 10 gpm between 1000 and 10,000 gpm; nearest 100 gpm above 10,000 gpm.

c. Steam: Nearest 1/10th lb/hr through 100 lbs/hr; nearest lbs/hr between 100 and 1000 lbs/hr; nearest 10 lbs/hr above 1000 lbs/hr.

4. Gas:

c. Oxygen (Percentage): Nearest 1/10th of 1 percent.

d. Refrigerant (ppm): Nearest ppm.

5. Moisture (Relative Humidity):

a. Relative Humidity (Percentage): Nearest 1 percent.

6. Level: Nearest 1/100th of an inch through 10 inches, nearest 1/10 of an inch between 10 and 100 inches, nearest inch above 100 inches.

7. Speed:

a. Rotation (rpm): Nearest 1 rpm.

b. Velocity: Nearest 1/10th fpm through 100 fpm; nearest fpm between 100 and 1000 fpm; nearest 10 fpm above 1000 fpm.

9. Pressure:

a. Air, Ducts and Equipment: Nearest 1/10th in. w.c.

b. Space: Nearest 1/100th in. w.c. (Nearest 1/10th Pa).

c. Steam: Nearest 1/10th psig through 100 psig, nearest psig above 100 psig.

d. Water: Nearest 1/10 psig through 100 psig, nearest psig above 100 psig.
10. Temperature:
 a. Air, Ducts and Equipment: Nearest 1/10th of a degree.
 b. Outdoor: Nearest degree.
 c. Space: Nearest 1/10th of a degree.
 d. Chilled Water: Nearest 1/10th of a degree.
 e. Condenser Water: Nearest 1/10th of a degree.
 f. Heating Hot Water: Nearest degree.
 g. Heat Recovery Runaround: Nearest 1/10th of a degree.
 h. Steam: Nearest degree.

11. Vibration: Nearest 1/10th in/s.
12. Voltage: Nearest 1/10 volt up to 100 V; nearest volt above 100 V.

I. Control Stability: Control variables indicated within the following limits:

1. Temperature, Dry Bulb:
 a. Air: Within 1 deg F.
 b. Space: Within 1 deg F.

J. Environmental Conditions for Controllers, Gateways, and Routers:

1. Products shall operate without performance degradation under ambient environmental temperature, pressure and humidity conditions encountered for installed location.
 a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by product and application.

2. Products shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Products not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 a. Outdoors, Protected: Type 3.
 b. Outdoors, Unprotected: Type 4X.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 e. Indoors, Heated and Air Conditioned: Type 1.
 f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 1.
 g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4X.

K. Environmental Conditions for Instruments and Actuators:

1. Instruments and actuators shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
a. If instruments and actuators alone cannot comply with requirement, install instruments and actuators in protective enclosures that are isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by instrument and application.

2. Instruments, actuators and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments and actuators not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:

a. Outdoors, Protected: Type 2.
b. Outdoors, Unprotected: Type 4X.
c. Indoors, Heated with Filtered Ventilation: Type 1.
d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
e. Indoors, Heated and Air-conditioned: Type 1.
f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 1.
g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4X.

L. Electric Power Quality:

1. Power-Line Surges:
 a. Protect DDC system products connected to ac power circuits from power-line surges to comply with requirements of IEEE C62.41.
 b. Do not use fuses for surge protection.
 c. Test protection in the normal mode and in the common mode, using the following two waveforms:
 1) 10-by-1000-mic.sec. waveform with a peak voltage of 1500 V and a peak current of 60 A.
 2) 8-by-20-mic.sec. waveform with a peak voltage of 1000 V and a peak current of 500 A.

2. Power Conditioning:
 a. Protect DDC system products connected to ac power circuits from irregularities and noise rejection. Characteristics of power-line conditioner shall be as follows:
 1) At 85 percent load, output voltage shall not deviate by more than plus or minus 1 percent of nominal when input voltage fluctuates between minus 20 percent to plus 10 percent of nominal.
 2) During load changes from zero to full load, output voltage shall not deviate by more than plus or minus 3 percent of nominal.
 3) Accomplish full correction of load switching disturbances within five cycles, and 95 percent correction within two cycles of onset of disturbance.
 4) Total harmonic distortion shall not exceed 3-1/2 percent at full load.

3. Ground Fault: Protect products from ground fault by providing suitable grounding. Products shall not fail due to ground fault condition.
M. UPS:
 1. DDC system products powered by UPS units shall include the following:
 a. Desktop workstations.
 b. Gateways.
 c. DDC controllers.

N. Continuity of Operation after Electric Power Interruption:
 1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal and backup power systems shall automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored either through backup power source or through normal power if restored before backup power is brought online.

2.5 SYSTEM ARCHITECTURE

A. System architecture shall consist of no more than two or three levels of LANs.
 1. Level one LAN shall connect network controllers and operator workstations.
 2. Level one or Level two LAN shall connect programmable application controllers to other programmable application controllers, and to network controllers.
 3. Level two or Level three LAN shall connect application-specific controllers to programmable application controllers and network controllers.
 4. Level two or Level three LAN shall connect application-specific controllers to application-specific controllers.

B. Minimum Data Transfer and Communication Speed:
 1. LAN Connecting Operator Workstations and Network Controllers: 10 Mbps.
 2. LAN Connecting Programmable Application Controllers: 100 kbps.
 3. LAN Connecting Application-Specific Controllers: 76,800 bps.

C. DDC system shall consist of dedicated LANs that are not shared with other building systems and tenant data and communication networks.

D. System architecture shall be modular and have inherent ability to expand to not less than two times system size indicated with no impact to performance indicated.

E. System architecture shall perform modifications without having to remove and replace existing network equipment.

F. Number of LANs and associated communication shall be transparent to operator. All I/O points residing on any LAN shall be capable of global sharing between all system LANs.

G. System design shall eliminate dependence on any single device for system alarm reporting and control execution. Each controller shall operate independently by performing its’ own control, alarm management and historical data collection.

H. Special Network Architecture Requirements:
1. Air-Handling Systems: For control applications of an air-handling system that consists of air-handling unit(s) and VAV terminal units, include a dedicated LAN of application-specific controllers serving VAV terminal units connected directly to controller that is controlling air-handling system air-handling unit(s). Basically, create a DDC system LAN that aligns with air-handling system being controlled.

2.6 DDC SYSTEM OPERATOR INTERFACES

A. Operator Means of System Access: Operator shall be able to access entire DDC system through any of multiple means, including, but not limited to, the following:

1. Desktop and portable workstation with hardwired connection through LAN port.
2. Portable operator terminal with hardwired connection through LAN port.
3. Portable operator workstation with wireless connection through LAN router.
4. Mobile device and application with secured wireless connection through LAN router or cellular data service.
5. Remote connection through web access.

B. Access to system, regardless of operator means used, shall be transparent to operator.

C. Network Ports: For hardwired connection of desktop or portable workstation. Network port shall be easily accessible, properly protected, clearly labeled, and installed at the following locations:

1. Each mechanical equipment room.
2. Each boiler room.
3. Each chiller room or outdoor chiller yard.
4. Each cooling tower location.
5. Each different roof level with roof-mounted air-handling units or rooftop units.
7. Fire-alarm system command center.

D. Desktop Workstations:

1. Connect to DDC system Level one LAN through a communications port directly on LAN or through a communications port on a DDC controller.
2. Able to communicate with any device located on any DDC system LAN.

E. Portable Workstations:

1. Connect to DDC system Level one LAN through a communications port directly on LAN or through a communications port on a DDC controller.
2. Able to communicate with any device located on any DDC system LAN.
3. Connect to DDC system Level two or Level three LAN through a communications port on an application-specific controller, or a room temperature sensor connected to an application-specific controller.
4. Connect to system through a wireless router connected to Level one LAN.
5. Connect to system through a cellular data service.
6. Portable workstation shall be able to communicate with any device connected to any system LAN regardless of point of physical connection to system.
7. Monitor, program, schedule, adjust set points, and report capabilities of I/O connected anywhere in system.
8. Have dynamic graphic displays that are identical to desktop workstations.

F. POT:
1. Connect DDC controller through a communications port local to controller.
2. Able to communicate with any DDC system controller that is directly connected or with LAN or connected to DDC system.

G. Mobile Device:

1. Connect to system through a wireless router connected to LAN and cellular data service.
2. Able to communicate with any DDC controller connected to DDC system using a dedicated application and secure web access.

H. Telephone Communications:

1. Through use of a standard modem, operator shall be able to communicate with any device connected to any system LAN.
2. Have auto-dial and auto-answer communications to allow desktop and portable workstations and DDC controllers to communicate with remote workstations and remote DDC controllers via telephone lines.

 a. Desktop and Portable Workstations:

 1) Operators shall be able to perform all control functions, report functions, and database generation and modification functions as if directly connected to system LAN.
 2) Have routines to automatically answer calls, and either file or display information sent remotely.
 3) Communications taking place over telephone lines shall be completely transparent to operator.
 4) Dial-up program shall maintain a user-definable cross-reference and associated telephone numbers so it is not required to remember or manually dial telephone numbers.

 b. DDC Controllers:

 1) Not have modems unless specifically indicated for a unique controller.
 2) Controllers with modems shall automatically place calls to report critical alarms, or to upload trend and historical information for archiving.
 3) Analyze and prioritize alarms to minimize initiation of calls.
 4) Buffer noncritical alarms in memory and report them as a group of alarms, or until an operator manually requests an upload.
 5) Make provisions for handling busy signals, no-answers, and incomplete data transfers.
 6) Call default devices when communications cannot be established with primary devices.

I. Critical Alarm Reporting:

1. Operator-selected critical alarms shall be sent by DDC system to notify operator of critical alarms that require immediate attention.
2. DDC system shall send alarm notification to multiple recipients that are assigned for each alarm.
3. DDC system shall notify recipients by any or all means, including e-mail, text message, and prerecorded phone message to mobile and landline phone numbers.

J. Simultaneous Operator Use: Capable of accommodating up to five simultaneous operators that are accessing DDC system through any one of operator interfaces indicated.
2.7 NETWORKS

A. Acceptable networks for connecting workstations, mobile devices, and network controllers include the following:

1. ATA 878.1, ARCNET.
2. CEA-709.1-C.
3. IP.
4. IEEE 8802-3, Ethernet.

B. Acceptable networks for connecting programmable application controllers include the following:

1. ATA 878.1, ARCNET.
2. CEA-709.1-C.
3. IP.
4. IEEE 8802-3, Ethernet.

C. Acceptable networks for connecting application-specific controllers include the following:

1. ATA 878.1, ARCNET.
2. CEA-709.1-C.
3. EIA-485A.
4. IP.
5. IEEE 8802-3, Ethernet.

2.8 NETWORK COMMUNICATION PROTOCOL

A. Network communication protocol(s) used throughout entire DDC system shall be open to Owner and available to other companies for use in making future modifications to DDC system.

B. ASHRAE 135 Protocol:

1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.

C. Industry Standard Protocols:

1. DDC system shall use any one or a combination of the following industry standard protocols for network communication while complying with other DDC system requirements indicated:

 a. ASHRAE 135.

2. Operator workstations and network controllers shall communicate through ASHRAE 135 protocol.
3. Portions of DDC system networks using ASHRAE 135 communication protocol shall be an open implementation of network devices complying with ASHRAE 135. Network devices shall be tested and listed by BACnet Testing Laboratories.
4. Gateways shall be used to connect networks and network devices using different protocols.

2.9 PORTABLE OPERATOR TERMINAL

A. Description: Handheld device with integral keypad or touch screen operator interface.
B. Display: Multiple lines of text display for use in operator interaction with DDC system.
C. Cable: Flexible cable, at least 36 inches long, with a plug-in jack for connection to DDC controllers, network ports or instruments with an integral LAN port. As an alternative to hardwired connection, POT shall be accessible to DDC controllers through a wireless network connection.
D. POT shall be powered through network connection.
E. Connection of POT to DDC system shall not interrupt or interfere with normal network operation in any way, prevent alarms from being transmitted, or preclude central initiated commands and system modification.
F. POT shall give operator the ability to do the following:

1. Display and monitor BI point status.
2. Change BO point set point (on or off, open or closed).
3. Display and monitor analog point values.
4. Change analog control set points.
5. Command a setting of AO point.
6. Display and monitor I/O point in alarm.
7. Add a new or delete an existing I/O point.
8. Enable and disable I/O points, initiators, and programs.
9. Display and change time and date.
10. Display and change time schedules.
11. Display and change run-time counters and run-time limits.
12. Display and change time and event initiation.
13. Display and change control application and DDC parameters.
14. Display and change programmable offset values.
15. Access DDC controller initialization routines and diagnostics.

2.10 SYSTEM SOFTWARE

A. System Software Minimum Requirements:

1. Real-time multitasking and multiuser 32- or 64-bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.
2. Operating system shall be capable of operating DOS and Microsoft Windows applications.
3. Database management software shall manage all data on an integrated and non-redundant basis. Additions and deletions to database shall be without detriment to
existing data. Include cross linkages so no data required by a program can be deleted by
an operator until that data have been deleted from respective programs.

4. Network communications software shall manage and control multiple-network
communications to provide exchange of global information and execution of global
programs.

5. Operator interface software shall include day-to-day operator transaction processing,
alarm and report handling, operator privilege level and data segregation control, custom
programming, and online data modification capability.

6. Scheduling software shall schedule centrally based time and event, temporary, and
exception day programs.

B. Operator Interface Software:

1. Minimize operator training through use of English language prorating and English
language point identification.

2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a
mouse.

3. Operator sign-off shall be a manual operation or, if no keyboard or mouse activity takes
place, an automatic sign-off.

4. Automatic sign-off period shall be programmable from one to 60 minutes in one-minute
increments on a per operator basis.

5. Operator sign-on and sign-off activity shall be recorded and sent to printer.

6. Security Access:

a. Operator access to DDC system shall be under password control.

b. An alphanumeric password shall be field assignable to each operator.

c. Operators shall be able to access DDC system by entry of proper password.

d. Operator password shall be same regardless of which computer or other interface
means is used.

e. Additions or changes made to passwords shall be updated automatically.

f. Each operator shall be assigned an access level to restrict access to data and
functions the operator is capable of performing.

g. Software shall have at least five access levels.

h. Each menu item shall be assigned an access level so that a one-for-one
 correspondence between operator assigned access level(s) and menu item access
 level(s) is required to gain access to menu item.

i. Display menu items to operator with those capable of access highlighted. Menu
and operator access level assignments shall be online programmable and under
password control.

7. Data Segregation:

a. Include data segregation for control of specific data routed to a workstation, to an
operator or to a specific output device, such as a printer.

b. Include at least 32 segregation groups.

c. Segregation groups shall be selectable such as "fire points," "fire points on second
floor," "space temperature points," "HVAC points," and so on.

d. Points shall be assignable to multiple segregation groups. Display and output of
data to printer or monitor shall occur where there is a match of operator or
peripheral segregation group assignment and point segregations.

e. Alarms shall be displayed and printed at each peripheral to which segregation
allows, but only those operators assigned to peripheral and having proper
authorization level will be allowed to acknowledge alarms.

f. Operators and peripherals shall be assignable to multiple segregation groups and
all assignments are to be online programmable and under password control.
8. Operators shall be able to perform commands including, but not limited to, the following:

 a. Start or stop selected equipment.
 b. Adjust set points.
 c. Add, modify, and delete time programming.
 d. Enable and disable process execution.
 e. Lock and unlock alarm reporting for each point.
 f. Enable and disable totalization for each point.
 g. Enable and disable trending for each point.
 h. Override control loop set points.
 i. Enter temporary override schedules.
 j. Define holiday schedules.
 k. Change time and date.
 l. Enter and modify analog alarm limits.
 m. Enter and modify analog warning limits.
 n. View limits.
 o. Enable and disable demand limiting.
 p. Enable and disable duty cycle.
 q. Display logic programming for each control sequence.

9. Reporting:

 a. Generated automatically and manually.
 b. Sent to displays, printers and disk files.
 c. Types of Reporting:

 1) General listing of points.
 2) List points currently in alarm.
 3) List of off-line points.
 4) List points currently in override status.
 5) List of disabled points.
 6) List points currently locked out.
 7) List of items defined in a "Follow-Up" file.
 8) List weekly schedules.
 9) List holiday programming.
 10) List of limits and deadbands.

10. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.

C. Graphic Interface Software:

 1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable (for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.

 2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface shall use a pointing device with pull-down or penetrating menus, color and animation to facilitate operator understanding of system.

 3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.

 4. Descriptors for graphics, points, alarms and such shall be modified through operator's workstation under password control.

 5. Graphic displays shall be online user definable and modifiable using the hardware and software provided.
6. Data to be displayed within a graphic shall be assignable regardless of physical hardware address, communication or point type.
7. Graphics are to be online programmable and under password control.
8. Points may be assignable to multiple graphics where necessary to facilitate operator understanding of system operation.
9. Graphics shall also contain software points.
10. Penetration within a graphic hierarchy shall display each graphic name as graphics are selected to facilitate operator understanding.
11. Back-trace feature shall permit operator to move upward in the hierarchy using a pointing device. Back trace shall show all previous penetration levels. Include operator with option of showing each graphic full screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.
12. Display operator accessed data on the monitor.
13. Operator shall select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Defined and linked graphic below that selection shall then be displayed.
14. Include operator with means to directly access graphics without going through penetration path.
15. Dynamic data shall be assignable to graphics.
16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.
17. Use color, rotation, or other highly visible means, to denote status and alarm states. Color shall be variable for each class of points, as chosen by operator.
18. Points shall be dynamic with operator adjustable update rates on a per point basis from one second to over a minute.
19. For operators with appropriate privilege, points shall be commanded directly from display using pointing device.
 a. For an analog command point such as set point, current conditions and limits shall be displayed and operator can position new set point using pointing device.
 b. For a digital command point such as valve position, valve shall show its current state such as open or closed and operator could select alternative position using pointing device.
 c. Keyboard equivalent shall be available for those operators with that preference.
20. Operator shall be able to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve plot and other information on other quadrants on screen. This feature shall allow real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.
21. Help Features:
 a. On-line context-sensitive help utility to facilitate operator training and understanding.
 b. Bridge to further explanation of selected keywords. Document shall contain text and graphics to clarify system operation.
 1) If help feature does not have ability to bridge on keywords for more information, a complete set of user manuals shall be provided in an indexed word-processing program, which shall run concurrently with operating system software.
 c. Available for Every Menu Item:
 1) Index items for each system menu item.
22. Graphic generation software shall allow operator to add, modify, or delete system graphic displays.
 a. Include libraries of symbols depicting HVAC symbols such as fans, coils, filters, dampers, valves, pumps, and electrical symbols.
 b. Graphic development package shall use a pointing device in conjunction with a drawing program to allow operator to perform the following:
 1) Define background screens.
 2) Define connecting lines and curves.
 3) Locate, orient and size descriptive text.
 4) Define and display colors for all elements.
 5) Establish correlation between symbols or text and associated system points or other displays.

D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:
 1. Site plan showing each building, and additional site elements, which are being controlled or monitored by DDC system.
 2. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:
 a. Room layouts with room identification and name.
 b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
 c. Location and identification of each hardware point being controlled or monitored by DDC system.
 3. Control schematic for each of following, including a graphic system schematic representation with point identification, set point and dynamic value indication, sequence of operation.
 a. Air-handling system and unit.
 b. Fan.
 c. Pump.
 d. Rooftop unit.
 e. Terminal unit.
 4. Graphic display for each piece of equipment connected to DDC system through a data communications link. Include dynamic indication of all points associated with equipment.
 5. DDC system network riser diagram that shows schematic layout for entire system including all networks and all controllers, gateways operator workstations and other network devices.

E. Customizing Software:
 1. Software to modify and tailor DDC system to specific and unique requirements of equipment installed, to programs implemented and to staffing and operational practices planned.
 2. Online modification of DDC system configuration, program parameters, and database using menu selection and keyboard entry of data into preformatted display templates.
 3. As a minimum, include the following modification capability:
 a. Operator assignment shall include designation of operator passwords, access levels, point segregation and auto sign-off.
b. Peripheral assignment capability shall include assignment of segregation groups and operators to consoles and printers, designation of backup workstations and printers, designation of workstation header points and enabling and disabling of print-out of operator changes.

c. System configuration and diagnostic capability shall include communications and peripheral port assignments, DDC controller assignments to network, DDC controller enable and disable, assignment of command trace to points and application programs and initiation of diagnostics.

d. System text addition and change capability shall include English or native language descriptors for points, segregation groups and access levels and action messages for alarms, run time and trouble condition.

e. Time and schedule change capability shall include time and date set, time and occupancy schedules, exception and holiday schedules and daylight savings time schedules.

f. Point related change capability shall include the following:

1) System and point enable and disable.
2) Run-time enable and disable.
3) Assignment of points to segregation groups, calibration tables, lockout, and run time and to a fixed I/O value.
4) Assignment of alarm and warning limits.

g. Application program change capability shall include the following:

1) Enable and disable of software programs.
2) Programming changes.
3) Assignment of comfort limits, global points, time and event initiators, time and event schedules and enable and disable time and event programs.

4. Software shall allow operator to add points, or groups of points, to DDC system and to link them to energy optimization and management programs. Additions and modifications shall be online programmable using operator workstation, downloaded to other network devices and entered into their databases. After verification of point additions and associated program operation, database shall be uploaded and recorded on hard drive and disk for archived record.

5. Include high-level language programming software capability for implementation of custom DDC programs. Software shall include a compiler, linker, and up- and down-load capability.

6. Include a library of DDC algorithms, intrinsic control operators, arithmetic, logic and relational operators for implementation of control sequences. Also include, as a minimum, the following:

a. Proportional control (P).

b. Proportional plus integral (PI).

c. Proportional plus integral plus derivative (PID).

d. Adaptive and intelligent self-learning control.

1) Algorithm shall monitor loop response to output corrections and adjust loop response characteristics according to time constant changes imposed.

2) Algorithm shall operate in a continuous self-learning manner and shall retain in memory a stored record of system dynamics so that on system shut down and restart, learning process starts from where it left off.

7. Fully implemented intrinsic control operators including sequence, reversing, ratio, time delay, time of day, highest select AO, lowest select AO, analog controlled digital output, analog control AO, and digitally controlled AO.
8. Logic operators such as "And," "Or," "Not," and others that are part of a standard set available with a high-level language.
9. Arithmetic operators such as "Add," "Subtract," "Multiply," "Divide," and others that are part of a standard set available with a high-level language.
10. Relational operators such as "Equal To," "Not Equal To," "Less Than," "Greater Than," and others that are part of a standard set available with a high-level language.

F. Alarm Handling Software:

1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers, gateways and other network devices.
2. Include first in, first out handling of alarms according to alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.
3. Alarm handling shall be active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.
4. Alarms display shall include the following:
 a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."
 b. "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
 c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
 d. Include extended message capability to allow assignment and printing of extended action messages. Capability shall be operator programmable and assignable on a per point basis.
5. Alarms shall be directed to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.
6. Send e-mail alarm messages to designated operators.
7. Send e-mail, page, text and voice messages to designated operators for critical alarms.
8. Alarms shall be categorized and processed by class.
 a. Class 1:
 1) Associated with fire, security and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 3) All conditions shall cause an audible sound and shall require individual acknowledgment to silence audible sound.
 b. Class 2:
 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 2) Acknowledgement may be through a multiple alarm acknowledgment.
 c. Class 3:
 1) General alarms; printed, displayed and placed in unacknowledged alarm buffer queues.
 2) Each new alarm received shall cause an audible sound. Audible sound shall be silenced by "acknowledging" alarm or by pressing a "silence" key.
 3) Acknowledgement of queued alarms shall be either on an individual basis or through a multiple alarm acknowledgement.
4) Alarms returning to normal condition shall be printed and not cause an audible sound or require acknowledgment.

d. Class 4:

1) Routine maintenance or other types of warning alarms.
2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.

9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator shall be able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.

10. To ensure that no alarm records are lost, it shall be possible to assign a backup printer to accept alarms in case of failure of primary printer.

G. Reports and Logs:

1. Include reporting software package that allows operator to select, modify, or create reports using DDC system I/O point data available.
2. Each report shall be definable as to data content, format, interval and date.
3. Report data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation for historical reporting.
4. Operator shall be able to obtain real-time logs of all I/O points by type or status, such as alarm, point lockout, or normal.
5. Reports and logs shall be stored on workstation hard drives in a format that is readily accessible by other standard software applications, including spreadsheets and word processing.
6. Reports and logs shall be readily printed and set to be printed either on operator command or at a specific time each day.

H. Standard Reports: Standard DDC system reports shall be provided and operator shall be able to customize reports later.

1. All I/O: With current status and values.
2. Alarm: All current alarms, except those in alarm lockout.
3. Disabled I/O: All I/O points that are disabled.
4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
6. Logs:
 a. Alarm history.
 b. System messages.
 c. System events.
 d. Trends.

I. Custom Reports: Operator shall be able to easily define any system data into a daily, weekly, monthly, or annual report. Reports shall be time and date stamped and shall contain a report title.

J. Standard Trends:

1. Trend all I/O point present values, set points, and other parameters indicated for trending.
2. Trends shall be associated into groups, and a trend report shall be set up for each group.
3. Trends shall be stored within DDC controller and uploaded to hard drives automatically on reaching 75% of DDC controller buffer limit, or by operator request, or by archiving time schedule.
4. Preset trend intervals for each I/O point after review with Owner.
5. Trend intervals shall be operator selectable from 10 seconds up to 60 minutes. Minimum number of consecutive trend values stored at one time shall be 100 per variable.
6. When drive storage memory is full, most recent data shall overwrite oldest data.
7. Archived and real-time trend data shall be available for viewing numerically and graphically by operators.

K. Custom Trends: Operator shall be able to define a custom trend log for any I/O point in DDC system.
 1. Each trend shall include interval, start time, and stop time.
 2. Data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation hard drives.
 3. Data shall be retrievable for use in spreadsheets and standard database programs.

L. Programming Software:
 1. Include programming software to execute sequences of operation indicated.
 2. Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
 3. Programming software shall be as follows:
 a. Graphic Based: Programming shall use a library of function blocks made from preprogrammed code designed for DDC control systems.
 1) Function blocks shall be assembled with interconnection lines that represent to control sequence in a flowchart.
 2) Programming tools shall be viewable in real time to show present values and logical results of each function block.
 b. Menu Based: Programming shall be done by entering parameters, definitions, conditions, requirements and constraints.
 c. Line by Line and Text Based: Programming shall declare variable types such as local, global, real, integer, and so on, at the beginning of the program. Use descriptive comments frequently to describe programming code.
 4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.

M. Database Management Software:
 1. Where a separate SQL database is used for information storage, DDC system shall include database management software that separates database monitoring and managing functions by supporting multiple separate windows.
 2. Database secure access shall be accomplished using standard SQL authentication including ability to access data for use outside of DDC system applications.
 3. Database management function shall include summarized information on trend, alarm, event, and audit for the following database management actions:
 a. Backup.
b. Purge.
c. Restore.

4. Database management software shall support the following:
 a. Statistics: Display database server information and trend, alarm, event, and audit information on database.
 b. Maintenance: Include method of purging records from trend, alarm, event and audit databases by supporting separate screens for creating a backup before purging, selecting database, and allowing for retention of a selected number of day's data.
 c. Backup: Include means to create a database backup file and select a storage location.
 d. Restore: Include a restricted means of restoring a database by requiring operator to have proper security level.

5. Database management software shall include information of current database activity, including the following:
 a. Ready.
 b. Purging record from a database.
 c. Action failed.
 d. Refreshing statistics.
 e. Restoring database.
 f. Shrinking a database.
 g. Backing up a database.
 h. Resetting Internet information services.
 i. Starting network device manager.
 j. Shutting down the network device manager.
 k. Action successful.

6. Database management software monitoring functions shall continuously read database information once operator has logged on.

7. Include operator notification through on-screen pop-up display and e-mail message when database value has exceeded a warning or alarm limit.

8. Monitoring settings window shall have the following sections:
 a. Allow operator to set and review scan intervals and start times.
 b. E-mail: Allow operator to create and review e-mail and phone text messages to be delivered when a warning or an alarm is generated.
 c. Warning: Allow operator to define warning limit parameters, set reminder frequency and link e-mail message.
 d. Alarm: Allow operator to define alarm limit parameters, set reminder frequency and link e-mail message.
 e. Database Login: Protect system from unauthorized database manipulation by creating a read access and a write access for each of trend, alarm, event and audit databases as well as operator proper security access to restore a database.

9. Monitoring settings taskbar shall include the following informational icons:
 a. Normal: Indicates by color and size, or other easily identifiable means that all databases are within their limits.
 b. Warning: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their warning limit.
 c. Alarm: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their alarm limit.
2.11 OFFICE APPLICATION SOFTWARE

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Microsoft Corporation.

B. Include current version of office application software at time of Substantial Completion.

C. Office application software package shall include multiple separate applications and use a common platform for all applications, similar to Microsoft's "Office Professional."

1. Database.
2. E-mail.
3. Presentation.
4. Publisher.
5. Spreadsheet.

2.12 ASHRAE 135 GATEWAYS

A. Include BACnet communication ports, whenever available as an equipment OEM standard option, for integration via a single communication cable. BACnet-controlled plant equipment includes, but is not limited to, boilers, chillers, and variable-speed drives.

B. Include gateways to connect BACnet to legacy systems, existing non-BACnet devices, and existing non-BACnet DDC-controlled equipment, only when specifically requested and approved by Owner.

C. Include with each gateway an interoperability schedule showing each point or event on legacy side that BACnet "client" will read, and each parameter that BACnet network will write to. Describe this interoperability of BACnet services, or BIBBs, defined in ASHRAE 135, Annex K.

D. Gateway Minimum Requirements:

1. Read and view all readable object properties on non-BACnet network to BACnet network and vice versa where applicable.
2. Write to all writeable object properties on non-BACnet network from BACnet network and vice versa where applicable.
3. Include single-pass (only one protocol to BACnet without intermediary protocols) translation from non-BACnet protocol to BACnet and vice versa.
4. Comply with requirements of Data Sharing Read Property, Data Sharing Write Property, Device Management Dynamic Device Binding-B, and Device Management Communication Control BIBBs according to ASHRAE 135.
5. Hardware, software, software licenses, and configuration tools for operator-to-gateway communications.
6. Backup programming and parameters on CD media and the ability to modify, download, backup, and restore gateway configuration.

2.13 DDC CONTROLLERS

A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.
B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.

C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.

D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.

E. Environment Requirements:
 1. Controller hardware shall be suitable for the anticipated ambient conditions.
 2. Controllers located in conditioned space shall be rated for operation at 32 to 120 deg F.
 3. Controllers located outdoors shall be rated for operation at 40 to 150 deg F.

F. Power and Noise Immunity:
 1. Controller shall operate at 90 to 110 percent of nominal voltage rating and shall perform an orderly shutdown below 80 percent of nominal voltage.
 2. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches of enclosure.

G. DDC Controller Spare Processing Capacity:
 1. Include spare processing memory for each controller. RAM, PROM, or EEPROM will implement requirements indicated with the following spare memory:
 a. Network Controllers: 50 percent.
 b. Programmable Application Controllers: Not less than 60 percent.
 c. Application-Specific Controllers: Not less than 70 percent.
 2. Memory shall support DDC controller's operating system and database and shall include the following:
 a. Monitoring and control.
 b. Energy management, operation and optimization applications.
 c. Alarm management.
 d. Historical trend data of all connected I/O points.
 e. Maintenance applications.
 f. Operator interfaces.
 g. Monitoring of manual overrides.

H. DDC Controller Spare I/O Point Capacity: Include spare I/O point capacity for each controller as follows:
 1. Network Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.
2. Programmable Application Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

3. Application-Specific Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: One.
 2) AOs: One.
 3) BIs: One.
 4) BOs: One.

I. Maintenance and Support: Include the following features to facilitate maintenance and support:
 1. Mount microprocessor components on circuit cards for ease of removal and replacement.
 2. Means to quickly and easily disconnect controller from network.
 3. Means to quickly and easily access connect to field test equipment.
 4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.

J. Input and Output Point Interface:
 1. Hardwired input and output points shall connect to network, programmable application and application-specific controllers.
 2. Input and output points shall be protected so shorting of point to itself, to another point, or to ground will not damage controller.
 3. Input and output points shall be protected from voltage up to 24 V of any duration so that contact will not damage controller.
 4. AIs:
 a. AIs shall include monitoring of low-voltage (zero- to 10-V dc), current (4 to 20 mA) and resistance signals from thermistor and RTD sensors.
 b. AIs shall be compatible with, and field configurable to, sensor and transmitters installed.
 c. Controller AIs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 d. Signal conditioning including transient rejection shall be provided for each AI.
 e. Capable of being individually calibrated for zero and span.
 f. Incorporate common-mode noise rejection of at least 50 dB from zero to 100 Hz for differential inputs, and normal-mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10000 ohms.
 5. AOs:
 a. Controller AOs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
b. Output signals shall have a range of 4 to 20 mA dc as required to include proper control of output device.
c. Capable of being individually calibrated for zero and span.
d. AOs shall not exhibit a drift of greater than 0.4 percent of range per year.

6. BIs:
 a. Controller BIs shall accept contact closures and shall ignore transients of less than 5-ms duration.
 b. Isolation and protection against an applied steady-state voltage of up to 180-V ac peak.
 c. BIs shall include a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against effects of contact bounce and noise.
 d. BIs shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
 e. Pulse accumulation input points shall comply with all requirements of BIs and accept up to 10 pulses per second for pulse accumulation. Buffer shall be provided to totalize pulses. Pulse accumulator shall accept rates of at least 20 pulses per second. The totalized value shall be reset to zero on operator's command.

7. BOs:
 a. Controller BOs shall include relay contact closures or triac outputs for momentary and maintained operation of output devices.
 1) Relay contact closures shall have a minimum duration of 0.1 second. Relays shall include at least 180 V of isolation. Electromagnetic interference suppression shall be provided on all output lines to limit transients to non-damaging levels. Minimum contact rating shall be 1 A at 24-V ac.
 2) Triac outputs shall include at least 180 V of isolation. Minimum contact rating shall be 1 A at 24-V ac.
 b. BOs shall include for two-state operation or a pulsed low-voltage signal for pulse-width modulation control.
 c. BOs shall be selectable for either normally open or normally closed operation.
 d. Include tristate outputs (two coordinated BOs) for control of three-point floating-type electronic actuators without feedback.
 e. Limit use of three-point floating devices to VAV terminal unit control applications, and other applications indicated on Drawings. Control algorithms shall operate actuator to one end of its stroke once every 12 hours for verification of operator tracking.

2.14 NETWORK CONTROLLERS

A. General Network Controller Requirements:
 1. Include adequate number of controllers to achieve performance indicated.
 2. System shall consist of one or more independent, standalone, microprocessor-based network controllers to manage global strategies indicated.
 3. Controller shall have enough memory to support its operating system, database, and programming requirements.
 4. Data shall be shared between networked controllers and other network devices.
5. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
6. Controllers shall have a real-time clock.
7. Controllers shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
8. Controllers shall be fully programmable.

B. Communication:
1. Network controllers shall communicate with other devices on DDC system Level one network.
2. Network controller also shall perform routing if connected to a network of programmable application and application-specific controllers.

C. Operator Interface:
1. Controller shall be equipped with a service communications port for connection to a portable operator’s workstation or mobile device.
2. Local Keypad and Display:
 a. Equip controller with local keypad and digital display for interrogating and editing data.
 b. Use of keypad and display shall require security password.

D. Serviceability:
1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.15 PROGRAMMABLE APPLICATION CONTROLLERS

A. General Programmable Application Controller Requirements:
1. Include adequate number of controllers to achieve performance indicated.
2. Controller shall have enough memory to support its operating system, database, and programming requirements.
3. Data shall be shared between networked controllers and other network devices.
4. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
5. Controllers shall have a real-time clock.
6. Controllers shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
7. Controllers shall be fully programmable.

B. Communication:
1. Programmable application controllers shall communicate with other devices on network.

C. Operator Interface:

 1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.
 2. Local Keypad and Display:
 a. Equip controller with local keypad and digital display for interrogating and editing data.
 b. Use of keypad and display shall require security password.

D. Serviceability:

 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.16 APPLICATION-SPECIFIC CONTROLLERS

A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.

 1. Capable of standalone operation and shall continue to include control functions without being connected to network.
 2. Data shall be shared between networked controllers and other network devices.

B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.

C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation.

D. Serviceability:

 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.17 CONTROLLER SOFTWARE

A. General Controller Software Requirements:

 1. Software applications shall reside and operate in controllers. Editing of applications shall occur at operator workstations.
2. I/O points shall be identified by up to 30-character point name and up to 16-character point descriptor. Same names shall be used at operator workstations.
3. Control functions shall be executed within controllers using DDC algorithms.
4. Controllers shall be configured to use stored default values to ensure fail-safe operation. Default values shall be used when there is a failure of a connected input instrument or loss of communication of a global point value.

B. Security:

1. Operator access shall be secured using individual security passwords and user names.
2. Passwords shall restrict operator to points, applications, and system functions as assigned by system manager.
3. Operator log-on and log-off attempts shall be recorded.
4. System shall protect itself from unauthorized use by automatically logging off after last keystroke. The delay time shall be operator-definable.

C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule shall consist of the following:

1. Weekly Schedule:
 a. Include separate schedules for each day of week.
 b. Each schedule should include the capability for start, stop, optimal start, optimal stop, and night economizer.
 c. Each schedule may consist of up to 10 events.
 d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.

2. Exception Schedules:
 a. Include ability for operator to designate any day of the year as an exception schedule.
 b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.

3. Holiday Schedules:
 a. Include capability for operator to define up to 99 special or holiday schedules.
 b. Schedules may be placed on scheduling calendar and will be repeated each year.
 c. Operator shall be able to define length of each holiday period.

D. System Coordination:

1. Include standard application for proper coordination of equipment.
2. Application shall include operator with a method of grouping together equipment based on function and location.
3. Group may then be used for scheduling and other applications.

E. Binary Alarms:

1. Each binary point shall be set to alarm based on operator-specified state.
2. Include capability to automatically and manually disable alarming.

F. Analog Alarms:
1. Each analog object shall have both high and low alarm limits.
2. Alarming shall be able to be automatically and manually disabled.

G. Alarm Reporting:
1. Operator shall be able to determine action to be taken in event of an alarm.
2. Alarms shall be routed to appropriate operator workstations based on time and other conditions.
3. Alarm shall be able to start programs, print, be logged in event log, generate custom messages, and display graphics.

H. Remote Communication:
1. System shall have ability to dial out in the event of an alarm.

I. Electric Power Demand Limiting:
1. Demand-limiting program shall monitor building or other operator-defined electric power consumption from signals connected to electric power meter or from a watt transducer or current transformer.
2. Demand-limiting program shall predict probable power demand such that action can be taken to prevent exceeding demand limit. When demand prediction exceeds demand limit, action will be taken to reduce loads in a predetermined manner. When demand prediction indicates demand limit will not be exceeded, action will be taken to restore loads in a predetermined manner.
3. Demand reduction shall be accomplished by the following means:
 a. Reset air-handling unit supply temperature set points.
 b. Reset space temperature set points.
 c. De-energize equipment based on priority.
4. Demand-limiting parameters, frequency of calculations, time intervals, and other relevant variables shall be based on the means by which electric power service provider computes demand charges.
5. Include demand-limiting prediction and control for any individual meter monitored by system or for total of any combination of meters.
6. Include means operator to make the following changes online:
 a. Addition and deletion of loads controlled.
 b. Changes in demand intervals.
 c. Changes in demand limit for meter(s).
 d. Maximum shutoff time for equipment.
 e. Minimum shutoff time for equipment.
 f. Select rotational or sequential shedding and restoring.
 g. Shed and restore priority.
7. Include the following information and reports, to be available on an hourly, daily, weekly, monthly and annual basis:
 a. Total electric consumption.
 b. Peak demand.
 c. Date and time of peak demand.
 d. Daily peak demand.
J. Maintenance Management: System shall monitor equipment status and generate maintenance messages based on operator-designated run-time, starts, and calendar date limits.

K. Sequencing: Include application software based on sequences of operation indicated to properly sequence chillers, boilers, and other applicable HVAC equipment.

L. Control Loops:
 1. Support any of the following control loops, as applicable to control required:
 a. Two-position (on/off, open/close, slow/fast) control.
 b. Proportional control.
 c. Proportional plus integral (PI) control.
 d. Proportional plus integral plus derivative (PID) control.
 1) Include PID algorithms with direct or reverse action and anti-windup.
 2) Algorithm shall calculate a time-varying analog value used to position an output or stage a series of outputs.
 3) Controlled variable, set point, and PID gains shall be operator-selectable.
 e. Adaptive (automatic tuning).

M. Staggered Start: Application shall prevent all controlled equipment from simultaneously restarting after a power outage. Order which equipment (or groups of equipment) is started, along with the time delay between starts, shall be operator-selectable.

N. Energy Calculations:
 1. Include software to allow instantaneous power or flow rates to be accumulated and converted to energy usage data.
 2. Include an algorithm that calculates a sliding-window average (rolling average). Algorithm shall be flexible to allow window intervals to be operator specified (such as 15, 30, or 60 minutes).
 3. Include an algorithm that calculates a fixed-window average. A digital input signal shall define start of window period (such as signal from utility meter) to synchronize fixed-window average with that used by utility.

O. Anti-Short Cycling:
 1. BO points shall be protected from short cycling.
 2. Feature shall allow minimum on-time and off-time to be selected.

P. On and Off Control with Differential:
 1. Include an algorithm that allows a BO to be cycled based on a controlled variable and set point.
 2. Algorithm shall be direct- or reverse-acting and incorporate an adjustable differential.

Q. Run-Time Totalization:
 1. Include software to totalize run-times for all BI and BO points.
 2. A high run-time alarm shall be assigned, if required, by operator.
2.18 ENCLOSURES

A. General Enclosure Requirements:

1. House each controller and associated control accessories in a enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
2. Do not house more than one controller in a single enclosure.
3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
4. Equip doors of enclosures housing controllers and components with analog or digital displays with windows to allow visual observation of displays without opening enclosure door.
5. Individual wall-mounted single-door enclosures shall not exceed 36 inches wide and 48 inches high.
6. Individual wall-mounted double-door enclosures shall not exceed 60 inches wide and high.
7. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
8. Supply each enclosure with a complete set of as-built schematics, tubing, and wiring diagrams and product literature located in a pocket on inside of door.

B. Internal Arrangement:

1. Internal layout of enclosure shall group and protect pneumatic, electric, and electronic components associated with a controller, but not an integral part of controller.
2. Arrange layout to group similar products together.
3. Include a barrier between line-voltage and low-voltage electrical and electronic products.
4. Factory or shop install products, tubing, cabling and wiring complying with requirements and standards indicated.
5. Terminate field cable and wire using heavy-duty terminal blocks.
6. Include spare terminals, equal to not less than 10 percent of used terminals.
7. Include spade lugs for stranded cable and wire.
8. Install a maximum of two wires on each side of a terminal.
9. Include enclosure field power supply with a toggle-type switch located at entrance inside enclosure to disconnect power.
10. Include enclosure with a line-voltage nominal 20-A GFCI duplex receptacle for service and testing tools. Wire receptacle on hot side of enclosure disconnect switch and include with a 5-A circuit breaker.
11. Mount products within enclosure on removable internal panel(s).
12. Include products mounted in enclosures with engraved, laminated phenolic nameplates (black letters on a white background). The nameplates shall have at least 1/4-inch-high lettering.
13. Route tubing cable and wire located inside enclosure within a raceway with a continuous removable cover.
14. Label each end of cable, wire and tubing in enclosure following an approved identification system that extends from field I/O connection and all intermediate connections throughout length to controller connection.
15. Size enclosure internal panel to include at least 25 percent spare area on face of panel.

C. Environmental Requirements:

1. Evaluate temperature and humidity requirements of each product to be installed within each enclosure.
2. Calculate enclosure internal operating temperature considering heat dissipation of all products installed within enclosure and ambient effects (solar, conduction and wind) on enclosure.

3. Where required by application, include temperature-controlled electrical heat to maintain inside of enclosure above minimum operating temperature of product with most stringent requirement.

4. Where required by application, include temperature-controlled ventilation fans with filtered louver(s) to maintain inside of enclosure below maximum operating temperature of product with most stringent requirement.

D. Wall-Mounted, NEMA 250, Type 1:
1. Enclosure shall be NRTL listed according to UL 50 or UL 50E.
2. Construct enclosure of steel, not less than:
 a. Enclosure size less than 24 in.: 0.053 in. thick.
 b. Enclosure size 24 in. and larger: 0.067 in. or 0.093 in. thick.

3. Finish enclosure inside and out with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be ANSI 61 gray.
 b. Interior color shall be white.

4. Hinged door full size of front face of enclosure and supported using:
 a. Enclosures sizes less than 36 in. tall: Multiple butt hinges.
 b. Enclosures sizes 36 in. tall and larger: Continuous piano hinges.

5. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size less than 24 in.: Solid or Perforated steel, 0.053 in. thick.
 b. Size 24 in. and larger: Solid aluminum, 0.10 in. or steel, 0.093 in. thick.

6. Internal panel mounting hardware, grounding hardware and sealing washers.
7. Grounding stud on enclosure body.
8. Thermoplastic pocket on inside of door for record Drawings and Product Data.

E. Wall Mounted NEMA 250, Types 4 and 12:
1. Enclosure shall be NRTL listed according to UL 508A.
2. Seam and joints are continuously welded and ground smooth.
3. Where recessed enclosures are indicated, include enclosures with face flange for flush mounting.
4. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
5. Single-door enclosure sizes up to 60 inches tall by 36 inches wide.
6. Double-door enclosure sizes up to 36 inches tall by 60 inches wide.
7. Construct enclosure of steel, not less than the following:
 a. Size Less Than 24 Inches: 0.053 inch or 0.067 inch thick.
 b. Size 24 Inches and Larger: 0.067 inch thick.

8. Finish enclosure with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
a. Exterior color shall be ANSI 61 gray.
b. Interior color shall be white.

9. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 a. Sizes through 24 Inches Tall: Two hinges.
 b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 c. Sizes Larger 48 Inches Tall: Four hinges.

10. Double-door enclosures with overlapping door design to include unobstructed full-width access.
 a. Single-door enclosures 48 inches and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.

11. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.
 b. Size 24 Inches and Larger: Solid aluminum, 0.10 inch or steel, 0.093 inch thick.

12. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.

14. Thermoplastic pocket on inside of door for record Drawings and Product Data.

2.19 RELAYS

A. General-Purpose Relays:

1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.

2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.

3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11-pin octal plug for three-pole double-throw relays.

4. Construct the contacts of either silver cadmium oxide or gold.

5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.

6. Relays shall have LED indication and a manual reset and push-to-test button.

7. Performance:

 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.

9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.

10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
B. Multifunction Time-Delay Relays:
 1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.
 2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.
 3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.
 4. Construct the contacts of either silver cadmium oxide or gold.
 5. Enclose the relay in a dust-tight cover.
 6. Include knob and dial scale for setting delay time.
 7. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
 d. Repeatability: Within 2 percent.
 e. Recycle Time: 45 ms.
 f. Minimum Pulse Width Control: 50 ms.
 g. Power Consumption: 5 VA or less at 120-V ac.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

C. Latching Relays:
 1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
 2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
 3. Use a plug-in-style relay with a multibladed plug.
 4. Construct the contacts of either silver cadmium oxide or gold.
 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 6. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

D. Current Sensing Relay:
 1. Monitors ac current.
 2. Independent adjustable controls for pickup and dropout current.
 3. Energized when supply voltage is present and current is above pickup setting.
 4. De-energizes when monitored current is below dropout current.
 5. Dropout current is adjustable from 50 to 95 percent of pickup current.
 6. Include a current transformer, if required for application.
7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.

E. Combination On-Off Status Sensor and On-Off Relay:
 1. Description:
 a. On-off control and status indication in a single device.
 b. LED status indication of activated relay and current trigger.
 c. Closed-Open-Auto override switch located on the load side of the relay.

 2. Performance:
 a. Ambient Temperature: Minus 30 to 140 deg F.

 3. Status Indication:
 a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 b. Current Sensor Range: As required by application.
 c. Current Set Point: Fixed or adjustable as required by application.
 d. Current Sensor Output:
 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 3) Analog, zero- to 5- or 10-V dc.
 4) Analog, 4 to 20 mA, loop powered.

 5. Enclosure: NEMA 250, Type 1 enclosure.

2.20 ELECTRICAL POWER DEVICES

A. Transformers:
 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
 2. Transformer shall be at least 40 VA.
 3. Transformer shall have both primary and secondary fuses.

B. DC Power Supply:
 1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
 2. Enclose circuitry in a housing.
 3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.
 4. Performance:
 a. Output voltage nominally 25-V dc within 5 percent.
 b. Output current up to 100 mA.
 c. Input voltage nominally 120-V ac, 60 Hz.
d. Load regulation within 0.5 percent from zero- to 100-mA load.
e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.21 UNINTERRUPTABLE POWER SUPPLY (UPS) UNITS FOR WORKSTATIONS

A. 250 through 1000 VA:
1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units shall be provided for systems with larger connected loads.
 b. UPS shall provide five minutes of battery power.
3. Performance:
 a. Input Voltage: Single phase, 120- or 230-V ac, compatible with field power source.
 b. Load Power Factor Range (Crest Factor): 0.65 to 1.0.
 c. Output Voltage: 101- to 132-V ac, while input voltage varies between 89 and 152-V ac.
 d. On Battery Output Voltage: Sine wave.
 e. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 f. Recharge time shall be a maximum of six hours to 90 percent capacity after full discharge to cutoff.
 g. Transfer Time: 6 ms.
 h. Surge Voltage Withstand Capacity: IEEE C62.41, Categories A and B; 6 kV/200 and 500 A; 100-kHz ringwave.
4. UPS shall be automatic during fault or overload conditions.
5. Unit with integral line-interactive, power condition topology to eliminate all power contaminants.
6. Include front panel with power switch and visual indication of power, battery, fault and temperature.
7. Unit shall include an audible alarm of faults and front panel silence feature.
8. Unit with four NEMA WD 1, NEMA WD 6 Configuration 5-15R receptacles.
9. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure).
10. Batteries shall be sealed lead-acid type and be maintenance free. Battery replacement shall be front accessible by user without dropping load.
11. Include tower models installed in ventilated cabinets to the particular installation location.

B. 1000 through 3000 VA:
1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units, or multiple units, shall be provided for systems with larger connected loads.
 b. UPS shall provide five minutes of battery power.
3. Performance:
a. Input Voltage: Single phase, 120-V ac, plus 20 to minus 30 percent.
b. Power Factor: Minimum 0.97 at full load.
c. Output Voltage: Single phase, 120-V ac, within 3 percent, steady state with rated output current of 10.0 A, 30.0-A peak.
d. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
e. Recharge time shall be a maximum of eight hours to 90 percent capacity.

4. UPS bypass shall be automatic during fault or overload conditions.
5. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure).
6. Batteries shall be sealed lead-acid type and be maintenance free.
7. Include tower models installed in ventilated cabinets or rack models installed on matching racks, as applicable to the particular installation location and space availability/configuration.

2.22 CONTROL WIRE AND CABLE

A. Wire: Single conductor control wiring above 24 V.
 1. Wire size shall be at least No. 18 AWG.
 2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
 3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
 4. Conductor colors shall be black (hot), white (neutral), and green (ground).
 5. Furnish wire on spools.

B. Single Twisted Shielded Instrumentation Cable above 24 V:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
 4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.

C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.
D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 1. Cable shall be balanced twisted pair.
 2. Cable shall be plenum rated.
 3. Cable shall comply with NFPA 70.
 4. Cable shall have a unique color that is different from other cables used on Project.

2.23 CONTROL POWER WIRING AND RACEWAYS

A. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" electrical power conductors and cables.

B. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

2.24 ACCESSORIES

2.25 IDENTIFICATION

A. Control Equipment, Instruments, and Control Devices:
 1. Engraved tag bearing unique identification.
 a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.
 2. Letter size shall be as follows:
 a. Operator Workstations: Minimum of 0.5 inch high.
 b. DDC Controllers: Minimum of 0.5 inch high.
 c. Gateways: Minimum of 0.5 inch high.
 d. Repeaters: Minimum of 0.5 inch high.
 e. Enclosures: Minimum of 0.5 inch high.
 f. Electrical Power Devices: Minimum of 0.25 inch high.
 g. UPS units: Minimum of 0.5 inch high.
 h. Accessories: Minimum of 0.25 inch high.
 i. Instruments: Minimum of 0.25 inch high.
 j. Control Damper and Valve Actuators: Minimum of 0.25 inch high.
 3. Tag shall consist of white lettering on black background.
 4. Tag shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded black with contrasting white center exposed by engraving through outer layer.
 5. Tag shall be fastened with drive pins.
 6. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.

B. Raceway and Boxes:
1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.

C. Equipment Warning Labels:

1. Acrylic label with pressure-sensitive adhesive back and peel-off protective jacket.
2. Lettering size shall be at least 14-point type with white lettering on red background.
3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inch beyond white border.

2.26 SOURCE QUALITY CONTROL

A. Product(s) and material(s) will be considered defective if it does not pass tests and inspections.

B. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify compatibility with and suitability of substrates.

B. Examine roughing-in for products to verify actual locations of connections before installation.

1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

A. Communication Interface to Equipment with Integral Controls:

1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.
2. Equipment to Be Connected:
 b. Air-handling units new and existing specified in Section 237313 "Modular Indoor Central-Station Air-Handling Units."
 c. Packaged terminal air-conditioners specified in Section 238113.12 "Packaged Terminal Air-Conditioners, Freestanding Units."
 d. Fan Coil Units (new and existing)
 e. Variable Refrigerant Flow systems.

B. Communication Interface to Other Building Systems:
 1. DDC system shall have a communication interface with systems having a communication interface.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install products to satisfy more stringent of all requirements indicated.

B. Install products level, plumb, parallel, and perpendicular with building construction.

C. Support products, tubing, piping, wiring, and raceways. Brace products to prevent lateral movement and sway or a break in attachment when subjected to a force.

D. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.

E. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

F. Firestop Penetrations Made in Fire-Rated Assemblies: Comply with requirements in Section 078413 “Penetration Firestopping.”

G. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 "Joint Sealants."

H. Welding Requirements:
 1. Restrict welding and burning to supports and bracing.
 2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
 3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
 4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.

I. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.
J. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.4 POT INSTALLATION
 A. Install one portable operator terminal(s).
 B. Turn over POTs to Owner at Substantial Completion.
 C. Install software on each POT and verify that software functions properly.

3.5 GATEWAY INSTALLATION
 A. Install gateways if required for DDC system communication interface requirements indicated.
 1. Install gateway(s) required to suit indicated requirements.
 B. Test gateway to verify that communication interface functions properly.

3.6 ROUTER INSTALLATION
 A. Install routers if required for DDC system communication interface requirements indicated.
 1. Install router(s) required to suit indicated requirements.
 B. Test router to verify that communication interface functions properly.

3.7 CONTROLLER INSTALLATION
 A. Install controllers in enclosures to comply with indicated requirements.
 B. Connect controllers to field power supply and to UPS units where indicated.
 C. Install controller with latest version of applicable software and configure to execute requirements indicated.
 D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.
 E. Installation of Network Controllers:
 1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. Install controllers in a protected location that is easily accessible by operators.
 3. Top of controller shall be within 72 inches of finished floor.
 F. Installation of Programmable Application Controllers:
 1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. Install controllers in a protected location that is easily accessible by operators.
3. Top of controller shall be within 72 inches of finished floor.

G. Application-Specific Controllers:
 1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.8 ENCLOSURES INSTALLATION
A. Install the following items in enclosures, to comply with indicated requirements:
 1. Gateways.
 2. Routers.
 3. Controllers.
 4. Electrical power devices.
 5. UPS units.
 6. Relays.
 7. Accessories.
 8. Instruments.
 9. Actuators
B. Attach wall-mounted enclosures to wall using the following types of steel struts:
 1. For NEMA 250, Type 1 Enclosures: Use painted steel strut and hardware.
 2. For NEMA 250, Type 4X Enclosures and Enclosures Located Outdoors: Use stainless-steel strut and hardware.
 3. Install plastic caps on exposed cut edges of strut.
C. Align top of adjacent enclosures.
D. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireway used for application shall have protection equal to NEMA 250 rating of connected enclosures.

3.9 ELECTRIC POWER CONNECTIONS
A. Connect electrical power to DDC system products requiring electrical power connections.
B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.
C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.
D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.
3.10 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification products and installation.

B. Install self-adhesive labels with unique identification on face for each of the following:
 1. Operator workstation.
 2. Gateway.
 3. Router.
 4. DDC controller.
 5. Enclosure.
 6. Electrical power device.
 7. UPS unit.
 8. Accessory.

C. Install unique instrument identification on face of each instrument connected to a DDC controller.

D. Install unique identification on face of each control damper and valve actuator connected to a DDC controller.

E. Where product is installed above accessible tile ceiling, also install matching identification on face of ceiling grid located directly below.

F. Where product is installed above an inaccessible ceiling, also install identification on face of access door directly below.

G. Warning Labels and Signs:
 1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
 2. Shall be located in highly visible location near power service entry points.

3.11 NETWORK INSTALLATION

A. Install balanced twisted pair cable when connecting between the following network devices located in same building:
 1. Operator workstations.
 2. Operator workstations and network controllers.
 3. Network controllers.

B. Install balanced twisted pair cable when connecting between the following:
 1. Gateways.
 2. Gateways and network controllers or programmable application controllers.
 3. Routers.
 4. Routers and network controllers or programmable application controllers.
 5. Network controllers and programmable application controllers.
 6. Programmable application controllers.
 7. Programmable application controllers and application-specific controllers.
C. Install cable in continuous raceway.
 1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.12 NETWORK NAMING AND NUMBERING

A. Coordinate with Owner and provide unique naming and addressing for networks and devices.

B. ASHRAE 135 Networks:
 1. Network Numbering:
 a. Assign unique numbers to each new network.
 b. Provide ability for changing network number through device switches or operator interface.
 c. DDC system, with all possible connected LANs, can contain up to 65,534 unique networks.
 2. Device Object Identifier Property Number:
 a. Assign unique device object identifier property numbers or device instances for each device network.
 b. Provide for future modification of device instance number by device switches or operator interface.
 c. LAN shall support up to 4,194,302 unique devices.
 3. Device Object Name Property Text:
 a. Device object name property field shall support 32 minimum printable characters.
 b. Assign unique device "Object Name" property names with plain-English descriptive names for each device.
 1) Example 1: Device object name for device controlling boiler plant at Building 1000 would be "HW System B1000."
 2) Example 2: Device object name for a VAV terminal unit controller could be "VAV unit 102."
 4. Object Name Property Text for Other Than Device Objects:
 a. Object name property field shall support 32 minimum printable characters.
 b. Assign object name properties with plain-English names descriptive of application.
 1) Example 1: "Zone 1 Temperature."
 2) Example 2 "Fan Start and Stop."
 5. Object Identifier Property Number for Other Than Device Objects:
 a. Assign object identifier property numbers according to Drawings or tables indicated.
 b. If not indicated, object identifier property numbers may be assigned at Installer's discretion but must be approved by Owner in advance, be documented and be unique for like object types within device.
3.13 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

A. Comply with NECA 1.

B. Wire and Cable Installation:

1. Comply with installation requirements in Section 260523 "Control-Voltage Electrical Power Cables."
2. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
3. Provide strain relief.
4. Terminate wiring in a junction box.
 a. Clamp cable over jacket in junction box.
 b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.
5. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
6. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
7. Use shielded cable to transmitters.
8. Use shielded cable to temperature sensors.
9. Perform continuity and meager testing on wire and cable after installation.

C. Conduit Installation:

1. Comply with Section "260533 "Raceways and Boxes for Electrical Systems" for control-voltage conductors.
2. Comply with Section 270528 "Pathways for Communications Systems" for balanced twisted pair cabling and optical fiber installation.

3.14 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.

C. Perform the following tests and inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Testing of Pneumatic and Air-Signal Tubing:
 a. Test for leaks and obstructions.
b. Disconnect each pipe and tubing line before a test is performed, and blowout dust, dirt, trash, condensate and other foreign materials with compressed air. Use commercially pure compressed air or nitrogen as distributed in gas cylinders. Air from an oil-free compressor with an air dryer is an acceptable alternative for the test.
c. After foreign matter is expelled and line is free from obstructions, plug far end of tubing run.
d. Connect a pressure source to near end of run with a needle valve between air supply and tubing run.
e. Connect a pressure gage accurate to within 0.5 percent of test between the shutoff needle valve and tubing run under test.
f. For system pressures above 30 psig, apply a pressure of 1.5 times operating pressure. Record pressure in tubing run every 10 minutes for one hour. Allowable drop in pressure in one-hour period shall not exceed 1 psig.
g. For system pressures 30 psig and below, apply a pressure of 2.0 times operating pressure to piping and tubing run. Record pressure in tubing run every 5 minutes for one hour. Allowable drop in pressure in one-hour period shall not exceed 0.5 psig.

D. Testing:
1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.
3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.
4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
5. Test Equipment: Use an optical fiber time domain reflectometer for testing of length and optical connectivity.
6. Test Results: Record test results and submit copy of test results for Project record.

3.15 DDC SYSTEM I/O CHECKOUT PROCEDURES

A. Check installed products before continuity tests, leak tests and calibration.
B. Check instruments for proper location and accessibility.
C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material and support.
E. For pneumatic products, verify that air supply for each product is properly installed.
F. Control Damper Checkout:
 1. Verify that control dampers are installed correctly for flow direction.
 2. Verify that proper blade alignment, either parallel or opposed, has been provided.
 3. Verify that damper frame attachment is properly secured and sealed.
 4. Verify that damper actuator and linkage attachment is secure.
 5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
 6. Verify that damper blade travel is unobstructed.

G. Instrument Checkout:
 1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
 2. Verify that attachment is properly secured and sealed.
 3. Verify that conduit connections are properly secured and sealed.
 4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
 5. Inspect instrument tag against approved submittal.
 6. For instruments with tubing connections, verify that tubing attachment is secure and isolation valves have been provided.
 7. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
 8. For temperature instruments:
 a. Verify sensing element type and proper material.
 b. Verify length and insertion.

3.16 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.

E. Provide diagnostic and test equipment for calibration and adjustment.

F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.

H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
I. Comply with field testing requirements and procedures indicated by ASHRAE’s Guideline 11, “Field Testing of HVAC Control Components,” in the absence of specific requirements, and to supplement requirements indicated.

J. Analog Signals:
 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

K. Digital Signals:
 1. Check digital signals using a jumper wire.
 2. Check digital signals using an ohmmeter to test for contact making or breaking.

L. Control Dampers:
 1. Stroke and adjust control dampers following manufacturer’s recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer’s recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

M. Control Valves:
 1. Stroke and adjust control valves following manufacturer’s recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer’s recommended procedure, so valve is 100 percent closed, 50 percent closed and 100 percent open at proper air pressures.
 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 4. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

N. Meters: Check sensors at zero, 50, and 100 percent of Project design values.

O. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

P. Switches: Calibrate switches to make or break contact at set points indicated.

Q. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.
3.17 DDC SYSTEM CONTROLLER CHECKOUT

A. Verify power supply.
 1. Verify voltage, phase and hertz.
 2. Verify that protection from power surges is installed and functioning.
 3. Verify that ground fault protection is installed.
 4. If applicable, verify if connected to UPS unit.
 5. If applicable, verify if connected to a backup power source.
 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.

B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.

C. Verify that spare I/O capacity is provided.

3.18 DDC CONTROLLER I/O CONTROL LOOP TESTS

A. Testing:
 1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
 2. Test every I/O point throughout its full operating range.
 3. Test every control loop to verify operation is stable and accurate.
 4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
 5. Test and adjust every control loop for proper operation according to sequence of operation.
 6. Test software and hardware interlocks for proper operation. Correct deficiencies.
 7. Operate each analog point at the following:
 a. Upper quarter of range.
 b. Lower quarter of range.
 c. At midpoint of range.
 8. Exercise each binary point.
 9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
 10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.

3.19 DDC SYSTEM VALIDATION TESTS

A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.

B. After approval of Test Plan, execute all tests and procedures indicated in plan.
C. After testing is complete, submit completed test checklist.

D. Pretest Checklist: Submit the following list with items checked off once verified:

1. Detailed explanation for any items that are not completed or verified.
2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
3. HVAC equipment motors operate below full-load amperage ratings.
4. Required DDC system components, wiring, and accessories are installed.
5. Installed DDC system architecture matches approved Drawings.
6. Control electric power circuits operate at proper voltage and are free from faults.
7. Required surge protection is installed.
8. DDC system network communications function properly, including uploading and downloading programming changes.
9. Using BACnet protocol analyzer, verify that communications are error free.
10. Each controller's programming is backed up.
11. Equipment, products, tubing, wiring cable and conduits are properly labeled.
12. All I/O points are programmed into controllers.
13. Testing, adjusting and balancing work affecting controls is complete.
14. Dampers and actuators zero and span adjustments are set properly.
15. Each control damper and actuator goes to failed position on loss of power.
16. Valves and actuators zero and span adjustments are set properly.
17. Each control valve and actuator goes to failed position on loss of power.
18. Meter, sensor and transmitter readings are accurate and calibrated.
19. Control loops are tuned for smooth and stable operation.
20. View trend data where applicable.
21. Each controller works properly in standalone mode.
22. Safety controls and devices function properly.
23. Interfaces with fire-alarm system function properly.
24. Electrical interlocks function properly.
25. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphic are created.
26. Record Drawings are completed.

E. Test Plan:

1. Prepare and submit a validation test plan including test procedures for performance validation tests.
2. Test plan shall address all specified functions of DDC system and sequences of operation.
3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
5. Include a test checklist to be used to check and initial that each test has been successfully completed.
6. Submit test plan documentation 10 business days before start of tests.

F. Validation Test:

1. Verify operating performance of each I/O point in DDC system.
 a. Verify analog I/O points at operating value.
 b. Make adjustments to out-of-tolerance I/O points.

 1) Identify I/O points for future reference.
2) Simulate abnormal conditions to demonstrate proper function of safety devices.
3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.

2. Simulate conditions to demonstrate proper sequence of control.
3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
4. After 24 Hours following Initial Validation Test:
 a. Re-check I/O points that required corrections during initial test.
 b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.

5. After 24 Hours of Second Validation Test:
 a. Re-check I/O points that required corrections during second test.
 b. Continue validation testing until I/O point is normal on two consecutive tests.

6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.
7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

3.20 FINAL REVIEW

A. Submit written request to Architect when DDC system is ready for final review. Written request shall state the following:

1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
4. DDC system is complete and ready for final review.

B. Review by Architect shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.

C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.

D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.

E. Prepare and submit closeout submittals when no deficiencies are reported.
F. A part of DDC system final review shall include a demonstration to parties participating in final review.

1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.
3. Demonstration shall include, but not be limited to, the following:

 a. Accuracy and calibration of 10 I/O points randomly selected by reviewers. If review finds that some I/O points are not properly calibrated and not satisfying performance requirements indicated, additional I/O points may be selected by reviewers until total I/O points being reviewed that satisfy requirements equals quantity indicated.

 b. HVAC equipment and system hardwired and software safeties and life-safety functions are operating according to sequence of operation. Up to 10 I/O points shall be randomly selected by reviewers. Additional I/O points may be selected by reviewers to discover problems with operation.

 c. Correct sequence of operation after electrical power interruption and resumption after electrical power is restored for randomly selected HVAC systems.

 d. Operation of randomly selected dampers and valves in normal-on, normal-off and failed positions.

 e. Reporting of alarm conditions for randomly selected alarms, including different classes of alarms, to ensure that alarms are properly received by operators and operator workstations.

 f. Trends, summaries, logs and reports set-up for Project.

 g. For up to three HVAC systems randomly selected by reviewers, use graph trends to show that sequence of operation is executed in correct manner and that HVAC systems operate properly through complete sequence of operation including different modes of operations indicated. Show that control loops are stable and operating at set points and respond to changes in set point of 20 percent or more.

 h. Software's ability to communicate with controllers, operator workstations, uploading and downloading of control programs.

 i. Software's ability to edit control programs off-line.

 j. Data entry to show Project-specific customizing capability including parameter changes.

 k. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.

 l. Execution of digital and analog commands in graphic mode.

 m. Spreadsheet and curve plot software and its integration with database.

 n. Online user guide and help functions.

 o. Multitasking by showing different operations occurring simultaneously on four quadrants of split screen.

 p. System speed of response compared to requirements indicated.

 q. For Each Network and Programmable Application Controller:

 1) Memory: Programmed data, parameters, trend and alarm history collected during normal operation is not lost during power failure.

 2) Operator Interface: Ability to connect directly to each type of digital controller with a portable operator workstation and mobile device. Show that maintenance personnel interface tools perform as indicated in manufacturer's technical literature.

 3) Standalone Ability: Demonstrate that controllers provide stable and reliable standalone operation using default values or other method for values normally read over network.
4) Electric Power: Ability to disconnect any controller safely from its power source.
5) Wiring Labels: Match control drawings.
6) Network Communication: Ability to locate a controller's location on network and communication architecture matches Shop Drawings.
7) Nameplates and Tags: Accurate and permanently attached to control panel doors, instrument, actuators and devices.

r. For Each Operator Workstation:

1) I/O points lists agree with naming conventions.
2) Graphics are complete.
3) UPS unit, if applicable, operates.

s. Communications and Interoperability: Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. Use ASHRAE 135 protocol analyzer to help identify devices, view network traffic, and verify interoperability. Requirements must be met even if only one manufacturer's equipment is installed.

1) Data Presentation: On each operator workstation, demonstrate graphic display capabilities.
2) Reading of Any Property: Demonstrate ability to read and display any used readable object property of any device on network.
3) Set Point and Parameter Modifications: Show ability to modify set points and tuning parameters indicated.
4) Peer-to-Peer Data Exchange: Network devices are installed and configured to perform without need for operator intervention to implement Project sequence of operation and to share global data.
5) Alarm and Event Management: Alarms and events are installed and prioritized according to Owner. Demonstrate that time delays and other logic are set up to avoid nuisance tripping. Show that operators with sufficient privileges are permitted.
6) Schedule Lists: Schedules are configured for start and stop, mode change, occupant overrides, and night setback as defined in sequence of operations.
7) Schedule Display and Modification: Ability to display any schedule with start and stop times for calendar year. Show that all calendar entries and schedules are modifiable from any connected operator workstation by an operator with sufficient privilege.
8) Archival Storage of Data: Data archiving is handled by operator workstation and server and local trend archiving and display is accomplished.
9) Modification of Trend Log Object Parameters: Operator with sufficient privilege can change logged data points, sampling rate, and trend duration.
10) Device and Network Management:
 a) Display of network device status.
 b) Display of BACnet Object Information.
 c) Silencing devices transmitting erroneous data.
 d) Time synchronization.
 e) Remote device re-initialization.
 f) Backup and restore network device programming and master database(s).
 g) Configuration management of routers.
3.21 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.22 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months’ full maintenance by DDC system manufacturer’s authorized service representative. Include quarterly preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer’s authorized replacement parts and supplies.

3.23 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two year(s).

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two year(s) from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access system and to upgrade computer equipment if necessary.

3.24 DEMONSTRATION

A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner’s maintenance personnel to adjust, operate, and maintain DDC system.

B. Extent of Training:

 1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.
 2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.
 3. Minimum Training Requirements:

 a. Provide not less than five days of training total.
 b. Stagger training over multiple training classes to accommodate Owner’s requirements. All training shall occur before end of warranty period.
 c. Total days of training shall be broken into not more than two separate training classes.
 d. Each training class shall be not less than one consecutive day(s).

C. Training Schedule:

 1. Schedule training with Owner 20 business days before expected Substantial Completion.
2. Schedule training to provide Owner with at least 10 business days of notice in advance of training.
3. Provide staggered training schedule as requested by Owner.

D. Training Attendee List and Sign-in Sheet:
1. Request from Owner in advance of training a proposed attendee list with name, phone number and e-mail address.
2. Provide a preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
3. Preprinted sign-in sheet shall include training session number, date and time, instructor name, phone number and e-mail address, and brief description of content to be covered during session. List attendees with columns for name, phone number, e-mail address and a column for attendee signature or initials.
4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
5. At end of each training day, send Owner an e-mail with an attachment of scanned copy (PDF) of circulated sign-in sheet for each session.

E. Training Attendee Headcount:
1. Plan in advance of training for two attendees.
2. Make allowance for Owner to add up to one attendee(s) at time of training.
3. Headcount may vary depending on training content covered in session. Attendee access may be restricted to some training content for purposes of maintaining system security.

F. Attendee Training Manuals:
1. Provide each attendee with a color hard copy of all training materials and visual presentations.
2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.

G. Instructor Requirements:
1. One or multiple qualified instructors, as required, to provide training.
2. Instructors shall have not less than five years of providing instructional training on not less than five past projects with similar DDC system scope and complexity to DDC system installed.

H. Organization of Training Sessions:
1. Organize training sessions into logical groupings of technical content and to reflect different levels of operators having access to system. Plan training sessions to accommodate the following three levels of operators:
 a. Daily operators.
 b. Advanced operators.
 c. System managers and administrators.
2. Plan and organize training sessions to group training content to protect DDC system security. Some attendees may be restricted to some training sessions that cover restricted content for purposes of maintaining DDC system security.

I. Training Outline:
 1. Submit training outline for Owner review at least 10 business days before scheduling training.
 2. Outline shall include a detailed agenda for each training day that is broken down into each of four training sessions that day, training objectives for each training session and synopses for each lesson planned.

J. On-Site Training:
 1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power and data connectivity for instructor and each attendee.
 2. Instructor shall provide training materials, projector and other audiovisual equipment used in training.
 3. Provide as much of training located on-site as deemed feasible and practical by Owner.
 4. On-site training shall include regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration and service requirements.
 5. Operator workstation provided with DDC system shall be used in training. If operator workstation is not indicated, provide a temporary workstation to convey training content.

K. Training Content for Daily Operators:
 1. Basic operation of system.
 2. Understanding DDC system architecture and configuration.
 3. Understanding each unique product type installed including performance and service requirements for each.
 4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm and each unique optimization routine.
 5. Operating operator workstations, printers and other peripherals.
 6. Logging on and off system.
 7. Accessing graphics, reports and alarms.
 8. Adjusting and changing set points and time schedules.
 9. Recognizing DDC system malfunctions.
 10. Understanding content of operation and maintenance manuals including control drawings.
 11. Understanding physical location and placement of DDC controllers and I/O hardware.
 12. Accessing data from DDC controllers.
 14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
 15. Running each specified report and log.
 16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.
 17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
 18. Executing digital and analog commands in graphic mode.
 19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
 20. Demonstrating DDC system performance through trend logs and command tracing.
22. Demonstrating spreadsheet and curve plot software, and its integration with database.
23. Demonstrating on-line user guide, and help function and mail facility.
24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:
 a. Operation of HVAC equipment in normal-off, on and failed conditions while observing individual equipment, dampers and valves for correct position under each condition.
 b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
 c. Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles and other modes of operation indicated.
 d. Hardware interlocks and safeties function properly and DDC system performs correct sequence of operation after electrical power interruption and resumption after power is restored.
 e. Reporting of alarm conditions for each alarm, and confirm that alarms are received at assigned locations, including operator workstations.
 f. Each control loop responds to set point adjustment and stabilizes within time period indicated.
 g. Sharing of previously graphed trends of all control loops to demonstrate that each control loop is stable and set points are being maintained.

L. Training Content for Advanced Operators:
 1. Making and changing workstation graphics.
 2. Creating, deleting and modifying alarms including annunciation and routing.
 3. Creating, deleting and modifying point trend logs including graphing and printing on an ad-hoc basis and operator-defined time intervals.
 4. Creating, deleting and modifying reports.
 5. Creating, deleting and modifying points.
 6. Creating, deleting and modifying programming including ability to edit control programs off-line.
 7. Creating, deleting and modifying system graphics and other types of displays.
 8. Adding DDC controllers and other network communication devices such as gateways and routers.
 10. Performing DDC system checkout and diagnostic procedures.
 11. Performing DDC controllers operation and maintenance procedures.
 12. Performing operator workstation operation and maintenance procedures.
 13. Configuring DDC system hardware including controllers, workstations, communication devices and I/O points.
 14. Maintaining, calibrating, troubleshooting, diagnosing and repairing hardware.
 15. Adjusting, calibrating and replacing DDC system components.

M. Training Content for System Managers and Administrators:
 1. DDC system software maintenance and backups.
 2. Uploading, downloading and off-line archiving of all DDC system software and databases.
 3. Interface with Project-specific, third-party operator software.
 4. Understanding password and security procedures.
5. Adding new operators and making modifications to existing operators.
6. Operator password assignments and modification.
7. Operator authority assignment and modification.
8. Workstation data segregation and modification.

N. Video of Training Sessions:

1. Provide a digital video and audio recording of each training session. Create a separate recording file for each session.
2. Stamp each recording file with training session number, session name and date.
3. Provide Owner with two copies of digital files on DVDs or flash drives for later reference and for use in future training.
4. Owner retains right to make additional copies for intended training purposes without having to pay royalties.

END OF SECTION 230923
SECTION 230923.12 - CONTROL DAMPERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following types of control dampers and actuators for DDC systems:

1. Rectangular control dampers.
2. General control-damper actuator requirements.
3. Electric and electronic actuators.

B. Related Requirements:

1. Section 230923 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
2. Section 230993 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 230923.12.

1.3 DEFINITIONS

A. DDC: Direct-digital control.

B. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
4. Installation instructions, including factors affecting performance.

B. Shop Drawings:
1. Include plans, elevations, sections, and mounting details.
2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
4. Include diagrams for air and process signal tubing.
5. Include diagrams for pneumatic signal and main air tubing.

C. Delegated-Design Submittal:
 1. Schedule and design calculations for control dampers and actuators, including the following.
 a. Flow at project design and minimum flow conditions.
 b. Face velocity at project design and minimum airflow conditions.
 c. Pressure drop across damper at project design and minimum airflow conditions.
 d. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 e. Maximum close-off pressure.
 f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 g. Torque required at worst case condition for sizing actuator.
 h. Actuator selection indicating torque provided.

1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Product installation location shown in relationship to room, duct, and equipment.
 2. Size and location of wall access panels for control dampers and actuators installed behind walls.
 3. Size and location of ceiling access panels for control dampers and actuators installed above inaccessible ceilings.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For control dampers to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
C. Delegated Design: Engage a qualified professional, as defined in Section 014000 “Quality Requirements,” to size products where indicated as delegated design.

D. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.

E. Backup Power Source: Systems and equipment served by a backup power source shall have associated control damper actuators served from a backup power source.

F. Environmental Conditions:
 1. Provide electric control-damper actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Electric control-damper actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.

2.2 RECTANGULAR CONTROL DAMPERS

A. General Requirements:
 1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
 2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.
 3. Damper actuator shall be factory installed by damper manufacturer as integral part of damper assembly. Coordinate actuator location and mounting requirements with damper manufacturer.

B. Rectangular Dampers with Aluminum Airfoil Blades:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrow United Industries.
 b. Ruskin Company.
 2. Performance:
 a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1-in. wg differential static pressure.
 b. Pressure Drop: 0.05-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 c. Velocity: Up to 6000 fpm.
 d. Temperature: Minus 40 to plus 185 deg F.
 e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 f. Damper shall have AMCA seal for both air leakage and air performance.
 3. Construction:
 a. Frame:
1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.07 inch thick.
2) Hat-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
3) Width not less than 5 inches.

b. Blades:
 1) Hollow, airfoil, extruded aluminum.
 2) Parallel or opposed blade configuration as required by application.
 3) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.07 inch thick.
 4) Width not to exceed 6 inches.
 5) Length as required by close-off pressure, not to exceed 48 inches.

c. Seals:
 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
 2) Jambs: Stainless steel, compression type.

d. Axles: 0.5-inch-diameter plated or stainless steel, mechanically attached to blades.

e. Bearings:
 1) Molded synthetic or stainless-steel sleeve mounted in frame.
 2) Where blade axles are installed in vertical position, provide thrust bearings.

f. Linkage:
 1) Concealed in frame.
 2) Constructed of aluminum and plated or stainless steel.
 3) Hardware: Stainless steel.

g. Transition:
 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 3) Damper size and sleeve shall be connection size plus 2 inches.
 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 5) Sleeve material shall match adjacent duct.

2.3 GENERAL CONTROL-DAMPER ACTUATORS REQUIREMENTS

A. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.

B. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.
C. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.

D. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.

E. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.

F. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.

G. Provide mounting hardware and linkages for connecting actuator to damper.

H. Select actuators to fail in desired position in the event of a power failure.

I. Actuator Fail Positions: As indicated below:
 1. Exhaust Air: Closed.
 2. Outdoor Air: Close.
 4. Return Air: Open.

2.4 ELECTRIC AND ELECTRONIC ACTUATORS

A. Type: Motor operated, with or without gears, electric and electronic.

B. Voltage:
 1. Voltage selection is delegated to professional designing control system.
 2. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 3. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.

C. Construction:
 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
 2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.

D. Field Adjustment:
 1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
 2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.

E. Two-Position Actuators: Single direction, spring return or reversing type.

F. Modulating Actuators:
1. Capable of stopping at all points across full range, and starting in either direction from any point in range.

2. Control Input Signal:
 a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for 2- to 10-V dc and 4- to 20-mA signals.
 c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to a pulse duration (length) of signal from a dry-contact closure, triac sink or source controller.
 d. Programmable Multi-Function:
 1) Control input, position feedback, and running time shall be factory or field programmable.
 2) Diagnostic feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 3) Service data, including at a minimum, number of hours powered and number of hours in motion.

G. Fail-Safe:
1. Where indicated, provide actuator to fail to an end position.
2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.

H. Integral Overload Protection:
1. Provide against overload throughout the entire operating range in both directions.
2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.

I. Damper Attachment:
1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.

J. Temperature and Humidity:
1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.

K. Enclosure:
1. Suitable for ambient conditions encountered by application.
2. NEMA 250, Type 2 for indoor and protected applications.
3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
4. Provide actuator enclosure with a heater and controller where required by application.

L. Stroke Time:
1. Operate damper from fully closed to fully open within 60 seconds.
2. Operate damper from fully open to fully closed within 60 seconds.
3. Select operating speed to be compatible with equipment and system operation.
4. Actuators operating in smoke control systems comply with governing code and NFPA requirements.

M. Sound:
1. Spring Return: 62 dBA.
2. Non-Spring Return: 45 dBA.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for dampers and instruments installed in duct systems to verify actual locations of connections before installation.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROL-DAMPER APPLICATIONS

A. Control Dampers:

B. Select from damper types indicated in "Control Dampers" Article to achieve performance requirements and characteristics indicated while subjected to full range of system operation encountered.

3.3 INSTALLATION, GENERAL

A. Furnish and install products required to satisfy most stringent requirements indicated.

B. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

C. Seal penetrations made in fire-rated and acoustically rated assemblies.

D. Fastening Hardware:
1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.

2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.

3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

E. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.4 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Furnish and install raceways. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems."

3.5 CONTROL DAMPERS

A. Install smooth transitions, not exceeding 15 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.

B. Clearance:

1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.

2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access.

C. Service Access:

1. Dampers and actuators shall be accessible for visual inspection and service.

2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 233300 "Air Duct Accessories."

D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.

E. Attach actuator(s) to damper drive shaft.

F. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.
3.6 CONNECTIONS
A. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install engraved phenolic nameplate with damper identification on damper and on face of ceiling where damper is concealed above ceiling.

3.8 CHECKOUT PROCEDURES
A. Control-Damper Checkout:
 1. Check installed products before continuity tests, leak tests, and calibration.
 2. Check dampers for proper location and accessibility.
 3. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
 4. Verify that control dampers are installed correctly for flow direction.
 5. Verify that proper blade alignment, either parallel or opposed, has been provided.
 6. Verify that damper frame attachment is properly secured and sealed.
 7. Verify that damper actuator and linkage attachment are secure.
 8. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 9. Verify that damper blade travel is unobstructed.

3.9 ADJUSTMENT, CALIBRATION, AND TESTING:
A. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.

B. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressure.

C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.

D. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 230923.12
SECTION 230923.27 - TEMPERATURE INSTRUMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Air temperature sensors.
 2. Air temperature RTD transmitters.

B. Related Requirements:
 1. Section 230923 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 2. Section 230993 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 230923.27.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 4. Include number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Environmental Conditions:
 1. Instruments shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
a. If instrument alone cannot meet requirement, install instrument in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated and cooled, filtered, and ventilated as required by instrument and application.

2. Instruments and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Instrument's installed location shall dictate following NEMA 250 enclosure requirements:

 a. Outdoors, Protected: Type 2.
 b. Outdoors, Unprotected: Type 4X.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 e. Indoors, Heated and Air Conditioned: Type 1.
 f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 1.
 g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4X.

2.2 AIR TEMPERATURE SENSORS

A. Platinum RTDs: Common Requirements:

 1. 100 or 1000 ohms at zero deg C and a temperature coefficient of 0.00385 ohm/ohm/deg C.
 2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
 3. Performance Characteristics:

 a. Range: Minus 50 to 275 deg F.
 b. Interchangeable Accuracy: At 32 deg F within 0.5 deg F.
 c. Repeatability: Within 0.5 deg F.

 4. Transmitter Requirements:

 a. Transmitter required for each 100-ohm RTD.
 b. Transmitter optional for 1000-ohm RTD, contingent on compliance with end-to-end control accuracy.

B. Platinum RTD, Single-Point Air Temperature Duct Sensors:

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Minco.
 b. Siemens.

 2. 100 or 1000 ohms.
 3. Temperature Range: Minus 50 to 275 deg F
C. Platinum RTD, Air Temperature Averaging Sensors:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Minco.
 b. Siemens.

2. 100 or 1000 ohms.
3. Temperature Range: Minus 50 to 275 deg F
4. Multiple sensors to provide average temperature across entire length of sensor.
5. Rigid probe of aluminum, brass, copper, or stainless-steel sheath.
6. Flexible probe of aluminum, brass, copper, or stainless-steel sheath and formable to a 4-inch radius.
7. Length: As required by application to cover entire cross section of air tunnel.
8. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
9. Gasket for attachment to duct or equipment to seal penetration airtight.
10. Conduit Connection: 1/2-inch

D. Platinum RTD Outdoor Air Temperature Sensors:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Minco.
 b. Siemens.

2. 100 or 1000 ohms.
3. Temperature Range: Minus 50 to 275 deg F
6. Enclosure: NEMA 250, Type 4 or 4X junction box or combination conduit and outlet box with removable cover and gasket.
7. Conduit Connection: 1/2-inch trade size.

E. Platinum RTD Space Air Temperature Sensors:

1. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
 a. Minco.
 b. Siemens.

2. 100 or 1000 ohms.
3. Temperature Range: Minus 50 to 212 deg F
4. Sensor assembly shall include a temperature sensing element mounted under a bright white, non-yellowing, plastic cover.
5. Provide a mounting plate that is compatible with the surface shape that it is mounted to and electrical box used.
6. Concealed wiring connection.

F. Thermal Resistors (Thermistors): Common Requirements:
1. 10,000 ohms at 25 deg C and a temperature coefficient of 23.5 ohms/ohm/deg C.
2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
3. Performance Characteristics:
 a. Range: Minus 50 to 275 deg F.
 b. Interchangeable Accuracy: At 77 deg F within 0.5 deg F.
 c. Repeatability: Within 0.5 deg F.
 d. Drift: Within 0.5 deg F over 10 years.
 e. Self-Heating: Negligible.
4. Transmitter optional, contingent on compliance with end-to-end control accuracy.

G. Thermistor, Single-Point Duct Air Temperature Sensors:
1. Temperature Range: Minus 50 to 275 deg F
2. Probe: Single-point sensor with a stainless-steel sheath.
3. Length: As required by application to achieve tip at midpoint of air tunnel, up to 18 inches.
4. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
5. Gasket for attachment to duct or equipment to seal penetration airtight.

H. Thermistor Averaging Air Temperature Sensors:
1. Temperature Range: Minus 50 to 275 deg F
2. Multiple sensors to provide average temperature across entire length of sensor.
3. Rigid probe of aluminum, brass, copper, or stainless-steel sheath.
4. Flexible probe of aluminum, brass, copper, or stainless-steel sheath and formable to a 4-inch radius.
5. Length: As required by application to cover entire cross section of air tunnel.
6. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
7. Gasket for attachment to duct or equipment to seal penetration airtight.
8. Conduit Connection: 1/2-inch trade size.

I. Thermistor Outdoor Air Temperature Sensors:
1. Temperature Range: Minus 50 to 275 deg F
2. Probe: Single-point sensor with a stainless-steel sheath.
4. Enclosure: NEMA 250, Type 4 or 4X junction box or combination conduit and outlet box with removable cover and gasket.
5. Conduit Connection: 1/2-inch trade size.

J. Thermistor Space Air Temperature Sensors:
1. Temperature Range: Minus 50 to 212 deg F
2. Sensor assembly shall include a temperature sensing element mounted under a bright white, non-yellowing, plastic cover.
3. Provide a mounting plate that is compatible with the surface shape that it is mounted to and electrical box used.

K. Space Air Temperature Sensors for Use with DDC Controllers Controlling Terminal Units:

1. 100- or 1000-ohm platinum RTD or thermistor.
2. Thermistor:
 a. Pre-aged, burned in, and coated with glass; inserted in a metal sleeve; and entire unit encased in epoxy.
 b. Thermistor drift shall be less than plus or minus 0.5 deg F over 10 years.
3. Temperature Transmitter Requirements:
 a. Mating transmitter required with each 100-ohm RTD.
 b. Mating transmitters optional for 1000-ohm RTD and thermistor, contingent on compliance with end-to-end control accuracy.
4. Provide digital display of sensed temperature.
5. Provide sensor with local control.
 a. Local override to turn HVAC on.
 b. Local adjustment of temperature set point.
 c. Both features shall be capable of manual override through control system operator.

2.3 AIR TEMPERATURE RTD TRANSMITTERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Minco.
2. Siemens.

B. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.

C. House electronics in NEMA 250 enclosure.

1. Duct: Type 1.
2. Outdoor: Type 4X.
3. Space: Type 1.

D. Conduit Connection: 1/2-inch

E. Functional Characteristics:

1. Input:
 a. 100-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, two-wire sensors.
b. 1000-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, two-wire sensors.

2. Span (Adjustable):
 a. Space: 40 to 90 deg F.
 b. Supply Air Cooling and Heating: 40 to 120 deg F.
 c. Supply Air Cooling Only: 40 to 90 deg F.
 d. Supply Air Heating Only: 40 to 120 deg F.
 e. Exhaust Air: 50 to 100 deg F.
 f. Return Air: 50 to 100 deg F.
 g. Mixed Air: Minus 40 to 140 deg F.
 h. Outdoor: Minus 40 to 140 deg F.

3. Output: 4- to 20-mA dc, linear with temperature; RFI insensitive; minimum drive load of 600 ohms at 24-V dc.

4. Zero and span field adjustments, plus or minus 5 percent of span. Minimum span of 50 deg F.

5. Match sensor with temperature transmitter and factory calibrate together.

F. Performance Characteristics:
 1. Calibration Accuracy: Within 0.1 percent of the span.
 2. Stability: Within 0.2 percent of the span for at least 6 months.
 3. Combined Accuracy: Within 0.5 percent.

PART 3 - EXECUTION

3.1 TEMPERATURE INSTRUMENT APPLICATIONS

A. Air Temperature Sensors:
 1. Duct: Thermistor, 100-ohm platinum RTD or 1000-ohm platinum RTD.
 2. Outdoor, Thermistor, 100-ohm platinum RTD or 1000-ohm platinum RTD.
 3. Space, Thermistor, 100-ohm platinum RTD or 1000-ohm platinum RTD.

3.2 INSTALLATION, GENERAL

A. Install products level, plumb, parallel, and perpendicular with building construction.

B. Properly support instruments, tubing, piping, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.

C. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
D. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

E. Corrosive Environments:
 1. Use products that are suitable for environment to which they are subjected.
 2. If possible, avoid or limit use of materials in corrosive environments.
 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 4. Where instruments are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Furnish and install raceways. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems."

3.4 TEMPERATURE INSTRUMENT INSTALLATIONS

A. Mounting Location:
 1. Roughing In:
 a. Outline instrument mounting locations before setting instruments and routing cable, wiring, tubing, and conduit to final location.
 b. Provide independent inspection to confirm that proposed mounting locations comply with requirements indicated and approved submittals.
 1) Indicate dimensioned locations with mounting height for all surface-mounted products on Shop Drawings.
 2) Do not begin installation without submittal approval of mounting location.
 c. Complete installation rough-in only after confirmation by independent inspection is complete and approval of location is documented for review by Owner and Architect on request.
 2. Install switches and transmitters for air and liquid temperature associated with individual air-handling units and associated connected ductwork and piping near air-handling units co-located in air-handling unit system control panel to provide service personnel a single and convenient location for inspection and service.
3. Install liquid and steam temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
4. Install air temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
5. Mount switches and transmitters on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer's mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.

B. Special Mounting Requirements:

1. Protect products installed outdoors from solar radiation, building and wind effect with stand-offs and shields constructed of Type 316 stainless.
2. Temperature instruments having performance impacted by temperature of mounting substrate shall be isolated with an insulating barrier located between instrument and substrate to eliminate effect. Where instruments requiring insulation are located in finished space, conceal insulating barrier in a cover matching the instrument cover.

C. Mounting Height:

1. Mount temperature instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
2. Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code or state and Federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 a. Make every effort to mount at 60 inches.

D. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct static-pressure class and leakage and seal classes indicated using neoprene gaskets or grommets.

E. Space Temperature Sensor Installation:

1. Conceal assembly in an electrical box of sufficient size to house sensor and transmitter, if provided.
2. Install electrical box with a faceplate to match sensor cover if sensor cover does not completely cover electrical box.
3. In finished areas, recess electrical box within wall.
4. In unfinished areas, electrical box may be surface mounted if electrical light switches are surface mounted. Use a cast-aluminum electric box for surface-mounted installations.
5. Align electrical box with other electrical devices such as visual alarms and light switches located in the vicinity to provide a neat and well-thought-out arrangement. Where possible, align in both horizontal and vertical axis.

F. Outdoor Air Temperature Sensor Installation:

1. Mount sensor in a discrete location facing north.
2. Protect installed sensor from solar radiation and other influences that could impact performance.
3. If required to have a transmitter, mount transmitter remote from sensor in an accessible and serviceable location indoors.
G. Single-Point Duct Temperature Sensor Installation:
 1. Install single-point-type, duct-mounted, supply- and return-air temperature sensors. Install sensors in ducts with sensitive portion of the element installed in center of duct cross section and located to sense near average temperature. Do not exceed 24 inches in sensor length.
 2. Install return-air sensor in location that senses return-air temperature without influence from outdoor or mixed air.
 3. Rigidly support sensor to duct and seal penetration airtight.
 4. If required to have transmitter, mount transmitter remote from sensor at accessible and serviceable location.

H. Averaging Duct Temperature Sensor Installation:
 1. Install averaging-type air temperature sensor for temperature sensors located within air-handling units, similar equipment, and large ducts with air tunnel cross-sectional area of 20 sq. ft. and larger.
 2. Install sensor length to maintain coverage over entire cross-sectional area. Install multiple sensors where required to maintain the minimum coverage.
 3. Fasten and support sensor with manufacturer-furnished clips to keep sensor taut throughout entire length.
 4. If required to have transmitter, mount transmitter in an accessible and serviceable location.

I. Low-Limit Air Temperature Switch Installation:
 1. Install multiple low-limit switches to maintain coverage over entire cross-sectional area of air tunnel.
 2. Fasten and support sensing element with manufacturer-furnished clips to keep element taut throughout entire length.
 3. Mount switches outside of airstream at a location and mounting height to provide easy access for switch set-point adjustment and manual reset.
 4. Install on entering side of cooling coil unless otherwise indicated on Drawings.

3.5 IDENTIFICATION
 A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 B. Install engraved phenolic nameplate with instrument identification and on face of ceiling directly below instruments concealed above ceilings.

3.6 CLEANING
 A. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from exposed interior and exterior surfaces.
 B. Wash and shine glazing.
 C. Polish glossy surfaces to a clean shine.
3.7 CHECK-OUT PROCEDURES
 A. Check installed products before continuity tests, leak tests, and calibration.
 B. Check temperature instruments for proper location and accessibility.
 C. Verify sensing element type and proper material.
 D. Verify location and length.
 E. Verify that wiring is correct and secure.

3.8 FIELD QUALITY CONTROL
 A. Perform the following tests and inspections:
 1. Perform according to manufacturer's written instruction.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 B. Prepare test and inspection reports.

3.9 ADJUSTING
 A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.10 DEMONSTRATION
 A. Train Owner's maintenance personnel to adjust, operate, and maintain temperature instruments.

END OF SECTION 230923.27
SECTION 230993.11 - SEQUENCE OF OPERATIONS FOR HVAC DDC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes control sequences for DDC for HVAC systems, subsystems, and equipment.
B. Related Requirements:
 1. Section 230923 "DDC Systems for HVAC" for control equipment.

1.3 DEFINITIONS
A. Analog Output: Proportional output signal (zero- to 10-V dc, 4 to 20 mA).
B. Binary Output: On/off output signal or contact closure.
C. DDC: Direct digital control.
D. Digital Output: Data output that must be interpreted digitally.

1.4 ACTION SUBMITTALS
A. Product Data:
 1. An instrumentation list for each controlled system. Label each element of the controlled system in table format. Show, in the table element name, type of device, manufacturer, model number, and control device product data sheet number.
 2. A complete description of the operation of the control system, including sequences of operation. Include and reference a schematic diagram of the controlled system.
B. Shop Drawings:
 1. Riser diagrams showing control network layout, communication protocol, and wire types.
 2. Schematic diagram of each controlled system. Include all control points labeled with point names shown or listed. Show the location of control elements in the system.
 3. Wiring diagram for each controlled system. Show all control elements labels. Where a control element is the same as that shown on the control system schematic, label with the same name. Label all terminals.
1.5 AIR HANDLING UNIT (AHU-1) CONTROL SEQUENCES

A. AHU System Enable: Enable the associated air handling unit system subject to Hand/Off/Auto selector switch BAS selector switch.

1. Hand Position: System shall run continuously
2. Off Position: System is disabled continuously.
3. Auto Position: System shall run continuously, 24 hours per day, 365 days per year.

B. Start and Stop Supply Fan:

1. Enable: Freeze Protection:
 a. Input Device: Duct-mounted averaging element thermostat, located before supply fan.
 b. Output Device: Hard wired through VFD; DDC system alarm.
 c. Action: Allow start if duct temperature is above 37 deg F; signal alarm if fans fails to start as commanded.

2. Enable: Smoke Control:
 a. Input Device: Duct-mounted smoke detector, located in exhaust and supply air.
 b. Output Device: Hard wired through VFD; DDC system alarm.
 c. Action: Allow start if duct is free of products of combustion.

3. Initiate: Occupied Time Schedule:
 a. Input Device: DDC system time schedule.
 b. Output Device: Binary output to VFD.
 c. Action: Energize fan(s).

4. Initiate: Unoccupied Time Schedule:
 a. Fan is always in occupied mode unless overridden from the BAS workstation.

C. Supply Fan(s) Variable-Volume Control:

1. Occupied Time Schedule:
 a. Input Device: DDC system time schedule.
 c. Action: Enable control.

2. Volume Control:
 a. Input Device: Static-pressure transmitter sensing supply-duct static pressure referenced to conditioned-space static pressure.
 b. Output Device: DDC system analog output to VFD speed controller. Action: Maintain supply-duct static pressure setpoint. Reset shall not be used on this supply fan since the DDC system is not directly controlling individual air valves.

3. High Pressure:
a. Input Device: Differential pressure switch sensing supply-duct static pressure referenced to static pressure outside the duct.
b. Output Device: Hardwire to VFD.
c. Action: Stop fan and signal alarm when static pressure rises above excessive-static-pressure set point.

4. Display:
 a. Supply-fan-discharge static-pressure indication.
 b. Supply-fan-discharge static-pressure set point.
 c. Supply-fan speed.

D. Direct Expansion Heating/Cooling Coil:
 1. Occupied Time Schedule:
 a. Input Device: DDC system time schedule.
 c. Action: Enable control.
 2. Discharge-Air Temperature:
 c. Action: Maintain supply-air temperature set point of 68 deg F.
 3. Unoccupied Time Schedule:
 a. Input Device: DDC system time schedule.
 c. Action: Disable control.
 4. Display:
 a. Fan-discharge air-temperature indication.
 b. Fan-discharge air-temperature set point.
 c. Cooling/heating-coil air-temperature indication.
 d. Cooling/heating-coil air-temperature set point.

E. Heat Pipe: During occupied periods (always), when supply fan is running, enable the unit return fan to draw outside air through the heat pipe. See return air sequence above for start/stop and variable air volume requirements.

F. Filters: During occupied periods, when fan is running, monitor differential air-pressure transmitters for pre/final filter and the heat pipe filters.
 1. Occupied Time Schedule:
 a. Input Device: DDC system time schedule.
 b. Output Device: DDC system output.
 c. Action: Enable control.
 2. Differential Pressure:
b. Output Device: DDC system alarm.
c. Action: Signal alarm on low- and high-pressure conditions.

3. Display:
 a. Filter air-pressure-drop indication.
 b. Filter low-air-pressure set point.
 c. Filter high-air-pressure set point.

G. Coordination of Air-Handling Unit Sequences: Ensure that preheat, mixed-air, heating-coil, and cooling-coil controls have common inputs and do not overlap in function.

H. Operator Station Display: Indicate the following on operator workstation display terminal:
 1. DDC system graphic.
 2. DDC system on-off indication.
 3. DDC system occupied/unoccupied mode.
 5. Supply-fan on-off indication.
 7. Supply-fan-discharge static-pressure set point.
 11. Return-fan speed.
 15. Mixed-air-temperature set point.
 17. Filter air-pressure-drop indication.
 18. Filter low-air-pressure set point.
 19. Filter high-air-pressure set point.
 22. Cooling-coil control-valve position.
 23. All other points listed on drawing DDC points schedule.

I. Air Handling Unit System Safety Control
 1. Supply Fan Failure: Activate BAS workstation alarm if the supply fan is commanded “ON” and the fan status is “OFF” after a 30 second delay period. Stop the fan.
 2. Return Fan Failure: Activate BAS workstation alarm if the return fan is commanded “ON” and the fan status is “OFF” after a 30 second delay period. Stop the fan.
 3. Smoke Detector Alarm: Activate BAS workstation alarm if the return air or supply air duct detector is in alarm. Stop supply and return fan. Modulate mixed air dampers so that outside air dampers are closed.
 4. Freeze Stat Alarm: Activate BAS workstation alarm in freeze stat alarm is activated. Stop supply and return fans. Open chilled water and pre-heat valves to full open.
 5. High Discharge Temperature Alarm: Activate BAS workstation alarm if supply air temperature exceeds 70°F (adjustable) for more than 5 minutes.
 6. Low Discharge Temperature Alarm: Activate BAS workstation alarm is the supply air falls below 45°F for more than 5 minutes (adjustable).
7. High Duct Static Pressure (Supply and Return): Activate BAS workstation alarm is the upon high supply or return air duct static pressure.

1.6 COMPUTER ROOM AIR CONDITIONING UNIT CONTROL SEQUENCES (MDF)

A. Computer Room Unit System Enable: Enable the associated unit system subject to Hand/Off/Auto selector switch BAS selector switch.

1. Hand Position: System shall run continuously
2. Off Position: System is disabled continuously.
3. Auto Position: System shall run continuously, 24 hours per day, 365 days per year.

B. Start and Stop System:

1. Initiate: Occupied Time Schedule:
 a. Input Device: DDC system time schedule.
 b. Output Device: Binary output to VFD.
 c. Action: Energize fan(s).

2. Initiate: Unoccupied Time Schedule:
 a. System is always in occupied mode unless overridden from the BAS workstation.

C. Filters: During occupied (always) periods, when fan is running, monitor differential air-pressure transmitters for filters.

1. Occupied Time Schedule:
 a. Input Device: DDC system time schedule.
 b. Output Device: DDC system output.
 c. Action: Enable control.

2. Differential Pressure:
 b. Output Device: DDC system alarm.
 c. Action: Signal alarm on low- and high-pressure conditions.

3. Display:
 a. Filter air-pressure-drop indication.
 b. Filter low-air-pressure set point.
 c. Filter high-air-pressure set point.

D. Room Temperature Control: The DDC system shall start and stop the computer room units, but temperature control shall be accomplished by internal unit controls. DDC system shall monitor temperature only.

E. Display:
1. Room temperature.
2. AC unit ON or OFF.
3. Indoor and Outdoor unit kilowatt-hour power usage.
F. Computer Unit System Safety Control

1. Supply Fan Failure: Activate BAS workstation alarm if the supply fan is commanded “ON” and the fan status is “OFF” after a 30 second delay period. Stop the fan.
2. High Room Temperature Alarm: Activate BAS workstation alarm if room air temperature exceeds 80°F (adjustable) for more than 2 minutes.

1.7 ELEVATOR EQUIPMENT AIR CONDITIONING UNIT CONTROL SEQUENCES

A. Room Temperature Monitoring: Monitor room temperature in elevator equipment room.

B. Display:
 1. Room temperature.

C. System Safety Control
 1. High Room Temperature Alarm: Activate BAS workstation alarm if room air temperature exceeds 80°F (adjustable) for more than 2 minutes.

1.8 EXHAUST FAN (LEF-1) CONTROL SEQUENCES

A. Exhaust Fan 1 System Enable: Enable the associated exhaust fan system subject to Hand/Off/Auto selector switch BAS selector switch.

 1. Hand Position: System shall run continuously
 2. Off Position: System is disabled continuously.
 3. Auto Position: System shall run continuously, 24 hours per day, 365 days per year.

B. Start and Stop Exhaust Fan:

 1. Enable: Smoke Control:

 a. Input Device: Duct-mounted smoke detector, located in outside and supply air of AHU-1.
 b. Output Device: Output to variable frequency drive and isolation damper.
 c. Action: Open isolation damper and allow start via VFC if duct is free of products of combustion.

 2. Initiate: Occupied Time Schedule:

 a. Input Device: DDC system time schedule.
 b. Output Device: Binary output to motor starter.
 c. Action: Energize fan(s).

 3. Initiate: Unoccupied Time Schedule:

 a. Fan is always in occupied mode unless overridden from the BAS workstation.

C. Exhaust Fan Variable-Volume Control:

 1. Occupied Time Schedule:

 a. Input Device: DDC system time schedule.
c. Action: Enable control.

2. Volume Control: LEF-1 shall utilize a variable frequency drive, but shall operate at 60Hz during normal operation for maximum exhaust air discharge velocity.
 a. Input Device: Static-pressure transmitter sensing supply-duct static pressure referenced to conditioned-space static pressure.

3. Display:
 a. Exhaust-fan static-pressure indication.
 b. Exhaust-fan-discharge static-pressure set point.
 c. Exhaust air temperature upstream of heat pipe.
 d. Exhaust air temperature downstream of heat pipe.

D. Exhaust Fan Safety Control

1. Fan Failure: Activate BAS workstation alarm if the supply fan is commanded “ON” and the fan status is “OFF” after a 30 second delay period. Stop the fan.

E. Exhaust Fan (LEF-1) Fire/Smoke Alarm Operation.

1. In the event of a shutdown of AHU-1 during a smoke alarm, LEF-1 should reduce speed via variable frequency drive to a minimum setting to provide a minimum level of ventilation for the laboratories and chemical storage room. This shall be done to keep minimum ventilation and also allow door operation in the labs per code. Minimum speed setting should be set by the balancing contractor.

1.9 LABORATORY AIR OPERATING SEQUENCE

A. The DDC system shall interface with the laboratory airflow control system to provide the following sequences. The laboratory airflow control system shall control airflows to maintain room negative static pressure.

B. Supply Air Valves:

1. Occupancy:
 b. Output Device: DDC system binary output.
 c. Action: Report occupancy and enable occupied temperature and flow set points.

 1) Heating Occupied Temperature: 68 deg F.
 2) Heating Unoccupied (room unoccupied but building in occupied mode) Temperature: 65 deg F
 3) Heating Night Setback: 55 deg F.
 4) Cooling Occupied Temperature: 75 deg F.
5) Cooling Unoccupied (room unoccupied but building in occupied mode)
 Temperature: 80 deg F
6) Cooling Night Setback: 85 deg F.
7) Occupied Airflow: Constant air flow per plans.
8) Unoccupied Airflow: 4 ACH.

2. Room Temperature:
 c. Action: Modulate air valve and heating valve to maintain temperature.
 1) Sequence air valve from full open to minimum position, then heating valve from closed to fully open.

3. Laboratory Pressure Control:
 a. Control shall be determined by laboratory controls to maintain lab negative pressure.

4. Laboratory Exhaust Fan Shutdown:
 a. Provide interface with laboratory and science prep fume hoods so that in the event that LEF-1 is OFF that fume hood monitors will not enable the audible alarm. The fume hoods specified and the existing relocated hoods have this option as part of the fume hood monitor. If LEF-1 is ON audible alarm shall be able to operate.

5. Display:
 a. Room/area served.
 b. Room occupied/unoccupied.
 c. Room temperature indication.
 d. Room temperature set point.
 e. Room temperature set point, occupied.
 f. Room temperature set point, unoccupied.
 g. Supply air valve discharge temperature (downstream of heating coil).
 h. Control-valve position as percent open.
 i. System in purge sequence.

1.10 VENTILATION SEQUENCES

A. Exhaust Fans (all exhaust fans except for LEF-1): DDC system cycles fan based on occupied/unoccupied schedule.

B. Motorized damper shall open when fan is on and close when fan is off.

1.11 VARIABLE REFRIGERANT FLOW HEAT PUMP / FAN COILS

A. Variable refrigerant flow fan coil unit and heat pump shall operate via integrated controls to maintain the occupied setpoint temperature. The fan coil units shall monitor room air temperature to maintain the setpoint. The occupant shall be able to adjust the room temperature between 68 degrees F and 74 degrees F (adjustable from the DDC system).

B. FC-5-OSA. Provide controls to enable unit of the occupied schedule. Unit shall operate to maintain the supply air temperature of 68 degrees to 72 degrees F. Provide supply air temperature reset based on building loads.
C. Fan Coils

1. Occupancy:

 b. Output Device: DDC system binary output.
 c. Action: Report occupancy and enable occupied temperature and flow set points.

 1) Heating Occupied Temperature: 68 deg F.
 2) Heating Unoccupied (room unoccupied but building in occupied mode) Temperature: 65 deg F.
 3) Heating Night Setback: 55 deg F.
 4) Cooling Occupied Temperature: 75 deg F.
 5) Cooling Unoccupied (room unoccupied but building in occupied mode) Temperature: 80 deg F.
 6) Cooling Night Setback: 85 deg F.
 7) Occupied Airflow: Constant air flow per plans.
 8) Unoccupied Airflow: 0.

D. Heating/Cooling Switchover

 1. Determined by VRF manufacturer.

E. The DDC system shall be able to monitor and or control the following fan coil/heat pump points via BACnet through the VRF system controls. These points shall be graphically displayed and the workstation.

 1. Fan coil status.
 2. Room temperature.
 3. Room temperature setpoint.
 4. Fan coil enable/disable.
 5. Associated heat pump status.
 6. Associated heat pump enable/disable.
 7. Carbon dioxide (where applicable see plans).

1.12 OPTIMUM START CONTROLS

A. Provide optimum start controls for fan coils and air handling unit systems so that building temperatures are just met at the time of building occupancy.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230993.11
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Refrigerant pipes and fittings.
 2. Refrigerant piping valves and specialties.
 3. Refrigerants.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of valve, refrigerant piping, and refrigerant piping specialty.
B. Shop Drawings:
 1. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
 2. Show interface and spatial relationships between piping and equipment.
 3. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.3 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE
B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Line Test Pressure for Refrigerant R-410A:

2.2 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type K or L.
B. Wrought-Copper Fittings: ASME B16.22.
C. Wrought-Copper Unions: ASME B16.22.
D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
E. Brazing Filler Metals: AWS A5.8/A5.8M.
F. Flexible Connectors:
 2. End Connections: Socket ends.
 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 5. Maximum Operating Temperature: 250 deg F.

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Danfoss Inc.
 b. Heldon Products; Henry Technologies.
 c. Parker Hannifin Corp.
 d. Paul Mueller Company.
 2. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 4. Operator: Rising stem and hand wheel.
 6. End Connections: Socket, union, or flanged.
 8. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Danfoss Inc.
b. Heldon Products; Henry Technologies.
c. Parker Hannifin Corp.
d. Paul Mueller Company.

2. Body and Bonnet: Forged brass or cast bronze.
3. Packing: Molded stem, back seating, and replaceable under pressure.
4. Operator: Rising stem.
6. Seal Cap: Forged-brass or valox hex cap.
7. End Connections: Socket, union, threaded, or flanged.
9. Maximum Operating Temperature: 275 deg F.

C. Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; Conbraco Industries, Inc.
 b. Danfoss Inc.
 c. Heldon Products; Henry Technologies.
 d. Parker Hannifin Corp.
 e. Paul Mueller Company.

2. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
3. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
7. End Connections: Socket, union, threaded, or flanged.
8. Maximum Opening Pressure: 0.50 psig.
10. Maximum Operating Temperature: 275 deg F.

D. Safety Relief Valves: Comply with 2010 ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Danfoss Inc.
 b. Heldon Products; Henry Technologies.
 c. Parker Hannifin Corp.
 d. Paul Mueller Company.

2. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
5. End Connections: Threaded.
7. Maximum Operating Temperature: 240 deg F.

E. Straight-Type Strainers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Danfoss Inc.
 b. Heldon Products; Henry Technologies.
 c. Parker Hannifin Corp.

2. Body: Welded steel with corrosion-resistant coating.

3. Screen: 100-mesh stainless steel.

4. End Connections: Socket or flare.

6. Maximum Operating Temperature: 275 deg F.

2.4 REFRIGERANTS

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arkema Inc.
 b. DuPont Fluorochemicals Div.
 c. Genetron Refrigerants; Honeywell International Inc.
 d. Mexichem Fluor Inc.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type L, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

C. Safety-Relief-Valve Discharge Piping: Copper, Type L, annealed- or drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.
E. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

F. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

G. Install safety relief valves where required by 2010 ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

H. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

I. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for the device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

J. Install filter dryers in liquid line between compressor and thermostatic expansion valve.

K. Install receivers sized to accommodate pump-down charge.

L. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.
I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Section 230923 "Direct Digital Control (DDC) System for HVAC" and Section 230993.11 "Sequence of Operations for HVAC DDC" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps and double risers to entrain oil in vertical runs.
4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

R. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
C. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod, 3/8 inch.
 6. NPS 2: Maximum span, 96 inches; minimum rod, 3/8 inch.
 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod, 3/8 inch.
 8. NPS 3: Maximum span, 10 feet; minimum rod, 3/8 inch.
 9. NPS 4: Maximum span, 12 feet; minimum rod, 1/2 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.

d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

B. Prepare test and inspection reports.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:

1. Open shutoff valves in condenser water circuit.
2. Verify that compressor oil level is correct.
3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Single-wall rectangular ducts and fittings.
2. Single-wall round ducts and fittings.
4. Duct liner.
5. Sealants and gaskets.
6. Hangers and supports.
7. Seismic-restraint devices.

B. Related Sections:

1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top and bottom of ducts.
5. Dimensions of all duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing per 603.9 of the IMC.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations for selecting hangers and supports and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: A single set of plans or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.

B. Welding certificates.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7. Seismically brace duct hangers and supports in accordance with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

D. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.
2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.

B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
2. For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-24a, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.

C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.

2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ductmate Industries, Inc.
 b. McGill AirFlow LLC.
 c. SEMCO LLC.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in "Duct Schedule" Article.

E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

F. Tie Rods: Galvanized steel, 1/4-inch-minimum diameter for lengths 36 inches or less; 3/8-inch-minimum diameter for lengths longer than 36 inches.

2.5 DUCT LINER

A. Fiberglass-Free Duct Liner: Made from partially recycled cotton or polyester products and containing no fiberglass. Airstream surface overlaid with fire-resistant facing to prevent surface erosion by airstream, complying with NFPA 90A or NFPA 90B. Treat natural-fiber products with antimicrobial coating.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acoustical Surfaces, Inc.
 b. Bonded Logic, Inc.
 c. Ductmate Industries, Inc.

2. Maximum Thermal Conductivity: 0.24 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature when tested in accordance with ASTM C 518.

3. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with ASTM E 64; certified by an NRTL.

4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel; with beveled edge sized as required to hold insulation securely in place, but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.

2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.

3. Butt transverse joints without gaps, and coat joint with adhesive.

4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.

5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.

6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm or greater.

7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.

8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Hilti, Inc.
 3. Mason Industries, Inc.
 4. Unistrut; Part of Atkore International.

B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of galvanized-steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested in accordance with ASTM E 488/E 488M.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.

B. Install ducts in accordance with SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible” unless otherwise indicated.

C. Install ducts in maximum practical lengths with fewest possible joints.

D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

J. Install fire, combination fire/smoke, and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.

K. Install heating coils, cooling coils, air filters, dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.
L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation.

M. Elbows: Use long-radius elbows wherever they fit.
 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 2. Fabricate 90-degree round elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.

N. Branch Connections: Use lateral or conical branch connections.

3.2 INSTALLATION OF EXPOSED DUCTWORK
A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR LABORATORY EXHAUST AND FUME HOOD EXHAUST DUCTS
A. Install ducts in accordance with NFPA 45, "Fire Protection for Laboratories Using Chemicals."
B. Install exhaust ducts without dips and traps that may hold water. Slope ducts a minimum of 2 percent back to hood or inlet. Where indicated on Drawings, install trapped drain piping.
C. Connect duct to fan, fume hood, and other equipment indicated on Drawings.

3.4 DUCT SEALING
A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
B. Seal ducts at a minimum to the following seal classes in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 2. Outdoor, Supply-Air Ducts: Seal Class A.
 3. Outdoor, Exhaust Ducts: Seal Class C.
 4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with ASCE/SEI 7.
 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 2. Brace a change of direction longer than 12 feet.
B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. Drilling for and Setting Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.7 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.8 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness in accordance with "Description of Method 3 - NADCA Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

C. Duct system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.** DUCT CLEANING**

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use duct cleaning methodology as indicated in NADCA ACR.

C. Use service openings for entry and inspection.
 1. Provide openings with access panels appropriate for duct static-pressure and leakage class at dampers, coils, and any other locations where required for inspection and cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

D. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

E. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

F. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.

3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.

4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.

5. Clean coils and coil drain pans in accordance with NADCA ACR. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.

6. Provide drainage and cleanup for wash-down procedures.

7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents in accordance with manufacturer's written instructions after removal of surface deposits and debris.

3.11 STARTUP

A. Air Balance: Comply with requirements in Section 230593 “Testing, Adjusting, and Balancing for HVAC.”

3.12 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

1. Fabricate all ducts to achieve SMACNA pressure class, seal class, and leakage class as indicated below.

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.

2. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 2.
 d. SMACNA Leakage Class for Round and Flat Oval: 2.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 2.
 d. SMACNA Leakage Class for Round and Flat Oval: 2.

2. Ducts Connected to Air-Handling Units:
a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: A.
c. SMACNA Leakage Class for Rectangular: 2.
d. SMACNA Leakage Class for Round and Flat Oval: 2.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 1-inch wg.
 b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 2.
 d. SMACNA Leakage Class for Round and Flat Oval: 2.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 2.
 d. SMACNA Leakage Class for Round and Flat Oval: 2.

3. Ducts Connected to Fans Exhausting Fume Hood, Laboratory, and Process (ASHRAE 62.1, Class 3 and Class 4) Air:
 a. Type 316, stainless-steel sheet.
 1) Exposed to View: No. 4 finish.
 2) Concealed: No. 2B finish.
 b. Pressure Class: Positive or negative 4-inch wg.
 c. Welded seams and joints.
 d. Airtight/watertight.

E. Intermediate Reinforcement:

2. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.

F. Liner: Install duct liner downstream and upstream of all fan coil units and air handling units. Liner shall extend a minimum of 10 feet on the supply and 10 feet on the return. Ductwork dimensions shown on the drawings are to the inside of the liner.

1. Supply-Air Ducts: Natural fiber, 1-1/2 inches thick.
2. Return-Air Ducts: Natural fiber, 1-1/2 inches thick.
3. Exhaust-Air Ducts: Natural fiber, 1 inch thick.

G. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible,” Figure 4-2, “Rectangular Elbows.”
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanex and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."

 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.

 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

H. Branch Configuration:

 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Conical spin in.

 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Turning vanes.
 3. Flexible connectors.
 4. Duct accessory hardware.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.3 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. McGill AirFlow LLC.
 b. Nailor Industries Inc.
 c. Ruskin Company.

2. Standard leakage rating, with linkage outside airstream.

3. Suitable for horizontal or vertical applications.

4. Frames:
 a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:

1. Size: 0.5-inch diameter.

2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.

3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:

2. Include center hole to suit damper operating-rod size.

3. Include elevated platform for insulated duct mounting.
2.4 TURNING VANES

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. METALAIRE, Inc.
4. SEMCO LLC.
5. Ward Industries; a brand of Hart & Cooley, Inc.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanef Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.

2.5 DUCT-MOUNTED ACCESS DOORS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. Cesco Products; a division of MESTEK, Inc.
2. Ductmate Industries, Inc.
4. McGill AirFlow LLC.
5. Nailor Industries Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
3. Number of Hinges and Locks:
a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
b. Access Doors up to 18 Inches Square: Continuous and two sash locks.
c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.

2.6 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd..
2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

1. Minimum Weight: 24 oz./sq. yd..
2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F.

2.7 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.

D. Set dampers to fully open position before testing, adjusting, and balancing.

E. Install test holes at fan inlets and outlets and elsewhere as indicated.

F. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
2. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
3. At each change in direction and at maximum 50-foot spacing.
4. Upstream from turning vanes.
5. Upstream or downstream from duct silencers.
6. Elsewhere as indicated.

G. Install access doors with swing against duct static pressure.

H. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

I. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

J. Install flexible connectors to connect ducts to equipment.

K. Connect flexible ducts to metal ducts with draw bands.
L. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300
SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Insulated flexible ducts.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: For flexible ducts.
 1. Include plans showing locations and mounting and attachment details.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, and coordinated with each other, using input from installers of the items involved.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."

2.2 INSULATED FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.
 3. Thermaflex; a Flex-Tek Group company.
B. Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.
4. Insulation R-Value: R8.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Nylon strap in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect flexible ducts to metal ducts with draw bands.

D. Install duct test holes where required for testing and balancing purposes.

E. Installation:

1. Install ducts fully extended.
2. Do not bend ducts across sharp corners.
3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
5. Install flexible ducts in a direct line, without sags, twists, or turns.

F. Supporting Flexible Ducts:

1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION 233346
SECTION 233416 - CENTRIFUGAL HVAC FANS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: For each product.

1. Laboratory Exhaust Fans.

1.3 ACTION SUBMITTALS

A. Product Data:

1. Include rated capacities, furnished specialties, and accessories for each fan.
2. Certified fan performance curves with system operating conditions indicated.
3. Certified fan sound-power ratings.
4. Motor ratings and electrical characteristics, plus motor and electrical accessories.
5. Material thickness and finishes, including color charts.
6. Dampers, including housings, linkages, and operators.

B. Shop Drawings:

1. Include plans, elevations, sections, and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show fan room layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.
B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For centrifugal fans to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. AMCA Compliance:

1. Comply with AMCA performance requirements and bear the AMCA-Certified Ratings Seal.
2. Operating Limits: Classify according to AMCA 99.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Capacities and Characteristics: See Plans

2.2 LABORATORY EXHAUST - BACKWARD-INCLINED CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Greenheck.
2. M.K. Plastics

B. Description:

1. Factory-fabricated, -assembled, -tested, and -finished, belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor, drive assembly, and support structure.
2. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations.
3. Factory-installed and -wired disconnect switch.

C. Housings:
1. Fan housing manufactured in specifically formulated resins, for maximum corrosion resistance, UV inhibited and reinforced with fiberglass. No uncoated metal parts in the corrosive air stream will be allowed.

2. Formed panels to make curved-scroll housings with shaped cutoff.

3. Panel Bracing: Steel angle- or channel-iron member supports for mounting and supporting fan scroll, wheel, motor, and accessories.

D. Backward-Inclined Wheels:

1. Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange, backplate, backward-inclined blades, and fastened to shaft with set screws. Impellers shall be solid FRP

E. Shafts:

1. ANSI C-1045 steel, and protected with TECTYL 922B protective coating. Statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with adjustable alignment and belt tensioning.

2. Turned, ground, and polished hot-rolled steel with keyway. Ship with protective coating of lubricating oil.

3. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

F. Grease-Lubricated Shaft Bearings:

1. Self-aligning, pillow-block-type, ball or roller bearings with adapter mount and two-piece, cast-iron housing.

2. Ball-Bearing Rating Life: ABMA 9, L10 at 200,000 hours.

3. Roller-Bearing Rating Life: ABMA 11, L10 at 200,000 hours.

G. Belt Drives:

1. Factory mounted, with adjustable alignment and belt tensioning.

2. Service Factor Based on Fan Motor Size: 1.5.

3. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.

4. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.

5. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.

6. Belt Guards: Fabricate to comply with OSHA and SMACNA requirements of diamond-mesh wire screen welded to steel angle frame or equivalent, prime coated. Secure to fan or fan supports without short circuiting vibration isolation. Include provisions for adjustment of belt tension, lubrication, and use of tachometer with guard in place.

H. Accessories:
2. Scroll Drain Connection: NPS 1 steel pipe coupling welded to low point of fan scroll.
3. Companion Flanges: Rolled flanges for duct connections of same material as housing.
4. Inlet Screens: Grid screen of same material as housing.
5. Shaft Cooler: Metal disk between bearings and fan wheel, designed to dissipate heat from shaft.
7. Shaft Seals: Airtight seals installed around shaft on drive side of single-width fans.
8. Weather Cover: Enamel steel sheet with ventilation slots, bolted to housing.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

B. Motors shall be TEFC type.

2.4 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210/ASHRAE 51, "Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install centrifugal fans level and plumb.

B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.

C. Lift and support units with manufacturer's designated lifting or supporting points.

D. Equipment Mounting:
1. Install centrifugal fans on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

E. Install units with clearances for service and maintenance.

F. Label fans according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to fans to allow service and maintenance.

C. Install piping from scroll drain connection, with trap with seal equal to 1.5 times specified static pressure, to nearest floor drain with pipe sizes matching the drain connection.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. See Section 230593 "Testing, Adjusting, and Balancing For HVAC" for testing, adjusting, and balancing procedures.
10. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.
D. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, and maintain centrifugal fans.

END OF SECTION 233416
SECTION 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
 2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 RECTANGULAR AND SQUARE CEILING DIFFUSERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Krueger.
 2. Nailor Industries Inc.
 4. Titus.

B. Material: Steel.

C. Finish: Baked enamel, white.

D. Face Size: 24 by 24 inches.

E. Mounting: Surface and T-bar. See plans.

F. Pattern: Fixed.

G. Dampers: Radial opposed blade.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install diffusers level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13
SECTION 233713.23 - REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Fixed face registers and grilles.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
 2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 REGISTERS

A. Fixed Face Register:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. Nailor Industries Inc.
 c. Price Industries.
 d. Titus.
 2. Material: Steel or Aluminum.
 3. Finish: Baked enamel, white.
 4. Mounting: Countersunk screw or Lay in.
 5. Damper Type: Adjustable opposed blade.

2.2 GRILLES

A. Fixed Face Grille:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. Nailor Industries Inc.
 c. Price Industries.
Part 3 - Execution

3.1 Installation

A. Install registers and grilles level and plumb.

B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 Adjusting

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

End of Section 233713.23
SECTION 237313.13 - INDOOR, BASIC AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes: Factory-assembled, indoor air-handling units with limited features.

1.2 ACTION SUBMITTALS
A. Product Data: For each air-handling unit.
 1. Unit dimensions and weight.
 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
 4. Certified coil-performance ratings with system operating conditions indicated.
 5. Dampers, including housings, linkages, and operators.
 6. Filters with performance characteristics.

B. Delegated-Design Submittal: For vibration isolation and seismic restraints indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Include design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Floor plans and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.

B. Seismic Qualification Data: Certificates for indoor, basic air-handling units, accessories, and components, from manufacturer.

C. Source quality-control reports.

D. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

E. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolation and seismic restraints, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

F. Structural Performance: Casing panels shall be self-supporting and capable of withstanding positive/negative 4-inch wg (996 Pa) of internal static pressure, without exceeding a midpoint deflection of 0.005 inches/inch (0.005 mm/mm) of panel span.

G. Seismic Performance: Air-handling units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2. Component Importance Factor: 1.0.

2.2 CAPACITIES AND CHARACTERISTICS

A. See Schedule on mechanical drawings.

2.3 INDOOR, BASIC AIR-HANDLING UNIT MANUFACTURERS

A. Daikin Applied

B. Temtrol

C. Scott-Springfield
D. Engineered Air

2.4 UNIT CASINGS

A. General Fabrication Requirements for Casings:

1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Joints: Sheet metal screws or pop rivets.
3. Sealing: Seal all joints with water-resistant sealant. Hermetically seal at each corner and around entire perimeter.
4. Base Rail:
 b. Height: 6 inches (150 mm).

B. Double Wall:

1. Outside Casing Wall: Galvanized steel, minimum 18-gauge (1.3 mm) thick, with manufacturer's standard finish.
2. Inside Casing Wall: Galvanized steel, solid, minimum 18-gauge (1.3 mm) thick.
3. Floor Plate: Galvanized steel, treadplate, minimum 18-gauge (1.3 mm) thick.
4. Casing Insulation:
 c. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roofs of air-handling unit.

C. Static-Pressure Classifications:

1. For Unit Sections Upstream of Fans: Minus 3-inch wg (750 Pa).
2. For Unit Sections Downstream and Including Fans: 4-inch wg (1000 Pa).

D. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

E. Panels and Doors:

1. Panels:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against airflow.
 c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 d. Size: Large enough to allow unobstructed access for inspection and maintenance of air-handling unit's internal components. At least 18 inches (450 mm) wide by full height of unit casing up to a maximum height of 72 inches (1800 mm).

2. Doors:
 a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
b. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against airflow. Provide safety latch retainers on doors so that doors do not open uncontrollably.

c. Gasket: Neoprene, applied around entire perimeters of frame.

d. Size: Large enough to allow for unobstructed access for inspection and maintenance of air-handling unit's internal components. At least 18 inches (450 mm) wide by full height of unit casing up to a maximum height of 60 inches (1500 mm).

3. Locations and Applications:

 a. Fan Section: Doors.
 b. Damper/Coil Section: Doors.
 c. Filter Section: Doors large enough to allow periodic removal and installation of filters.

F. Condensate Drain Pans:

 1. Construction:

 2. Drain Connection:
 a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on end of pan.

 3. Slope: Minimum 0.125 in./ft. (10 mm/mm) slope, to comply with ASHRAE 62.1, in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers, and to direct water toward drain connection.

 4. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.

 5. Width: Entire width of water producing device.

 6. Depth: A minimum of 2 inches (50 mm) deep.

2.5 FAN, DRIVE, AND MOTOR SECTION

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.

 1. Shafts: With field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.

2. Horizontal-Flanged, Split Housing: Bolted construction.

3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.

4. Flexible Connector: Factory fabricated with a fabric strip minimum 3-1/2 inches (89 mm) wide, attached to two strips of minimum 2-3/4-inch (70-mm) wide by 0.028-inch (0.7-mm-) thick, galvanized-steel sheet.

 1) Fabric Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 2) Fabric Minimum Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 3) Fabric Minimum Service Temperature Range: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

C. Plenum Fan Housings: Steel frame and panel; fabricated without fan scroll and volute housing. Provide inlet screens for Type SWSI fans.

D. Forward-Curved, Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel hub swaged to backplate and fastened to shaft with setscrews.

E. Airfoil, Centrifugal Fan Wheels (Plenum Fan Wheels): Smooth curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; steel hub riveted to backplate and fastened to shaft with setscrews.

F. Fan Shaft Bearings:

 1. Self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.

G. Internal Vibration Isolation and Seismic Control: Fans shall be factory mounted with manufacturer's standard restrained vibration isolation mounting devices having a minimum static deflection of 1 inch (25 mm).

H. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

 1. Enclosure Type: Totally enclosed, fan cooled.
 2. NEMA Premium Efficient motors as defined in NEMA MG 1.
 3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 5. Mount unit-mounted disconnect switches on exterior of unit.

I. Variable-Frequency Motor Controller: Comply with Section 262923 "Variable-Frequency Motor Controllers."

J. Variable-Frequency Motor Controller: Serving all fans combined in fan array.
1. Manufactured Units: Pulse-width modulated; constant torque and variable torque for inverter-duty motors.
2. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
3. Unit Operating Requirements:
 a. Internal Adjustability:
 1) Minimum Speed: 5 to 25 percent of maximum rpm.
 2) Maximum Speed: 80 to 100 percent of maximum rpm.
 3) Acceleration: 0.1 to 999.9, 30 seconds.
 4) Deceleration: 0.1 to 999.9, 30 seconds.
 5) Current Limit: 30 to minimum of 150 percent of maximum rating.
 b. Self-Protection and Reliability Features:
 1) Surge suppression.
 2) Loss of input signal protection.
 3) Under- and overvoltage trips.
 4) Variable-frequency motor controller and motor-overload/overtemperature protection.
 5) Critical frequency rejection.
 6) Loss-of-phase protection.
 7) Reverse-phase protection.
 8) Motor-overtemperature fault.
 c. Bidirectional autospeed search.
 d. Torque boost.
 e. Motor temperature compensation at slow speeds.
 1) Panel-mounted operator station.
 2) Historical logging information and displays.
 3) Digital indicating devices.
 g. Proportional Integral Directive (PID) control interface.
 h. DDC system for HVAC Protocols for Network Communications: ASHRAE 135.
4. Line Conditioning:
 a. Input line conditioning.
 b. Output filtering.
 c. EMI/RFI filtering.

2.6 COIL SECTION

A. General Requirements for Coil Section:
 1. Comply with AHRI 410.
 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 3. Coils shall not act as structural component of unit.
 4. Refrigerant Coil:
a. Tubes: Copper.
b. Fins:
 1) Material: Aluminum.
c. Fin and Tube Joints: Mechanical bond.
d. Headers: Seamless-copper headers with brazed connections.
e. Frames: Galvanized steel.
f. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 1) Working Pressure: Minimum 300 psig (2070 kPa).

2.7 AIR FILTRATION SECTION

A. Panel Filters:
 1. Description: Pleated factory-fabricated, self-supported disposable air filters with holding frames.
 2. Filter Unit Class: UL 900.
 3. Media: Interlaced glass, synthetic, or cotton fibers coated with nonflammable adhesive.
 4. Filter-Media Frame: High wet-strength beverage board with perforated metal retainer, or metal grid, on outlet side.

B. Side-Access Filter Mounting Frames:
 1. Particulate Air Filter Frames: Match inner casing and outer casing material, and insulation thickness. Galvanized steel track.
 a. Sealing: Incorporate positive-sealing device to ensure seal between gasketed material on channels to seal top and bottom of filter cartridge frames to prevent bypass of unfiltered air.

2.8 MATERIALS

A. Steel:
 1. ASTM A 36/A 36M for carbon structural steel.
 2. ASTM A 568/A 568M for steel sheet.

B. Stainless Steel:
 1. Manufacturer's standard grade for casing.
 2. Manufacturer's standard type, ASTM A 240/A 240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A 653/A 653M.

2.9 SOURCE QUALITY CONTROL

A. AHRI 430 Certification: Air-handling units and their components shall be factory tested according to AHRI 430 and shall be listed and labeled by AHRI.
 1. AMCA 210 Compliance: Fan performance according to AMCA 210.

B. AMCA 300 and AMCA 301, or AHRI 260 Certification: Air-handling unit fan sound ratings shall comply with AMCA 300, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data" and AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data," or with AHRI 260, "Sound Rating of Ducted Air Moving and Conditioning Equipment."

C. Water Coils: Factory tested to 300 psig (2070 kPa) according to AHRI 410 and ASHRAE 33.

D. Refrigerant Coils: Factory tested to minimum 450-psig (3105-kPa) internal pressure, and to minimum 300-psig (2070-kPa) internal pressure while underwater, according to AHRI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine casing insulation materials and filter media before air-handling unit installation. Replace with new insulation materials and filter media that are wet, moisture damaged, or mold damaged.

B. Equipment Mounting:
 1. Install air-handling unit on cast-in-place concrete equipment base for vibration and sound attenuation.

C. Arrange installation of units to provide access space around air-handling units for service and maintenance.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

E. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.2 PIPING CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to air-handling unit, allow for service and maintenance.

C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using NPS 1-1/4 (DN 32), ASTM B 88, Type M (ASTM B 88M, Type C) copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
E. Refrigerant Piping: Comply with applicable requirements in Section 232300 "Refrigerant Piping." Install shutoff valve and union or flange at each supply and return connection.

3.3 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch (13 mm) high.

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Charge refrigerant coils with refrigerant and test for leaks.
 2. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

D. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

E. Prepare test and inspection reports.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313.13
SECTION 238129 – VARIABLE-REFRIGERANT-FLOW HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes complete VRF HVAC system(s) including, but not limited to the following components to make a complete operating system(s) according to requirements indicated:
 1. Indoor, exposed, wall-mounted units.
 2. Indoor, suspended, ceiling-mounted units.
 3. Indoor, dedicated outdoor air ventilation units.
 4. Indoor, energy recovery ventilator.
 5. Outdoor, air-source, heat-pump units.
 6. Outdoor, air-source heat recovery units.
 7. Heat recovery control units.
 8. System controls.
 10. System condensate drain piping.
 11. System refrigerant piping.
 12. Metal hangers and supports.
 13. Metal framing systems.
 14. Fastener systems.
 15. Pipe stands.
 16. Miscellaneous support materials.
 17. Piping and tubing insulation.
 18. System control cable and raceways.

1.3 DEFINITIONS

A. Heat-Pump System Operation: System capable of operation with all zones in either heating or cooling, but not with simultaneous heating and cooling zones that transfer heat between zones.

B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

C. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.

D. Three-Pipe System Design: One high pressure refrigerant vapor line, one low pressure refrigerant vapor line, and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated system HRCUs. One liquid line and refrigerant vapor line connect HRCUs to associated indoor units.
E. Two-Pipe System Design: One refrigerant vapor line and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated system HRCUs. One refrigerant liquid line and refrigerant vapor line connect HRCUs to associated indoor units. HRCUs used in two pipe systems act as an intermediate heat exchanger and include diverting valves and gas/liquid separators to move high and low pressure refrigerant between indoor units.

F. VRF: Variable refrigerant flow.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for indoor and outdoor units.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
3. Include operating performance at design conditions and at extreme maximum and minimum outdoor ambient conditions.
4. Include description of system controllers, dimensions, features, control interfaces and connections, power requirements, and connections.
5. Include system operating sequence of operation in narrative form for each unique indoor- and outdoor-unit control.
6. Include description of control software features.
7. Include total refrigerant required and a comprehensive breakdown of refrigerant required by each system installed.
8. Include refrigerant type and data sheets showing compliance with requirements indicated.
9. For system design software.
10. Indicate location and type of service access.

B. Shop Drawings: For VRF HVAC systems.
1. Include plans, elevations, sections, and mounting details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
4. Include diagrams and details of refrigerant piping and tubing showing installation requirements for manufacturer-furnished divided flow fittings.
5. Include diagrams for power, signal, and control wiring.

C. Samples for Initial Selection: For fully and partially exposed indoor units with factory finishes viewable by occupants.
1. Include a Sample for each unique finish with unit identification, detailed description of application, and cross-referenced floor plans showing locations.

D. Delegated-Design Submittals:
1. Include design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
2. Include design calculations with corresponding diagram of refrigerant piping and tubing sizing for each system installed.
3. Include design calculations with corresponding floor plans indicating that refrigerant concentration limits are within allowable limits of ASHRAE 15 and governing codes.
4. Include calculations showing that system travel distance for refrigerant piping and controls cabling are within horizontal and vertical travel distances set by manufacturer. Provide a comparison table for each system installed.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, sections, and details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural floors, roofs and associated members to which equipment, piping, ductwork, cables, and conduit will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Wall-mounted controllers located in finished space showing relationship to light switches, fire-alarm devices, and other installed devices.
 5. Size and location of access doors and panels installed behind walls and inaccessible ceilings for products installed behind walls and requiring access.

B. Qualification Data:
 1. For Installer: Certificate from VRF HVAC system manufacturer certifying that Installer has successfully completed prerequisite training administered by manufacturer for proper installation of systems, including but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.
 a. Retain copies of Installer certificates on-site and make available on request.
 2. For VRF HVAC system manufacturer.
 3. For VRF HVAC system provider.

C. Seismic Qualification Data: Certificates, for equipment, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Test Reports: Where tests are required, for each product, for tests performed by manufacturer and witnessed by a qualified testing agency.

E. Source quality-control reports.

F. Field quality-control reports.

G. Sample Warranties: For manufacturer's warranties.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VRF HVAC systems to include in emergency, operation, and maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On CD or DVD, USB media, or approved cloud storage platform, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters:
 a. One set(s) for each unit with replaceable filters.
 b. One set(s) for each unit type and unique size of washable filters.
 2. Indoor Units: One for each unique size and type installed.
 3. Controllers for Indoor Units: One for each unique controller type installed.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications:
 1. Nationally recognized manufacturer of VRF HVAC systems and products.
 2. Shipped VRF HVAC systems with similar requirements to those indicated for a continuous period of 10 years within time of bid.
 3. VRF HVAC systems and products that have been successfully tested and in use on at least five completed projects.
 4. Having complete published catalog literature, installation, and operation and maintenance manuals for all products intended for use.
 5. Having full-time in-house employees for the following:
 a. Product research and development.
 b. Product and application engineering.
 c. Product manufacturing, testing, and quality control.
 d. Technical support for system installation training, startup, commissioning, and troubleshooting of installations.
 e. Owner training.

B. Factory-Authorized Service Representative Qualifications:
 1. Authorized representative of, and trained by, VRF HVAC system manufacturer.
 2. In-place facility located within 100 miles of Project.
 3. Demonstrated past experience with products being installed for period within five consecutive years before time of bid.
 4. Demonstrated past experience on five projects of similar complexity, scope, and value.
a. Each person assigned to Project shall have demonstrated past experience.

5. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.

6. Service and maintenance staff assigned to support Project during warranty period.

7. Product parts inventory to support ongoing system operation for a period of not less than five years after Substantial Completion.

8. VRF HVAC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

C. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by VRF HVAC system manufacturer.

1. Each employee shall be certified by manufacturer for proper installation of systems, including, but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.

2. Installer certification shall be valid and current for duration of Project.

3. Retain copies of Installer certificates on-site and make available on request.

4. Each person assigned to Project shall have demonstrated past experience.

 a. Demonstrated past experience with products being installed for period within five consecutive years before time of bid.

 b. Demonstrated past experience on five projects of similar complexity, scope, and value.

5. Installers shall have staffing resources of competent, trained, and experienced full-time employees that are assigned to execute work according to schedule.

D. ISO Compliance: System equipment and components furnished by VRF HVAC system manufacturer shall be manufactured in an ISO 9001 and ISO 14001 facility.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store products in a clean and dry place.

B. Comply with manufacturer's written rigging and installation instructions for unloading and moving to final installed location.

C. Handle products carefully to prevent damage, breaking, denting, and scoring. Do not install damaged products.

D. Protect products from weather, dirt, dust, water, construction debris, and physical damage.

 1. Retain factory-applied coverings on equipment to protect finishes during construction and remove just prior to operating unit.

 2. Cover unit openings before installation to prevent dirt and dust from entering inside of units. If required to remove coverings during unit installation, reapply coverings over openings after unit installation and remove just prior to operating unit.

E. Replace installed products damaged during construction.
1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace equipment and components that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures.
 b. Faulty operation.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.

2. Warranty Period:
 a. For Compressor: 6 year(s) from date of Substantial Completion.
 b. For Parts, Including Controls: One year(s) from date of Substantial Completion.
 c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: The HVAC equipment basis of design is Daikin AC. All bidders shall furnish the minimum system standards as defined by the base bid model numbers, model families or as otherwise specified herein. In any event the contractor shall be responsible for all specified items and intents of this document without further compensation:
 1. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
 2. Trane VRF
 3. Samsung

B. Source Limitations: Obtain products from single source from single manufacturer including, but not limited to, the following:

 1. Indoor and outdoor units, including accessories.
 2. Controls and software.
 3. HRCUs.
 4. Refrigerant isolation valves.
 5. Specialty refrigerant pipe fittings.

2.2 SYSTEM DESCRIPTION

A. Direct-expansion (DX) VRF HVAC system(s) with variable capacity in response to varying cooling and heating loads. System shall consist of multiple indoor units, HRCUs, outdoor unit(s), piping, controls, and electrical power to make complete operating system(s) complying with requirements indicated.

 1. Two-pipe or three-pipe system design.
 2. System(s) operation, heat pump as indicated on Drawings.
 3. Each system with one refrigerant circuit shared by all indoor units connected to system.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. AHRI Compliance: System and equipment performance certified according to AHRI 1230.

D. ASHRAE Compliance:

1. ASHRAE 15: For safety code for mechanical refrigeration.
2. ASHRAE 62.1: For indoor air quality.
3. ASHRAE 135: For control network protocol with remote communication.
4. ASHRAE/IES 90.1 Compliance: For system and component energy efficiency.

E. UL Compliance: Comply with UL 1995.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional specialist, to design complete and operational VRF HVAC system(s) complying with requirements indicated.

1. Provide system refrigerant calculations.
 a. Refrigerant concentration limits shall be within allowable limits of ASHRAE 15 and governing codes.
 b. Indicate compliance with manufacturer’s maximum vertical and horizontal travel distances. Prepare a comparison table for each system showing calculated distances compared to manufacturer’s maximum allowed distances.

2. System Refrigerant Piping and Tubing:
 a. Arrangement: Arrange piping to interconnect indoor units and outdoor unit(s) in compliance with manufacturer requirements and requirements indicated.
 b. Routing: Conceal piping above ceilings and behind walls to maximum extent possible.
 c. Sizing: Size piping system, using a software program acceptable to manufacturer, to provide performance requirements indicated. Consider requirements to accommodate future change requirements.

3. System Controls:
 a. Network arrangement.
 b. Network interface with other building systems.
 c. Product selection.
 d. Sizing.

B. Service Access:

1. Provide and document service access requirements.
2. Locate equipment, system isolation valves, and other system components that require service and inspection in easily accessible locations. Avoid locations that are difficult to access if possible.
3. Where serviceable components are installed behind walls and above inaccessible ceilings, provide finished assembly with access doors or panels to gain access. Properly size the openings to allow for service, removal, and replacement.
4. If less than full and unrestricted access is provided, locate components within an 18-inch reach of the finished assembly.
5. Where ladder access is required to service elevated components, provide an installation that provides for sufficient access within ladder manufacturer’s written instructions for use.
6. Comply with OSHA regulations.

C. System Design and Installation Requirements:

1. Design and install systems indicated according to manufacturer's recommendations and written instructions.
2. Where manufacturer's requirements differ from requirements indicated, contact Architect for direction. The most stringent requirements should apply unless otherwise directed in writing by Architect.

D. System Adaptability to Future Changes: Arrange and size system refrigerant piping to accommodate future changes to system without having to resize and replace existing refrigerant piping.

1. Future changes to system(s) indicated on Drawings.
2. Each branch circuit shall accommodate addition of one indoor unit(s) with unit capacity equal to largest indoor unit connected to the branch circuit.
3. Each branch circuit shall accommodate deletion of one indoor unit(s) with unit capacity equal to largest indoor unit connected to the branch circuit.

E. Isolation of Equipment: Provide isolation valves to isolate each indoor unit and outdoor unit for service, removal, and replacement without interrupting system operation.

F. System Capacity Ratio: The sum of connected capacity of all indoor units shall be within the following range of outdoor-unit rated capacity:

1. Not less than 60 percent.
2. Not more than 130 percent.
3. Range acceptable to manufacturer.

G. System Turndown: Stable operation down to 20 percent of outdoor-unit capacity.

H. System Auto Refrigerant Charge: Each system shall have an automatic refrigerant charge function to ensure the proper amount of refrigerant is installed in system.

I. Outdoor Conditions:

1. Suitable for outdoor ambient conditions encountered.
 a. Design equipment and supports to withstand wind loads of governing code.
 b. Design equipment and supports to withstand snow and ice loads of governing code.
 c. Provide corrosion-resistant coating for components and supports where located in coastal or industrial climates that are known to be harmful to materials and finishes.

J. Seismic Performance: VRF HVAC system(s) shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
2. Component Importance Factor: 1.0.
K. Sound Performance: Sound levels generated by operating HVAC equipment shall be within requirements indicated.
 1. Indoor: See Drawings.
 2. Outdoor: See Drawings.

L. Thermal Movements: Allow for controlled thermal movements from ambient, surface, and system temperature changes.

M. Capacities and Characteristics: As indicated on Drawings.

2.4 INDOOR, CONCEALED, CEILING-MOUNTED UNITS FOR DUCTING

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:
 2. Insulation: Manufacturer's standard internal insulation to provide thermal resistance and prevent condensation.
 3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
 4. Mounting: Manufacturer-designed provisions for field installation.
 5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:
 1. Coil Casing: Aluminum, galvanized, or stainless steel.
 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
 3. Coil Tubes: Copper, of diameter and thickness required by performance.
 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
 5. Unit Internal Tubing: Copper tubing with brazed joints.
 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
 7. Field Piping Connections: Manufacturer's standard.
 8. Factory Charge: Dehydrated air or nitrogen.
 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:
 1. Fan(s):
 a. Direct-drive arrangement.
b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
c. Fabricated from non-ferrous components or ferrous components with corrosion-resistant finish.
d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of at least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:
 1. Access: Bottom, side, or rear to accommodate field installation without removing ductwork and to accommodate filter replacement without need for tools.
 2. Efficiency: ASHRAE 52.2, MERV 7.
 3. Media:
 a. Replaceable: Extended surface, panel, or cartridge with antimicrobial treatment fiber media.

G. Unit Controls:
 1. Enclosure: Metal, suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 3. Factory-Installed Sensors:
 a. Unit inlet air temperature.
 b. Coil entering refrigerant temperature.
 c. Coil leaving refrigerant temperature.
 4. Features and Functions:
 a. Self-diagnostics.
 b. Time delay.
 c. Auto-restart.
 d. External static pressure control.
 e. Auto operation mode.
 f. Manual operation mode.
 g. Filter service notification.
 h. Power consumption display.
 i. Drain assembly high water level safety shutdown and notification.
 j. Run test switch.
 5. Communication: Network communication with other indoor and outdoor units.
 6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:
 1. Enclosure: Metal, suitable for indoor locations.
2. Field Connection: Single point connection to power unit and integral controls.
4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

2.5 INDOOR, EXPOSED, WALL-MOUNTED UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

B. Cabinet:
 1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
 2. Insulation: Manufacturer's standard internal insulation to provide thermal resistance and prevent condensation.
 3. Mounting: Manufacturer-designed provisions for field installation.
 4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:
 1. Coil Casing: Aluminum, galvanized, or stainless steel.
 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
 3. Coil Tubes: Copper, of diameter and thickness required by performance.
 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
 5. Unit Internal Tubing: Copper tubing with brazed joints.
 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
 7. Field Piping Connections: Manufacturer's standard.
 8. Factory Charge: Dehydrated air or nitrogen.
 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 a. If a floor drain is not available at unit, provide unit with field-installed condensate pump accessory.
 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:
 1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:
1. Access: Front, to accommodate filter replacement without the need for tools.

G. Grille Assembly: Manufacturer's standard discharge grille with field-adjustable air pattern mounted in top or front face of unit cabinet.

H. Unit Accessories:
1. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.
2. Condensate Pump: Integral reservoir and control with electrical power connection through unit power.

I. Unit Controls:
1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Factory-Installed Controller: Configurable digital control.
5. Communication: Network communication with other indoor units and outdoor unit(s).
6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

J. Unit Electrical:
1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Raceways: Enclose line voltage wiring in [metal] raceways to comply with NFPA 70.

2.6 INDOOR, DEDICATED OUTDOOR AIR VENTILATION UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.
1. Specially designed for up to 100 percent outdoor air entering unit.

B. Cabinet:
 1. Material: Galvanized or painted steel.
 2. Insulation: Manufacturer's standard internal insulation to provide thermal resistance and prevent condensation.
 3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
 4. Mounting: Manufacturer-designed provisions for field installation.
 5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:
 1. Coil Casing: Aluminum, galvanized, or stainless steel.
 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
 3. Coil Tubes: Copper, of diameter and thickness required by performance.
 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
 5. Unit Internal Tubing: Copper tubing with brazed joints.
 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
 7. Field Piping Connections: Manufacturer's standard.
 8. Factory Charge: Dehydrated air or nitrogen.
 9. Testing: Factory pressure tested and verified to be without leaks.

D. DX Coil Assembly for Reheat Applications: Provide units with a reheat coil where indicated on Drawings.
 1. Coil Casing: Aluminum, galvanized, or stainless steel.
 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
 3. Coil Tubes: Copper, of diameter and thickness required by performance.
 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
 5. Unit Internal Tubing: Copper tubing with brazed joints.
 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation.
 7. Field Piping Connections: Manufacturer's standard.
 8. Factory Charge: Dehydrated air or nitrogen.
 9. Testing: Factory pressure tested and verified to be without leaks.

E. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
 3. Field Piping Connection: Non-ferrous material with threaded NPT.

F. Fan and Motor Assembly:
 1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

G. Filter Assembly:
 1. Access: Bottom, side, or rear to accommodate field installation without removing ductwork and to accommodate filter replacement without need for tools.
 2. Efficiency: ASHRAE 52.2, MERV 11.
 3. Replaceable Media: Extended surface, panel, or cartridge with antimicrobial treatment fiber media.

H. Unit Accessories:
 1. Motorized Inlet Damper Kit: Low-leakage damper with spring return electric actuator to fail closed on loss of power. Damper controlled by unit to open when unit is operating and close when unit off.

I. Unit Controls:
 1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 3. Factory-Installed Sensors: Unit entering-air temperature Unit leaving-air temperature.
 a. Features and Functions: Self-diagnostics, time delay, auto-restart.
 5. Communication: Network communication with other indoor units and outdoor unit(s).
 6. Cable and Wiring: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 7. Field Connection: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

J. Unit Electrical:
 1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
 2. Field Connection: Single point connection to power entire unit and integral controls.
 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
 4. Control Transformer: Manufacturer’s standard. Coordinate requirements with field power supply.
 5. Wiring: Manufacturer’s standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 6. Raceways: Enclose line voltage wiring in [metal] raceways to comply with NFPA 70.

2.7 INDOOR, ENERGY RECOVERY VENTILATOR

A. Description: Factory-assembled and -tested complete unit with components, wiring, and controls required for mating to ductwork, power, and controls field connections.
B. Cabinet:

1. Material: Galvanized steel.
2. Insulation: Manufacturer's standard internal insulation.
3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
4. Mounting: Manufacturer-designed provisions for field installation.
5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. Damper Assemblies:

1. Outdoor Air Intake and Exhaust Air Discharge:
 a. Low-leakage class 1 damper with spring return electric actuator to fail closed on loss of power.
 b. Damper controlled by unit to open when unit is operating and close when unit off.

2. Energy Recovery Heat-Exchanger Bypass:
 a. Low leakage damper with electric actuator with integral controls to bypass outdoor air around the energy recovery heat exchanger during times of favorable weather, and there is no energy-saving benefit to circulate air across the energy recovery heat exchanger.

D. Fan and Motor Assemblies: Separate fan and motor assemblies for supply and exhaust airstreams with control for equal airflow.

1. Fan(s):
 a. Direct-drive arrangement.
 b. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
 c. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

E. Filter Assemblies: Separate filter assemblies for outdoor air and exhaust airstreams entering energy recovery heat exchanger.

1. Access: To accommodate filter replacement without the need for tools.
2. Efficiency: ASHRAE 52.2, MERV 7.
3. Replaceable Media: Extended surface, panel, or cartridge with antimicrobial treatment fiber media.

F. Energy Recovery Heat Exchanger:

1. Total (sensible and latent) energy exchange between outdoor air and exhaust airstreams with performance indicated on Drawings.
2. Fixed element with no moving parts.
3. AHRI 1060 certified and bearing the AHRI label.
G. Unit Accessories:

1. Electric Duct Preheater:
 a. Heater operation interlocked with energy recovery ventilator unit.
 b. Heater with integral controls to control outdoor air temperature entering energy recovery ventilator unit to a temperature set-point determined by energy recovery ventilator unit manufacturer.
 c. Listed and labeled.

H. Unit Controls:

1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
2. Factory-Installed Controller: Configurable digital control.
3. Factory-Installed Sensors:
 a. Unit entering outdoor air temperature.
 b. Unit leaving supply air temperature.
 c. Unit entering exhaust air temperature.
 d. Unit leaving exhaust air temperature.
 e. Unit entering outdoor air relative humidity.
 f. Unit leaving supply air relative humidity.
 g. Unit entering exhaust air relative humidity.
 h. Unit leaving exhaust air relative humidity.

I. Unit Electrical:

1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Raceways: Enclose line voltage wiring in [metal] raceways to comply with NFPA 70.

2.8 OUTDOOR, AIR-SOURCE HEAT-PUMP UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

1. Specially designed for use in systems with either all heating or all cooling demands, but not for use in systems with simultaneous heating and cooling.
2. Systems shall consist of one unit, or multiple unit modules that are designed by variable refrigerant system manufacturer for field interconnection to make a single refrigeration circuit that connects multiple indoor units.
3. All units installed shall be from the same product development generation.

B. Cabinet:

1. Galvanized steel and coated with a corrosion-resistant finish.
a. Coating with documented salt spray test performance of 1000 hours according ASTM B 117 surface scratch test (SST) procedure.

2. Mounting: Manufacturer-designed provisions for field installation.
3. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. Compressor and Motor Assembly:
1. One or more positive-displacement, direct-drive and hermetically sealed scroll compressor(s) with inverter drive and turndown to 15 percent of rated capacity.
2. Protection: Integral protection against the following:
 a. High refrigerant pressure.
 b. Low oil level.
 c. High oil temperature.
 d. Thermal and overload.
 e. Voltage fluctuations.
 f. Phase failure and phase reversal.
 g. Short cycling.
3. Speed Control: Variable to automatically maintain refrigerant suction and condensing pressures while varying refrigerant flow to satisfy system cooling and heating loads.
5. Oil management system to ensure safe and proper lubrication over entire operating range.
6. Crankcase heaters with integral control to maintain safe operating temperature.
7. Fusible plug.

D. Condenser Coil Assembly:
1. Plate Fin Coils:
 a. Casing: Aluminum, galvanized, or stainless steel.
 b. Fins: Aluminum or copper, mechanically bonded to tubes, with arrangement required by performance.
 c. Tubes: Copper, of diameter and thickness required by performance.
2. Aluminum Microchannel Coils:
 b. Single- or multiple-pass arrangement.
 c. Construct fins, tubes, and header manifolds of aluminum alloy.
3. Corrosion Protection: Coating with documented salt spray test performance of 1000 hours according ASTM B 117 surface scratch test (SST) procedure.

E. Condenser Fan and Motor Assembly:
1. Fan(s): Propeller type.
 a. Direct-drive arrangement.
 b. Fabricated from non-ferrous components or ferrous components with corrosion protection finish to match performance indicated for condenser coil.
c. Dynamically balanced.

2. Fan Guards: Removable safety guards complying with OSHA regulations. If using metal materials, coat with corrosion-resistant coating to match performance indicated for condenser coil.

3. Motor(s): Brushless dc or electronically commutated with permanently lubricated bearings and rated for outdoor duty.

5. Speed Settings and Control: Variable speed with a speed range of least 75 percent.

F. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.

G. Unit Controls:

1. Enclosure: Manufacturer's standard, and suitable for unprotected outdoor locations.

2. Factory-Installed Controller: Configurable digital control.

3. Factory-Installed Sensors:

 a. Refrigerant suction temperature.
 b. Refrigerant discharge temperature.
 c. Outdoor air temperature.
 d. Refrigerant high pressure.
 e. Refrigerant low pressure.
 f. Oil level.

5. Communication: Network communication with indoor units and other outdoor unit(s).

6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:

1. Enclosure: Metal, similar to enclosure, and suitable for unprotected outdoor locations.

2. Field Connection: Single point connection to power entire unit and integral controls.

3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.

4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.

5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

6. Raceways: Enclose line voltage wiring in metal raceways to comply with NFPA 70.

I. Unit Hardware: Zinc-plated steel, or stainless steel. Coat exposed surfaces with additional corrosion-resistant coating if required to prevention corrosion when exposed to salt spray test for 1000 hours according ASTM B 117.

J. Unit Piping:

1. Unit Tubing: Copper tubing with brazed joints.

2. Unit Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
3. Field Piping Connections: Manufacturer’s standard.
4. Factory Charge: Dehydrated air or nitrogen.
5. Testing: Factory pressure tested and verified to be without leaks.

2.9 SYSTEM CONTROLS

A. General Requirements:

1. Network: Indoor units and outdoor units shall include integral controls and connect through a TIA-485A control network.
3. Integration with Building Automation System: ASHRAE 135, BACnet IP and certified by BACnet Testing Lab (BTL), including the following:
 a. Ethernet connection via RJ-45 connectors and port with transmission at 100 Mbps or higher.
 b. Integration devices shall be connected to local uninterruptible power supply unit(s) to provide at least 5 minutes of battery backup operation after a power loss.
 c. Integration shall include control monitoring scheduling.
4. Operator Interface:
 a. Operators shall interface with system and unit controls through the following:
 1) Operator interfaces integral to controllers.
 2) Owner-furnished PC connected to central controller(s).
 3) Web interface through web browser software.
 4) Integration with Building Automation System.
 b. Users shall be capable of interface with controllers for indoor units control to extent privileges are enabled. Control features available to users shall include the following:
 1) On/off control.
 2) Temperature set-point adjustment.

B. VRF HVAC System Operator Software for PC:

1. Software offered by VRF HVAC system manufacturer shall provide system operators with ability to monitor and control VRF HVAC system(s) from a single dedicated Owner-furnished PC.
2. Software shall provide operator with a graphic user interface to allow monitoring and control of multiple central controllers from a single device location through point-and-click mouse exchange.
3. Plan views shall show building plans with location of indoor units and identification superimposed on plans.
4. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.
5. Schedules operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Schedules daily, weekly, and annual events.
6. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
7. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.
8. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.
9. Displays service notifications and error codes.
10. Monitors and displays up to 3000 item error history and 10000 item operation history for regular reporting and further archiving.
11. Monitors and displays cumulative operating time of indoor units.
12. Able to disable and enable operation of individual controllers for indoor units.
13. Information displayed on individual controllers shall also be available for display.
14. Information displayed for outdoor units, including refrigerant high and low pressures percent capacity.

C. Central Controllers:

1. Centralized control for all indoor and outdoor units from a single central controller location.
 a. Include multiple interconnected controllers as required.

2. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.
3. Schedule operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
 a. Sets schedule for daily, weekly, and annual events.
 b. Schedule options available through central controller shall at least include the schedule options of controllers for indoor units.

4. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
5. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.
6. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.
7. Service diagnostics tool.
8. Able to disable and enable operation of individual controllers for indoor units.
9. Information displayed on individual controllers shall also be available for display through central controller.
10. Information displayed for outdoor units, including refrigerant high and low pressures percent capacity.
11. Multiple RJ-45 ports for direct connection to a local PC and an Ethernet network switch.
12. Operator interface through a backlit, high-resolution color display touch panel and web accessible through standard web browser software.

D. Wired Controllers for Indoor Units:

1. Single controller capable of controlling multiple indoor units as group.
2. Auto Timeout Touch Screen LCD: Timeout duration shall be adjustable.
3. On/Off: Turns indoor unit on or off.
4. Hold: Hold operation settings until hold is released.
8. Fan Speed Setting: Select between available options furnished with the unit.
9. Airflow Direction Setting: If applicable to unit, select between available options furnished with the unit.
10. Seven-day programmable operating schedule with up to five events per day. Operations shall include On/Off, Operation Mode, and Temperature Set-Point.
11. Auto Off Timer: Operates unit for an adjustable time duration and then turns unit off.
12. Occupancy detection.
13. Service Notification Display: "Filter".
15. Error Code Notification Display: Used by service personnel to troubleshoot abnormal operation and equipment failure.
17. Setting stored in nonvolatile memory to ensure that settings are not lost if power is lost. Battery backup for date and time only.
18. Low-voltage power required for controller shall be powered through non-polar connections to indoor unit.

2.10 SYSTEM REFRIGERANT AND OIL

A. Refrigerant:
 1. As required by VRF HVAC system manufacturer for system to comply with performance requirements indicated.
 2. ASHRAE 34, Class A1 refrigerant classification.

B. Oil:
 1. As required by VRF HVAC system manufacturer and to comply with performance requirements indicated.

2.11 SYSTEM CONDENSATE DRAIN PIPING

A. If more than one material is listed, material selection is Contractor's option.

B. Copper Tubing:
 1. Drawn-Temper Tubing: According to ASTM B 88, Type L or Type DWV according to ASTM B 306.

C. CPVC plastic pipe according to ASTM F 441/F 441M, Schedule 40, with socket-type pipe fittings according to ASTM F 438 and solvent cement according to ASTM F 493.

D. PVC plastic pipe according to ASTM D 1785, Schedule 40, with socket-type pipe fittings according to ASTM D 2466 and solvent cement according to ASTM D 2564, primer according to ASTM F 656.
2.12 SYSTEM REFRIGERANT PIPING

A. Comply with requirements in Section 232300 "Refrigerant Piping" for system piping requirements.

B. Refrigerant Piping:

1. Copper Tube: ASTM B 280, Type ACR.
3. Brazing Filler Metals: AWS A5.8/A5.8M.

C. Refrigerant Tubing Kits:

1. Furnished by VRF HVAC system manufacturer.
2. Factory-rolled and -bundled, soft-copper tubing with tubing termination fittings at each end.
3. Standard one-piece length for connecting to indoor units.
4. Pre-insulated with flexible elastomeric insulation of thickness to comply with governing energy code and sufficient to eliminate condensation.

D. Divided-Flow Specialty Fittings: Where required by VRF HVAC system manufacturer for proper system operation, VRF HVAC system manufacturer shall furnish specialty fittings with identification and instructions for proper installation by Installer.

E. Refrigerant Isolation Ball Valves:

1. Description: Uni-body full port design, rated for maximum system temperature and pressure, and factory tested under pressure to ensure tight shutoff. Designed for valve operation without removing seal cap.
2. Seals: Compatible with system refrigerant and oil. Seal service life of at least 20 years.
3. Valve Connections: Flare or sweat depending on size.

2.13 METAL HANGERS AND SUPPORTS

A. Copper Tube Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
2. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized or copper-coated steel.

B. Plastic Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, galvanized-steel, factory-fabricated components.

2.14 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Description: Shop- or field-fabricated, pipe-support assembly for supporting multiple parallel pipes.
3. Channels: Continuous slotted steel channel with inturned lips.
4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
6. Metallic Coating for Use Indoors: Electroplated zinc hot-dip galvanized or mill galvanized.

2.15 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded, zinc-coated steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

 1. Indoor Applications: Zinc-coated or stainless steel.
 2. Outdoor Applications: Stainless steel.

2.16 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:

 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:

 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.17 MISCELLANEOUS SUPPORT MATERIALS

A. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

B. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; galvanized.

C. Threaded Rods: Continuously threaded. Zinc-plated steel or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar material as rods.

2.18 PIPING AND TUBING INSULATION

A. Comply with requirements in Section 230719 "HVAC Piping Insulation" for system piping insulation requirements.

B. Condensate Drain Piping and Tubing Insulation and Jacket Requirements:
 1. Flexible Elastomeric Insulation:
 a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C 534, Type I for tubular materials.
 b. Indoors: 1/2 inch thick.
 c. Outdoors: 1/2 inch thick.
 2. Field-Applied Jacket:
 a. Concealed: None required.
 b. Indoors, Exposed to View: PVC, 20 mils thick.
 c. Outdoors, Exposed to View: Aluminum, smooth, 0.020 inch thick.

C. Refrigerant Tubing Insulation and Jacket Requirements:
 1. Flexible Elastomeric Insulation:
 a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C 534, Type I for tubular materials.
 b. Indoors: 1 inch thick.
 c. Outdoors: 1 inch thick.
 2. Field-Applied Jacket:
 a. Concealed: None required.
 b. Indoors, Exposed to View: PVC, 20 mils thick.
 c. Outdoors, Exposed to View: Aluminum, smooth, 0.020 inch thick.
D. Flexible Elastomeric Insulation Adhesive: Comply with MIL-A-24179A, Type II, Class I.

E. PVC Jacket Adhesive: Compatible with PVC jacket.

F. Metal Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.19 SYSTEM CONTROL CABLE

A. Cable Rating: Listed and labeled for application according to NFPA 70.
 1. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.
 a. Flame Travel Distance: 60 inches or less.
 b. Peak Optical Smoke Density: 0.5 or less.
 c. Average Optical Smoke Density: 0.15 or less.
 2. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.
 3. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.

B. Low-Voltage Control Cabling:
 1. Paired Cable: NFPA 70, Type CMG.
 a. One pair, twisted, No. 16 AWG, stranded (19x29) or No. 18 AWG, stranded (19x30) tinned-copper conductors as required by VRF HVAC system manufacturer.
 b. PVC insulation.
 c. Braided or foil shielded.
 d. PVC jacket.
 e. Flame Resistance: Comply with UL 1685.
 2. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 a. One pair, twisted, No. 16 AWG, stranded (19x29) or No. 18 AWG, stranded (19x30) tinned-copper conductors as required by VRF HVAC system manufacturer.
 b. PVC insulation.
 c. Braided or foil shielded.
 d. PVC jacket.
 e. Flame Resistance: Comply with NFPA 262.
 f. NFPA 262 includes the standard flame-resistance test criteria in common use for cables and conductors.
 3. Standard Cable: NFPA 70, Type CMG.
a. Paired, two pairs, twisted, No. 22 AWG, stranded (7x30) tinned-copper conductors.
b. PVC insulation.
c. Unshielded.
d. PVC jacket.
e. Flame Resistance: Comply with UL 1685.

2. Plenum-Rated Cable: NFPA 70, Type CMP.
 a. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 b. Fluorinated ethylene propylene insulation.
 c. Unshielded.
 d. Fluorinated ethylene propylene jacket.
 e. NFPA 262 includes the standard flame-resistance test criteria in common use for cables and conductors.

 1. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of category cable indicated.
 2. Conductors: 100-ohm, 23 AWG solid copper.
 4. Cable Rating: By application.
 5. Jacket: Color per OSU Standards, thermoplastic.

E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for control wiring and cable raceways.

2.20 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect factory-assembled equipment.

B. Equipment will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports for historical record. Submit reports only if requested.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine products before installation. Reject products that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for piping and tubing to verify actual locations of connections before equipment installation.

D. Examine roughing-in for ductwork to verify actual locations of connections before equipment installation.
E. Examine roughing-in for wiring and conduit to verify actual locations of connections before equipment installation.

F. Examine walls, floors, roofs, and outdoor pads for suitable conditions where equipment will be installed.

G. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

H. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION, GENERAL

A. Clearance:
 1. Maintain manufacturer’s recommended clearances for service and maintenance.
 2. Maintain clearances required by governing code.

B. Equipment Restraint Installation: Install equipment with seismic-restraint device. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

3.3 INSTALLATION OF INDOOR UNITS

A. Install units to be level and plumb while providing a neat and finished appearance.

B. Unless otherwise required by VRF HVAC system manufacturer, support ceiling-mounted units from structure above using threaded rods; minimum rod size of 3/8 inch.

C. Adjust supports of exposed and recessed units to draw units tight to adjoining surfaces.

D. Protect finished surfaces of ceilings, floors, and walls that come in direct contact with units. Refinish or replaced damaged areas after units are installed.

E. In rooms with ceilings, conceal piping and tubing, controls, and electrical power serving units above ceilings.

F. In rooms without ceiling, arrange piping and tubing, controls, and electrical power serving units to provide a neat and finished appearance.

G. Provide lateral bracing if needed to limit movement of suspended units to not more than 0.25 inch.

H. For wall-mounted units that are exposed, conceal piping and tubing, controls, and electrical power serving units within walls.

I. Attachment: Install hardware for proper attachment to supported equipment.

J. Grouting: Place grout under equipment supports and make bearing surface smooth.
3.4 INSTALLATION OF OUTDOOR UNITS

A. Install units to be level and plumb while providing a neat and finished appearance.

B. Install outdoor units on support structures indicated on Drawings.

C. Pad-Mounted Installations: Install outdoor units on cast-in-place concrete equipment bases.
 1. Attachment: Install anchor bolts to elevations required for proper attachment to supported equipment.
 2. Grouting: Place grout under equipment supports and make bearing surface smooth.

D. Roof-Mounted Installations: Install outdoor units on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, stainless-steel fasteners.

3.5 GENERAL REQUIREMENTS FOR PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping and tubing systems. Install piping and tubing as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping and tubing in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping and tubing at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping and tubing above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping and tubing to permit valve servicing.

F. Install piping and tubing at indicated slopes.

G. Install piping and tubing free of sags.

H. Install fittings for changes in direction and branch connections.

I. Install piping and tubing to allow application of insulation.

J. Install groups of pipes and tubing parallel to each other, spaced to permit applying insulation with service access between insulated piping and tubing.

K. Install sleeves for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

L. Install escutcheons for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."
3.6 INSTALLATION OF SYSTEM CONDENSATE DRAIN PIPING

A. General Requirements for Drain Piping and Tubing:
 1. Install a union in piping at each threaded unit connection.
 2. Install an adjustable stainless-steel hose clamp with adjustable gear operator on unit hose connections. Tighten clamp to provide a leak-free installation.
 3. If required for unit installation, provide a trap assembly in drain piping to prevent air circulated through unit from passing through drain piping. Comply with more stringent of the following:
 a. Details indicated on Drawings.
 b. Manufacturer’s requirements.
 c. Governing codes.
 d. In the absence of requirements, comply with requirements of ASHRAE handbooks.
 4. Extend drain piping from units with drain connections to drain receptors as indicated on Drawings. If not indicated on Drawings, terminate drain connection at nearest accessible location that is not exposed to view by occupants.
 5. Provide each 90-degree change in direction with a Y- or T-fitting. Install a threaded plug connection in the dormant side of fitting or future use as a service cleanout.

B. Gravity Drains:
 1. Slope piping from unit connection toward drain termination at a constant slope of not less than one percent.

C. Pumped Drains:
 1. If unit condensate pump or lift mechanism is not included with an integral check valve, install a full-size check valve in each branch pipe near unit connection to prevent backflow into unit.

3.7 INSTALLATION OF REFRIGERANT PIPING

A. Refrigerant Tubing Kits:
 1. Unroll and straighten tubing to suit installation. Deviations in straightness of exposed tubing shall be unnoticeable to observer.
 2. Support tubing using hangers and supports indicated at intervals not to exceed [5 feet]<insert dimension>. Minimum rod size, 1/4 inch.
 3. Prepare tubing ends and make mating connections to provide a pressure tight and leak-free installation.

B. Install refrigerant piping according to ASHRAE 15 and governing codes.

C. Select system components with pressure rating equal to or greater than system operating pressure.

D. Install piping as short and direct as possible, with a minimum number of joints and fittings.

E. Arrange piping to allow inspection and service of equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as
specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

F. Install refrigerant piping and tubing in protective conduit where installed belowground.

G. Install refrigerant piping and tubing in rigid or flexible conduit in locations where exposed to mechanical damage.

H. Unless otherwise required by VRF HVAC system manufacturer, slope refrigerant piping and tubing as follows:

1. Install horizontal hot-gas discharge piping and tubing with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps to entrain oil in vertical runs.
4. Liquid lines may be installed level.

I. When brazing, remove or protect components that could be damaged by heat.

J. Before installation, clean piping, tubing, and fittings to cleanliness level required by VRF HVAC system manufacturer.

K. Joint Construction:

1. Ream ends of tubes and remove burrs.
2. Remove scale, slag, dirt, and debris from inside and outside of tube and fittings before assembly.
 a. Use Type BCuP (copper-phosphorus) alloy for joining copper fittings with copper tubing.
 b. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze.

3.8 INSTALLATION OF METAL HANGERS AND SUPPORTS

A. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for seismic restraints.

B. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Comply with MFMA-103 for metal framing system selections and applications that are not specified.

E. Fastener System Installation:

1. Install powder-actuated fasteners, for use in lightweight concrete or concrete slabs less than 4 inches thick, in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
3. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 “Roof Accessories” for curbs.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel.
 1. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Piping and Tubing Insulation:
 1. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 2. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.

N. Horizontal-Piping Hangers and Supports: Install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 3. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 4. Multiple horizontal pipes located indoors may use metal framing systems with split clamp attachment for each pipe in lieu if individual clevis hangers.
 5. Pipe stands for horizontal pipes located outdoors.
 6. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
7. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

O. Horizontal Piping Hanger Spacing and Rod Size: Install hangers for drawn-temper copper piping with the following maximum horizontal spacing and minimum rod sizes:

1. Sizes through NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

P. Plastic Pipe Hanger and Support Spacing:

1. Space hangers and supports according to pipe manufacturer's written instructions for service conditions.
2. Maximum spacing, 5 feet; minimum rod size, 1/4 inch.

Q. Vertical-Piping Clamps: Install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): If longer ends are required for riser clamps.

R. Support vertical runs at roof, at each floor, and at midpoint intervals between floors, not to exceed 5 feet.

S. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified.

T. Use hangers, supports, and attachments with galvanized coatings unless otherwise indicated.

U. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

V. Trim excess length of continuous-thread hanger and support rods to 1 inch.

W. Hanger-Rod Attachments: Install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
4. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

X. Building Attachments: Install the following types:

1. C-Clamps (MSS Type 23): For structural shapes.
2. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
4. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
3.9 INSTALLATION OF PIPING AND TUBING INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. Installation to maintain a continuous vapor barrier.

B. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are unavailable, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

E. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 INSTALLATION OF DUCT, ACCESSORIES, AND AIR OUTLETS

A. Where installing ductwork adjacent to equipment, allow space for service and maintenance.

B. Comply with requirements for metal ducts specified in Section 233113 "Metal Ducts."

C. Comply with requirements for nonmetal ducts specified in Section 233116 "Nonmetal Ducts."

D. Comply with requirements for air duct accessories specified in Section 233300 "Air Duct Accessories."

E. Comply with requirements for flexible ducts specified in Section 233346 "Flexible Ducts."

F. Comply with requirements for air diffusers specified in Section 233713.13 "Air Diffusers."

G. Comply with requirements for registers and grilles specified in Section 233713.23 "Registers and Grilles."
3.11 **ELECTRICAL INSTALLATION**

A. Comply with requirements indicated on Drawings and in applicable Division 26 Sections.

B. To extent electrical power is required for system equipment, components, and controls, and is not indicated on Drawings and addressed in the Specifications, the design for such electrical power shall be delegated to VRF HVAC system provider.

 1. Delegated design of electrical power to equipment, components and controls, and associated installation shall be included at no additional cost to Owner.

C. Connect field electrical power source to each separate electrical device requiring field electrical power. Coordinate termination point and connection type with Installer.

D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

E. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding connections.

F. Install nameplate or acrylic label with self-adhesive back for each electrical connection indicating electrical equipment designation and circuit number feeding connection.

 1. Nameplate shall be laminated phenolic layers of black with engraved white letters. Letters at least 1/2 inch high.
 2. Locate nameplate or label where easily visible.

G. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or revised in this Section.

 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.
 2. Outlet boxes for cables shall be no smaller than 4 inches square by 2-1/8 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
 3. Flexible metal conduit shall not be used.

H. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.

I. Install manufactured conduit sweeps and long-radius elbows if possible.

J. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.12 **SOFTWARE**

A. Cybersecurity:

 1. Software:

 a. Coordinate security requirements with IT department.
 b. Ensure that latest stable software release is installed and properly operating.
c. Disable or change default passwords to password using a combination of uppercase and lower letters, numbers, and symbols at least eight characters in length. Record passwords and turn over to party responsible for system operation and administration.

2. Hardware:
 a. Coordinate location and access requirements with IT department.
 b. Enable highest level of wireless encryption that is compatible with Owner's ICT network.
 c. Disable dual network connections.

3.13 INSTALLATION OF SYSTEM CONTROL CABLE

A. Comply with NECA 1.

B. Installation Method:
 1. Install cables in raceways except as follows:
 a. Within equipment and associated control enclosures.
 b. In accessible ceiling spaces where open cable installation method may be used.
 c. In gypsum board partitions where cable may be enclosed within wall cavity.
 2. Conceal raceway and cables except in unfinished spaces.

C. General Requirements for Cabling:
 2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable.
 5. Cables serving a common system may be grouped in a common raceway. Install control cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
 6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
 11. Support: Do not allow cables to lie on removable ceiling tiles or access panels.
 12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
 13. Provide strain relief.
 15. Do not bend cables in a radius less than 10 times the cable OD.
16. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
17. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.

D. Balanced Twisted-Pair Cable Installation:
2. Do not untwist balanced twisted-pair cables more than 1/2 inch at the point of termination to maintain cable geometry.

E. Open-Cable Installation:
1. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than [30 inches] <Insert dimension> apart.
2. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.

F. Separation from EMI Sources: Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded cable from potential EMI sources including electrical power wiring and equipment.

3.14 FIRESTOPPING
A. Comply with requirements in Section 078413 "Penetration Firestopping."
B. Comply with TIA-569-D, Annex A, "Firestopping."
C. Comply with BICSI TDMM, "Firestopping" Chapter.

3.15 GROUNDING INSTALLATION
A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
B. For low-voltage control cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.16 IDENTIFICATION
A. Identify system equipment, piping, tubing, and valves. Comply with requirements for identification specified in Section 230553 "Identification for HVAC Piping and Equipment."
B. Identify system electrical and controls components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
1. Identify each control cable on each end and at each terminal with a number-coded identification tag. Each cable shall have a unique tag.
3.17 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage VRF HVAC system manufacturer's service representative to advise and assist installers; witness testing; and observe and inspect components, assemblies, and equipment installations, including controls and connections.

1. Field service shall be performed by a factory-trained and authorized service representative of VRF HVAC system manufacturer whose primary job responsibilities are to provide direct technical support of its products.

 a. Additional factory-authorized representatives may assist with completion of certain activities only if supervised by manufacturer's employee. A factory-authorized representative shall not provide assistance without manufacturer's employee supervision.

2. Manufacturer shall provide on-site visits during the course of construction at installation milestones indicated. System Installer shall coordinate each visit in advance to give manufacturer sufficient notice to plan the visit.

 a. First Visit: Kick-off meeting.
 b. Second Visit: At approximately 25 percent completion of system(s).
 c. Third Visit: At approximately 50 percent completion of system(s).
 d. Fourth Visit: At approximately 75 percent completion of system(s).
 e. Fifth Visit: Final inspection before system startup.

3. Kick-off Meeting:

 a. Meeting shall include system Installer and other related trades with sole purpose of reviewing VRF HVAC system installation requirements and close coordination required to make a successful installation.
 b. Meeting shall be held at Project site and scheduled at a mutually agreed to time that occurs before the start of any part of system installation.
 c. Meeting shall cover the following as a minimum requirement:

 1) Review of latest issue of Contract Documents, Drawings, and Specifications, relevant to VRF HVAC systems.
 2) Manufacturer's installation requirements specific to systems being installed.
 3) Review of all relevant VRF HVAC system submittals, including delegated-design submittals.
 4) Required field activities related installation of VRF HVAC system.
 5) Project team communication protocol, contact information, and exchange of responsibilities for each party involved, including manufacturer, supplier, system Installer, and other related trades.

4. Site Visits: Activities for each site visit shall include the following:

 a. Meet with VRF HVAC system Installer to discuss field activities, issues, and suggested methods to result in a successful installation.
 b. Offer technical support to Installer and related trades as related to VRF system(s) being installed.
 c. Review progress of VRF HVAC system(s) installation for strict compliance with manufacturer's requirements.
 d. Advise and if necessary assist Installer with updating related refrigerant calculations and system documentation.
 e. Issue a report for each visit, documenting the visit.
1) Report to include name and contact information of individual making the visit.
2) Date(s) and time frames while on-site.
3) Names and contact information of people meeting with while on-site.
4) Clearly identify and list each separate issue that requires resolution. For each issue, provide a unique identification number, relevant importance, specific location or equipment identification, description of issue, recommended corrective action, and follow-up requirements needed. Include a digital photo for clarification if deemed to be beneficial.

5. Final Inspection before Startup:

a. Before inspection, Installer to provide written request to manufacturer stating the system is fully installed according manufacturer's requirements and ready for final inspection.

b. All system equipment and operating components shall be inspected. If components are inaccessible for inspection, they shall be made accessible before the final inspection can be completed.

c. Manufacturer shall provide a comprehensive inspection of all equipment and each operating component that comprise the complete system(s). Inspection shall follow a detailed checklist specific to each equipment and operating component.

d. Inspection reports for indoor units shall include, but not be limited to, the following:

1) Unit designation on Drawings.
2) Manufacturer model number.
3) Serial number.
4) Network address, if applicable.
5) Each equipment setting.
6) Mounting, supports, and restraints properly installed.
7) Proper service clearance provided.
8) Wiring and power connections correct.
9) Line-voltage reading(s) within acceptable range.
10) Wiring and controls connections correct.
11) Low-voltage reading(s) within an acceptable range.
12) Controller type and model controlling unit.
13) Controller location.
14) Temperature settings and readings within an acceptable range.
15) Humidity settings and readings within an acceptable range.
16) Condensate removal acceptable.
17) Fan settings and readings within an acceptable range.
18) Unit airflow direction within an acceptable range.
19) If applicable, fan external static pressure setting.
20) Filter type and condition acceptable.
21) Noise level within an acceptable range.
22) Refrigerant piping properly connected and insulated.
23) Condensate drain piping properly connected and insulated.
24) If applicable, ductwork properly connected.
25) If applicable, external interlocks properly connected.
26) Remarks.

e. Inspection reports for outdoor units shall include, but not be limited to, the following:

1) Unit designation on Drawings.
2) Manufacturer model number.
3) Serial number.
4) Network address, if applicable.
5) Each equipment setting.
6) Mounting, supports, and restraints properly installed.
7) Proper service clearance provided.
8) Wiring and power connections correct.
9) Line-voltage reading(s) within acceptable range.
10) Wiring and controls connections correct.
11) Low-voltage reading(s) within an acceptable range.
12) Condensate removal acceptable.
13) Noise level within an acceptable range.
14) Refrigerant piping properly connected and insulated.
15) Condensate drain piping properly connected and insulated.
16) Remarks.

f. Inspection reports for indoor, dedicated outdoor air ventilation units shall include, but not be limited to, the following:

1) Unit designation on Drawings.
2) Manufacturer model number.
3) Serial number.
4) Network address, if applicable.
5) Each equipment setting.
6) Mounting, supports, and restraints properly installed.
7) Proper service clearance provided.
8) Wiring and power connections correct.
9) Line-voltage reading(s) within acceptable range.
10) Wiring and controls connections correct.
11) Low-voltage reading(s) within an acceptable range.
12) Controller type and model controlling unit.
13) Controller location.
14) Temperature settings and readings within an acceptable range.
15) Humidity settings and readings within an acceptable range.
16) Condensate removal acceptable.
17) Fan settings and readings within an acceptable range.
18) Fan external static pressure setting.
19) Filter type and condition acceptable.
20) Noise level within an acceptable range.
21) Refrigerant piping properly connected and insulated.
22) Condensate drain piping properly connected and insulated.
23) Automatic dampers properly installed and operating.
24) Ductwork properly connected.
25) If applicable, external interlocks properly connected.
26) Remarks.

g. Inspection reports for energy recovery ventilators shall include, but not be limited to, the following:

1) Unit designation on Drawings.
2) Manufacturer model number.
3) Serial number.
4) Network address, if applicable.
5) Each equipment setting.
6) Mounting, supports, and restraints properly installed.
7) Proper service clearance provided.
8) Wiring and power connections correct.
9) Line-voltage reading(s) within acceptable range.
10) Wiring and controls connections correct.
11) Low-voltage reading(s) within an acceptable range.
12) Controller type and model controlling unit.
13) Controller location.
14) Temperature settings and readings within an acceptable range.
15) Humidity readings.
16) Condensate removal acceptable.
17) Fan settings and readings within an acceptable range.
18) Fan external static pressure setting.
19) Filter type and condition acceptable.
20) Noise level within an acceptable range.
21) Automatic dampers properly installed and operating.
22) Ductwork properly connected.
23) If applicable, external interlocks properly connected.
24) Remarks.

B. Perform the following tests and inspections with the assistance of manufacturer’s service representative:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Refrigerant Tubing Positive Pressure Testing:

1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
2. After completion of tubing installation, pressurize tubing systems to a test pressure of not less than 1.2 times VRF HVAC system operating pressure, but not less than 600 psig, using dry nitrogen.
3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of 24 hours. Allowance for pressure changes attributed to changes in ambient temperature are acceptable.
4. Prepare test report to record the following information for each test:

 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 c. Detailed description of extent of tubing tested.
 d. Date and time at start of test.
 e. Test pressure at start of test.
 f. Outdoor temperature at start of test.
 g. Name of person ending test, company name, phone number, and e-mail address.
 h. Date and time at end of test.
 i. Test pressure at end of test.
 j. Outdoor temperature at end of test.
 k. Remarks:

5. Submit test reports for Project record.

D. Refrigerant Tubing Evacuation Testing:
1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
2. After completion of tubing positive-pressure testing, evacuate tubing systems to a pressure of 500 microns.
3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of one hour(s) with no change.
4. Prepare test report to record the following information for each test:
 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 c. Detailed description of extent of tubing tested.
 d. Date and time at start of test.
 e. Test pressure at start of test.
 f. Outdoor temperature at start of test.
 g. Name of person ending test, company name, phone number, and e-mail address.
 h. Date and time at end of test.
 i. Test pressure at end of test.
 j. Outdoor temperature at end of test.
 k. Remarks:
5. Submit test reports for Project record.
6. Upon successful completion of evacuation testing, system shall be charged with refrigerant.

E. System Refrigerant Charge:
 1. Using information collected from the refrigerant tubing evacuation testing, system Installer shall consult variable refrigerant system manufacturer to determine the correct system refrigerant charge.
 2. Installer shall charge system following VRF HVAC system manufacturer's written instructions.
 3. System refrigerant charging shall be witnessed by system manufacturer's representative.
 4. Total refrigerant charge shall be recorded and permanently displayed at the system's outdoor unit.

F. Products will be considered defective if they do not pass tests and inspections.
G. Prepare test and inspection reports.

3.18 STARTUP SERVICE

A. Engage a VRF HVAC system manufacturer's service representative to perform system(s) startup service.
 1. Service representative shall be a factory-trained and -authorized service representative of VRF HVAC system manufacturer.
 2. Complete startup service of each separate system.
 3. Complete system startup service according to manufacturer's written instructions.

B. Startup checks shall include, but not be limited to, the following:
 1. Check control communications of equipment and each operating component in system(s).
2. Check each indoor unit’s response to demand for cooling and heating.
3. Check each indoor unit’s response to changes in airflow settings.
4. Check each indoor unit and outdoor unit for proper condensate removal.
5. Check sound levels of each indoor and outdoor unit.

C. Installer shall accompany manufacturer’s service representative during startup service and provide manufacturer’s service representative with requested documentation and technical support during startup service.

 1. Installer shall correct deficiencies found during startup service for reverification.

D. System Operation Report:

 1. After completion of startup service, manufacturer shall issue a report for each separate system.
 2. Report shall include complete documentation describing each startup check, the result, and any corrective action required.
 3. Manufacturer shall electronically record not less than two hours of continuous operation of each system and submit with report for historical reference.

 a. All available system operating parameters shall be included in the information submitted.

E. Witness:

 1. Invite Architect Owner and Commissioning Agent to witness startup service procedures.
 2. Provide written notice not less than 20 business days before start of startup service.

3.19 ADJUSTING

 A. Adjust equipment and components to function smoothly, and lubricate as recommended by manufacturer.

 B. Adjust initial temperature and humidity set points. Adjust initial airflow settings and discharge airflow patterns.

 C. Set field-adjustable switches and circuit-breaker trip ranges according to VRF HVAC system manufacturer’s written instructions, and as indicated.

 D. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.20 PROTECTION

 A. Protect products from moisture and water damage. Remove and replace products that are wet, moisture damaged, or mold damaged.

 B. Protect equipment from physical damage. Replace equipment with physical damage that cannot be repaired to new condition. Observable surface imperfections shall be grounds for removal and replacement.

 C. Protect equipment from electrical damage. Replace equipment suffering electrical damage.
D. Cover and seal openings of equipment to keep inside of equipment clean. Do not remove covers until finish work is complete.

3.21 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of system Installer who are manufacturer's authorized service representative. Include two service visits for preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper equipment and system operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.22 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.23 DEMONSTRATION

A. Engage a VRF HVAC system manufacturer's factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain entire system.

B. Instructor:

1. Instructor shall be factory trained and certified by VRF HVAC system manufacturer with current training on the system(s), equipment, and controls that are installed.
2. Instructor's credentials shall be submitted for review by Owner before scheduling training.
3. Instructor(s) primary job responsibility shall be Owner training.
4. Instructor(s) shall have not less than three years of training experience with VRF HVAC system manufacturer and past training experience on at least three projects of comparable size and complexity.

C. Schedule and Duration:

1. Schedule training with Owner at least 20 business days before first training session.
2. Training shall occur before Owner occupancy.
3. Training shall be held at mutually agreed date and time during normal business hours.
4. Each training day shall not exceed eight hours of training. Daily training schedule shall allow time for one-hour lunch period and 15-minute break after every two hours of training.
5. Perform not less than eight total hours of training.

D. Location: Owner shall provide a suitable on-site location to host classroom training.
E. Training Attendees: Assume three people.

F. Training Attendance: For record purposes, document training attendees at the start of each new training session. Record attendee's name, signature, phone number, and e-mail address.

G. Training Format: Individual training modules shall include classroom training followed by hands-on field demonstration and training.

H. Training Materials: Provide training materials in electronic format to each attendee.

 1. Include instructional videos showing general operation and maintenance that are coordinated with operation and maintenance manuals.
 2. Video record each classroom training session and submit an electronic copy to Owner before requesting Owner acceptance of training.

I. Acceptance: Obtain Owner written acceptance that training is complete and requirements indicated have been satisfied.

END OF SECTION 238129
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Copper building wire rated 600 V or less.
2. Metal-clad cable, Type MC, rated 600 V or less.
3. Connectors, splices, and terminations rated 600 V and less.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cerro Wire LLC.
2. General Cable Technologies Corporation.
3. Okonite Company (The).

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
E. Conductor Insulation:
 1. Type THHN and Type THWN-2: Comply with UL 83.

2.2 METAL-CLAD CABLE, TYPE MC

A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. General Cable Technologies Corporation.
 2. Okonite Company (The).

C. Standards:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. Comply with UL 1569.
 3. RoHS compliant.
 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL’s “Wire and Cable Marking and Application Guide.”

D. Circuits:

E. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

F. Ground Conductor: Insulated.

G. Conductor Insulation:
 1. Type TFN/THHN/THWN-2: Comply with UL 83.

H. Armor: Steel, interlocked.

2.3 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M Electrical Products.
 3. ILSCO.
 4. Thomas & Betts Corporation; A Member of the ABB Group.
C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 1. Material: Copper.
 2. Type: One hole with long barrels.
 3. Termination: Compression or Crimp.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS
 A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
 B. Branch Circuits: Copper. Solid for No. 14 AWG and smaller; stranded for No. 12 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.
 B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
 C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.
 D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
 E. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway.
 F. Branch Circuits Concealed in Ceilings: Type THHN/THWN-2, single conductors in raceway.
 G. Branch Circuits Concealed in Walls: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
 H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES
 A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
 B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

END OF SECTION 260519
SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backboards.
 2. Category 5e balanced twisted pair cable.
 3. Balanced twisted pair cabling hardware.
 4. RS-485 cabling.
 5. Low-voltage control cabling.

1.2 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency, RCDD, layout technician, installation supervisor, and field inspector.
 B. Source quality-control reports.
 C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.

1. Flame Travel Distance: 60 inches or less.
2. Peak Optical Smoke Density: 0.5 or less.
3. Average Optical Smoke Density: 0.15 or less.

C. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.

D. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.

E. RoHS compliant.

2.2 BACKBOARDS

A. Description: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels in Section 061000 "Rough Carpentry."

B. Painting: Paint plywood on all sides and edges with flat paint. Comply with requirements in Section 099123 "Interior Painting."

2.3 CATEGORY 5e BALANCED TWISTED PAIR CABLE

A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 5e cable at frequencies up to 100 MHz.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden Inc.
2. General Cable; General Cable Corporation.
3. Mohawk; a division of Belden Networking, Inc.

C. Standard: Comply with ICEA S-90-661, NEMA WC 63.1, and TIA-568-C.2 for Category 5e cables.

D. Conductors: 100-ohm, 24 AWG solid copper.

E. Shielding/Screening: Shielded twisted pairs (FTP).

F. Cable Rating: Plenum.

G. Jacket: White thermoplastic.

2.4 BALANCED TWISTED PAIR CABLE HARDWARE

A. Description: Hardware designed to connect, splice, and terminate balanced twisted pair copper communications cable.
B. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. **AMP NETCONNECT:** a TE Connectivity Ltd. company.
2. **General Cable:** General Cable Corporation.
3. **Hubbell Premise Wiring.**
4. **Leviton Manufacturing Co., Inc.**

C. **General Requirements for Balanced TwistedPair Cable Hardware:**

1. Comply with the performance requirements of Category 6.
2. Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
3. Cables shall be terminated with connecting hardware of same category or higher.

D. **Source Limitations:** Obtain balanced twisted pair cable hardware from single source from single manufacturer.

E. **Connecting Blocks:** 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare, integral with connector bodies, including plugs and jacks where indicated.

F. **Cross-Connect:** Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

1. Number of Terminals per Field: One for each conductor in assigned cables.

G. **Patch Panel:** Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.

1. **Features:**
 a. Universal T568A and T568B wiring labels.
 b. Labeling areas adjacent to conductors.
 c. Replaceable connectors.
 d. 24 or 48 ports.
2. Construction: 16-gauge steel and mountable on 19-inch equipment racks.
3. Number of Jacks per Field: One for each four-pair cable indicated.

H. **Patch Cords:** Factory-made, four-pair cables in 36-inchlengths; terminated with an eight-position modular plug at each end.

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

I. **Plugs and Plug Assemblies:**

1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.
2. Comply with IEC 60603-7-1, IEC 60603-7-2, IEC 60603-7-3, IEC 60603-7-4, and IEC 60603-7-5.
3. Marked to indicate transmission performance.
J. Jacks and Jack Assemblies:

1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.
2. Designed to snap-in to a patch panel or faceplate.
3. Standards.
 a. Category 5e, unshielded balanced twisted pair cable shall comply with IEC 60603-7-2.
 b. Category 5e, shielded balanced twisted pair cable shall comply with IEC 60603-7-3.
 c. Category 6, unshielded balanced twisted pair cable shall comply with IEC 60603-7-4.
 d. Category 6, shielded balanced twisted pair cable shall comply with IEC 60603-7.5.
 e. Category 6a, unshielded balanced twisted pair cable shall comply with IEC 60603-7-41.
 f. Category 6a, shielded balanced twisted pair cable shall comply with IEC 60603-7.51.

4. Marked to indicate transmission performance.

K. Faceplate:

1. Four port, vertical single gang faceplates designed to mount to single gang wall boxes.
2. Eight port, vertical double gang faceplates designed to mount to double gang wall boxes.
4. Metal Faceplate: Stainless steel, complying with requirements in Section 262726 "Wiring Devices."
5. For use with snap-in jacks accommodating any combination of balanced twisted pair, optical fiber, and coaxial work area cords.
 a. Flush mounting jacks, positioning the cord at a 45-degree angle.

L. Legend:

1. Machine printed, in the field, using adhesive-tape label.
2. Snap-in, clear-label covers and machine-printed paper inserts.

2.5 LOW-VOLTAGE CONTROL CABLE

A. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.

1. Multi-pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with NFPA 262.
2.6 CONTROL-CIRCUIT CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Encore Wire Corporation.
2. General Cable: General Cable Corporation.

B. Class 1 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

C. Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

D. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

E. Class 2 Control Circuits and Class 3 Remote-Control and Signal Circuits That Supply Critical Circuits: Circuit Integrity (CI) cable.

 1. Smoke control signaling and control circuits.

2.7 SOURCE QUALITY CONTROL

A. Factory test balanced twisted pair cables according to TIA-568-C.2.

B. Cable will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Test cables on receipt at Project site.

 1. Test each pair of twisted pair cable for open and short circuits.

3.2 INSTALLATION OF RACEWAYS AND BOXES

A. Comply with requirements in Section 260533 “Raceways and Boxes for Electrical Systems” for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.

 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.
 2. Outlet boxes shall be no smaller than 4 inches square by 1-1/2 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
 3. Flexible metal conduit shall not be used.
B. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.

C. Install manufactured conduit sweeps and long-radius elbows if possible.

D. Raceway Installation in Equipment Rooms:
 1. Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed, or in the corner of the room if multiple sheets of plywood are installed around perimeter walls of the room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard if entering the room from overhead.
 4. Extend conduits 3 inches above finished floor.
 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

E. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable between termination, tap, or junction points.
 5. Cables serving a common system may be grouped in a common raceway. Install network cabling and control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
 6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
 11. Support: Do not allow cables to lay on removable ceiling tiles.
 12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
 13. Provide strain relief.
 14. Keep runs short. Allow extra length for connecting to terminals. Do not bend cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
 15. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.
C. Balanced Twisted Pair Cable Installation:
 2. Install termination hardware as specified in Section 271513 "Communications Copper Horizontal Cabling" unless otherwise indicated.
 3. Do not untwist UTP cables more than 1/2 inch at the point of termination to maintain cable geometry.

D. Installation of Control-Circuit Conductors:
 1. Install wiring in raceways. Comply with requirements specified in Section 260533 “Raceways and Boxes for Electrical Systems.”

E. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 30 inches apart.
 3. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.

F. Installation of Cable Routed Exposed under Raised Floors:
 1. Install plenum-rated cable only.
 2. Install cabling after the flooring system has been installed in raised floor areas.
 3. Below each feed point, neatly coil a minimum of 72 inches of cable in a coil not less than 12 inches in diameter.

3.4 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified with a tag for future use.

3.5 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits; No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits; No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits; No 12 AWG.

3.6 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping" Chapter.
3.7 GROUNDING

A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.

B. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 IDENTIFICATION

A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Identify data and communications system components, wiring, and cabling according to TIA-606-B; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.

C. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Visually inspect cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

C. End-to-end cabling will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 260523
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Foundation steel electrodes.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article.
B. Qualification Data: For testing agency and testing agency's field supervisor.
C. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
 1. Plans showing as-built, dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 a. Ground rods.
 b. Ground rings.
 c. Grounding arrangements and connections for separately derived systems.
 2. Instructions for periodic testing and inspection of grounding features at grounding connections for separately derived systems based on NFPA 70B.
 a. Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 b. Include recommended testing intervals.

1.5 QUALITY ASSURANCE
A. Testing Agency Qualifications: Certified by NETA.
PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Burndy; Part of Hubbell Electrical Systems.
2. ERICO International Corporation.
3. ILSCO.
4. Thomas & Betts Corporation; A Member of the ABB Group.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

G. Conduit Hubs: Mechanical type, terminal with threaded hub.

H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

I. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

J. Straps: Solid copper, copper lugs. Rated for 600 A.

K. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

L. Water Pipe Clamps:
 1. Mechanical type, two pieces with stainless-steel bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.

C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

D. Conductor Terminations and Connections:
1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
3.6 FENCE GROUNDING

A. Fence Grounding: Install at maximum intervals of 1500 feet except as follows:

1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.

 a. Gates and Other Fence Openings: Ground fence on each side of opening.

B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

3.7 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer’s written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Conduit and cable support devices.
3. Support for conductors in vertical conduit.
4. Structural steel for fabricated supports and restraints.
5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
6. Fabricated metal equipment support assemblies.

B. Related Requirements:

1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.

2. Slotted support systems.
3. Equipment supports.
4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.

1. Include design calculations and details of hangers.
2. Include design calculations for seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, and coordinated with each other, using input from installers of the items involved.

B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.

C. Welding certificates.
1.4 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M.
 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.5.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. ERICO International Corporation.
 c. Thomas & Betts Corporation; A Member of the ABB Group.
 d. Unistrut; Part of Atkore International.
 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 4. Channel Width: Selected for applicable load criteria.
 5. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti, Inc.
 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) B-line, an Eaton business.
 2) Hilti, Inc.
 3) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 4) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

 1. NECA 1.
 2. NECA 101

B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT and RMC may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or
greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.

6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.

7. To Light Steel: Sheet metal screws.

8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Nonmetallic conduits and fittings.
3. Metal wireways and auxiliary gutters.
5. Handholes and boxes for exterior underground cabling.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit; a part of Atkore International.
 b. Thomas & Betts Corporation; A Member of the ABB Group.
 c. Wheatland Tube Company.
2. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. GRC: Comply with ANSI C80.1 and UL 6.

4. EMT: Comply with ANSI C80.3 and UL 797.

5. FMC: Comply with UL 1; zinc-coated steel.

6. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings: Comply with NEMA FB 1 and UL 514B.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. Thomas & Betts Corporation; A Member of the ABB Group.
 c. Wheatland Tube Company.

2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. Fittings, General: Listed and labeled for type of conduit, location, and use.

4. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: Setscrew or compression.

5. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

6. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Nonmetallic Conduit:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. RACO; Hubbell.
 c. Thomas & Betts Corporation; A Member of the ABB Group.

B. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

2. LFNC: Comply with UL 1660.
C. Nonmetallic Fittings:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. RACO; Hubbell.
 c. Thomas & Betts Corporation; A Member of the ABB Group.

2. Fittings, General: Listed and labeled for type of conduit, location, and use.

3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

4. Fittings for LFNC: Comply with UL 514B.

5. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hoffman; a brand of Pentair Equipment Protection.
3. Square D.

B. **Description:** Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. **Fittings and Accessories:** Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

2. Hoffman; a brand of Pentair Equipment Protection.
3. Hubbell Incorporated.
4. RACO; Hubbell.
5. Thomas & Betts Corporation; A Member of the ABB Group.
6. Wiremold / Legrand.

B. **General Requirements for Boxes, Enclosures, and Cabinets:** Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. **Sheet Metal Outlet and Device Boxes:** Comply with NEMA OS 1 and UL 514A.
D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

F. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

G. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

H. Device Box Dimensions: 4 inches by 2-1/8 inches by 2-1/8 inches deep.

I. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 3R with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer’s standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer’s standard enamel.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Oldcastle Precast, Inc.
 2. Standard: Comply with SCTE 77.
 3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
 4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
 5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 6. Cover Legend: Molded lettering, “ELECTRIC.”.
 7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: EMT.
3. Underground Conduit: RNC, Type EPC-40-PVC, concrete encased (where installed below parking lots or areas with vehicular access (roads, drives, etc.).
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated.

1. Exposed, Not Subject to Physical Damage: EMT.
2. Concealed in Ceilings and Interior Walls and Partitions: EMT.
3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
4. Damp or Wet Locations: GRC.
5. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 1/2-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.

D. Do not fasten conduits onto the bottom side of a metal deck roof.
E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

F. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

G. Arrange stub-ups so curved portions of bends are not visible above finished slab.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.

J. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

K. Support conduit within 12 inches of enclosures to which attached.

L. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

M. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

O. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

P. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

R. Surface Raceways:
1. Install surface raceway with a minimum 2-inch radius control at bend points.
2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer’s written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Conduit extending from interior to exterior of building.
4. Conduit extending into pressurized duct and equipment.
5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
6. Where otherwise required by NFPA 70.

U. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

V. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

W. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between the box and cover plate or the supported equipment and box.

X. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

Y. Locate boxes so that cover or plate will not span different building finishes.

Z. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

AA. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

BB. Set metal floor boxes level and flush with finished floor surface.

CC. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Concrete-Encased Ducts and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
2. Width: Excavate trench 3 inches (75 mm) wider than duct on each side.
3. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
4. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
5. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
6. Minimum Space between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.
7. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
8. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
9. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.
10. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
11. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

B. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.
2. Install backfill as specified in Section 312000 "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
4. Install manufactured duct elbows for stub-up at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

6. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes with bottom below frost line, 36” below grade.

E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.
2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.

2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel.

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. HOLDRITE.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.
3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260548.16 - SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Restraint channel bracings.
2. Restraint cables.
4. Mechanical anchor bolts.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.

 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For each seismic-restraint device.

1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic forces required to select seismic restraints and for designing vibration isolation bases.

 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

3. Seismic-Restraint Details:

 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.

B. Qualification Data: For professional engineer.

C. Welding certificates.

D. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.
2.2 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Vibration & Seismic Technologies, LLC.
3. Vibration Mountings & Controls, Inc.

B. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.3 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. TOLCO; a brand of NIBCO INC.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.4 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
4. Mason Industries, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
PART 3 - EXECUTION

3.1 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Equipment and Hanger Restraints:
 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 2. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.
3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

2. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
3. Test to 90 percent of rated proof load of device.

B. Seismic controls will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 260548.16
SECTON 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for raceways, conductors, and warning labels and signs.
2. Labels.
4. Tapes and stencils.
5. Tags.
7. Cable ties.
9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with NFPA 70E requirements for arc-flash warning labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.

C. Warning labels and signs shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

D. Equipment Identification Labels:
 1. Black letters on a white field.

2.3 LABELS

A. Self-Adhesive Wraparound Labels: Preprinted, 3-mil-thick, polyester flexible label with acrylic pressure-sensitive adhesive.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brother International Corporation.
 c. Panduit Corp.
 d. Seton Identification Products.
 2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 3. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

B. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brother International Corporation.
 c. Panduit Corp.
 d. Seton Identification Products.

2. **Minimum Nominal Size:**
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.

2.4 **TAPES AND STENCILS**

A. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.

B. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Seton Identification Products.

C. Underground-Line Warning Tape:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Marking Services, Inc.
 c. Seton Identification Products.

2. **Tape:**
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
3. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

4. Tag: Type ID:
 a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 b. Width: 3 inches.
 c. Overall Thickness: 5 mils.
 d. Foil Core Thickness: 0.35 mil.
 e. Weight: 28 lb/1000 sq. ft.
 f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.

2.5 CABLE TIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ideal Industries, Inc.
 2. Marking Services, Inc.
 3. Panduit Corp.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.6 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer’s wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer’s wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

H. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.

 1. Secure tight to surface of conductor, cable, or raceway.

I. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.

 1. Secure tight to surface of conductor, cable, or raceway.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:

 1. "EMERGENCY POWER."
 2. "POWER."
 3. "UPS."

M. Vinyl Wraparound Labels:

 1. Secure tight to surface at a location with high visibility and accessibility.
2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface of raceway or cable at a location with high visibility and accessibility.

P. Self-Adhesive Labels:
 1. On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer’s written instructions.

W. Underground Line Warning Tape:
 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trenchexceeds 16 inches overall.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

X. Cable Ties: General purpose, for attaching tags, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

3.2 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

C. Conductors to Be Extended in the Future: Attach write-on tags to conductors.

D. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

E. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

F. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

H. Equipment Identification Labels:
 1. Indoor Equipment: Self-adhesive label.
 2. Outdoor Equipment: Laminated acrylic or melamine sign.

END OF SECTION 260553
SECTION 260573.13 - SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.

 a. Short-circuit study input data, including completed computer program input data sheets.
 b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

 1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

 1. For Power Systems Analysis Software Developer.
 2. For Power System Analysis Specialist.
 3. For Field Adjusting Agency.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

 1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.

 2. The following are from the Short-Circuit Study Report:

 a. Final one-line diagram.
 b. Final Short-Circuit Study Report.
 c. Short-circuit study data files.
 d. Power system data.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

 1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.
2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.

F. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. SKM Systems Analysis, Inc.

B. Comply with IEEE 399 and IEEE 551.
 1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
 6. Derating factors and environmental conditions.
 7. Any revisions to electrical equipment required by the study.
D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:
 1. One-line diagram of system being studied.
 2. Power sources available.
 3. Manufacturer, model, and interrupting rating of protective devices.
 4. Conductors.
 5. Transformer data.

G. Short-Circuit Study Output Reports:
 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.
 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.
 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
d. No AC Decrement (NACD) ratio.

e. Equivalent impedance.

f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.

g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the study.

1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect’s attention.

2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.

3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 “Project Record Documents” for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for Project’s overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Obtain electrical power utility impedance at the service.

3. Power sources and ties.

4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.

5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.

6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.

7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.

8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.

9. Motor horsepower and NEMA MG 1 code letter designation.

10. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

11. Derating factors.
3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.

B. Calculate short-circuit currents according to IEEE 551.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.

H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

I. Include in the report identification of any protective device applied outside its capacity.
SECTION 260573.16 - COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1. Study results shall be used to determine coordination of series-rated devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 a. Coordination-study input data, including completed computer program input data sheets.
 b. Study and equipment evaluation reports.

3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power System Analysis Software Developer.
2. For Power Systems Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. The following are from the Coordination Study Report:
 a. Final one-line diagram.
 b. Final protective device coordination study.
 c. Coordination study data files.
 d. List of all protective device settings.
 e. Time-current coordination curves.
 f. Power system data.

1.7 QUALITY ASSURANCE

A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.
B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications:
 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society’s Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. SKM Systems Analysis, Inc.

B. Comply with IEEE 242 and IEEE 399.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.
2.2 COORDINATION STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 6. Any revisions to electrical equipment required by the study.
 7. Study Input Data: As described in "Power System Data" Article.

D. Protective Device Coordination Study:
 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 a. Phase and Ground Relays:
 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.
 b. Circuit Breakers:
 1) Adjustable pickups and time delays (long time, short time, and ground).
 2) Adjustable time-current characteristic.
 3) Adjustable instantaneous pickup.
 4) Recommendations on improved trip systems, if applicable.
 c. Fuses: Show current rating, voltage, and class.

E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
 2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
 3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.

5. Maintain selectivity for tripping currents caused by overloads.
6. Maintain maximum achievable selectivity for tripping currents caused by overloads on series-rated devices.
7. Provide adequate time margins between device characteristics such that selective operation is achieved.
8. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.

1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the overcurrent protective device study.

1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative.
who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Electrical power utility impedance at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Maximum demands from service meters.
13. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
14. Motor horsepower and NEMA MG 1 code letter designation.
15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
16. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).
17. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:

 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company’s overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Switchgear, switchboards, motor-control centers, and panelboards amperacity, and SCCR in amperes rms symmetrical.
 k. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain
device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

3.3 COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.
3. <Insert description>.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

H. Motor Protection:

1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

J. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.
K. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.

L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

1. For grounded systems, provide a bolted line-to-ground fault current study for areas as defined for the three-phase bolted fault short-circuit study.

M. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to short-circuit ratings.
2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.
4. Include in the report identification of any protective device applied outside its capacity.

3.4 MOTOR-STARTING STUDY

A. Perform a motor-starting study to analyze the transient effect of system's voltage profile during motor starting. Calculate significant motor-starting voltage profiles and analyze the effects of motor starting on the power system stability.

B. Prepare the motor-starting study report, noting light flicker for limits proposed by IEEE 141, and voltage sags so as not to affect operation of other utilization equipment on system supplying the motor.

3.5 FIELD ADJUSTING

A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.

B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:
1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 260573.16
SECTION 260573.19 - ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.
B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals may be in digital form:

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
2. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.
2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.

G. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. SKM Systems Analysis, Inc.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."

F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."
G. Arc-Flash Study Output Reports:

1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:

1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Restricted approach boundary.
7. Working distance.
8. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.

2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Protection boundaries.
 a. Arc-flash boundary.
 b. Restricted approach boundary.
 c. Limited approach boundary.
4. Arc flash PPE category.
5. Required minimum arc rating of PPE in Cal/cm squared.
6. Available incident energy.
7. Working distance.
8. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination study prior to starting the Arc-Flash Hazard Analysis.

2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."

C. Calculate maximum and minimum contributions of fault-current size.

1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.
3. Calculate arc-flash energy at 38 percent of maximum short-circuit current according to NFPA 70E recommendations.
4. Calculate arc-flash energy with the utility contribution at a minimum and assume no motor contribution.

D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.

E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.

F. Calculate the limited, restricted, and prohibited approach boundaries for each location.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:

1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
2. Fault contribution from synchronous motors and generators shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).
H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on one-line diagram on Drawings. Call discrepancies to Architect's attention.
2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys conducted by qualified technicians and engineers.

B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance or available short circuit current at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
13. Motor horsepower and NEMA MG 1 code letter designation.
14. Low-voltage conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
15. Medium-voltage conductor sizes, lengths, conductor material, conductor construction and metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).

3.4 LABELING

A. Apply [one] arc-flash label on the front cover of each section of the equipment and on side or rear covers with accessible live parts and hinged doors or removable plates for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.

B. Each piece of equipment listed below shall have an arc-flash label applied to it:

1. Motor-control center.
2. Low-voltage switchboard.
3. Switchgear.
4. Medium-voltage switch.
5. Medium voltage transformers
6. Low voltage transformers.
7. Panelboard and safety switch over 250 V.
8. Applicable panelboard and safety switch under 250 V.
9. Control panel.

C. Note on record Drawings the location of equipment where the personnel could be exposed to arc-flash hazard during their work.

1. Indicate arc-flash energy.
2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner’s maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.

END OF SECTION 260573.19
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. Standalone daylight-harvesting switching and dimming controls.
 4. Indoor occupancy and vacancy sensors.
 5. Switchbox-mounted occupancy and vacancy sensors.

B. Related Requirements:
 1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
 2. Interconnection diagrams showing field-installed wiring.
 3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale and coordinated with each other, using input from installers of the items involved.
B. Field quality-control reports.
C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.
B. Software and firmware operational documentation.
1.5 WARRANTY

A. Manufacturer’s Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. Invensys Controls.
 4. Leviton Manufacturing Co., Inc.
 5. NSi Industries LLC.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Contact Configuration: DPDT.
 3. Contact Rating: 30-A inductive or resistive, 240-V ac.
 4. Programs: Eight on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays.
 5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program on selected channels.
 6. Astronomic Time: All channels.
 7. Automatic daylight savings time changeover.
 8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. Leviton Manufacturing Co., Inc.
 4. NSi Industries LLC.
 5. TE Connectivity Ltd.

B. Description: Solid state, with SPST dry contacts rated for 1000 W incandescent or 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.

3. Time Delay: Fifteen-second minimum, to prevent false operation.

5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

6. Failure Mode: Luminaire stays ON.

2.3 INDOOR OCCUPANCY AND VACANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hubbell Building Automation, Inc.
2. Leviton Manufacturing Co., Inc.
3. Lutron Electronics Co., Inc.
4. Sensor Switch, Inc.

B. General Requirements for Sensors:

1. Wall-mounted, solid-state indoor occupancy and vacancy sensors.
2. Dual technology.
3. Separate power pack.
4. Hardwired connection to switch.
5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Operation:

a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.

7. Sensor Output: Sensor is powered from the power pack.
9. Power Pack: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
10. Mounting:

a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
12. Bypass Switch: Override the "on" function in case of sensor failure.
13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
C. Dual-Technology Type: Wall mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

2.4 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hubbell Building Automation, Inc.
2. Leviton Manufacturing Co., Inc.
3. Lutron Electronics Co., Inc.
4. Sensor Switch, Inc.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg. F.
4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor Tag WS1:

1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft..
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP.
5. Voltage: 120 V.
6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
8. Faceplate: Color matched to switch.

D. Wall-Switch Sensor Tag WS2:

1. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft..
2. Sensing Technology: PIR.
3. Switch Type: SP.
5. Voltage: 120 V.
6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.5 LIGHTING CONTACTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Square D.

B. Description: Electrically operated and electrically held, combination-type lighting contactors with nonfused disconnect, complying with NEMA ICS 2 and UL 508.
 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).
 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 3. Enclosure: Comply with NEMA 250.
 4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.6 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
3.2 WIRING INSTALLATION

A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

B. Wiring within Enclosures: Separate power-limited and nonpower-limited conductors according to conductor manufacturer’s written instructions.

C. Size conductors according to lighting control device manufacturer’s written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set
time delay to suit Owner's operations.
2. For daylighting controls, adjust set points and deadband controls to suit Owner's
operations.
3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
SECTION 262413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Service and distribution switchboards rated 600 V and less.
2. Surge protection devices.
3. Disconnecting and overcurrent protective devices.
4. Instrumentation.
5. Control power.
6. Accessory components and features.
7. Identification.

1.3 RELATED SECTIONS
A. Section 260574 "Overcurrent Protective Device Arc-Flash Study" for arc-flash study and arc-flash label requirements.

1.4 ACTION SUBMITTALS
A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

B. Shop Drawings: For each switchboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types for types other than NEMA 250, Type 1.
3. Detail bus configuration, current, and voltage ratings.
5. Detail utility company's metering provisions with indication of approval by utility company.
6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
7. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Delegated Design Submittal:
1. For arc-flash hazard study.
2. For arc-flash labels.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Seismic Qualification Data: Certificates, for switchboards, overcurrent protective devices, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.

 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Routine maintenance requirements for switchboards and all installed components.
 b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type but no fewer than two of each size and type.
 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
 4. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.
1.8 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency’s Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Remove loose packing and flammable materials from inside switchboards and install temporary electric heating (250 W per section) to prevent condensation.

C. Handle and prepare switchboards for installation according to NEMA PB 2.1.

1.10 FIELD CONDITIONS

A. Environmental Limitations:

1. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Owner’s written permission.
4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
1.12 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three years from date of Substantial Completion.

B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.

2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 SWITCHBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. Square D; by Schneider Electric.
4. Siemens.

B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 2.

E. Comply with NFPA 70.

F. Comply with UL 891.

G. Front-Connected, Front-Accessible Switchboards:

1. Main Devices: Fixed, individually mounted.
3. Sections front and rear aligned.

H. Nominal System Voltage: 208Y/120 V.

I. Main-Bus Continuous: 1200 A.

J. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.

 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

K. Outdoor Enclosures: Type 3R.

1. Finish: Factory-applied finish in manufacturer's standard color; undersurfaces treated with corrosion-resistant undercoating.

2. Enclosure: Flat roof; bolt-on rear covers for each section, with provisions for padlocking.

3. Power for Space Heaters, Ventilation, Lighting, and Receptacle: Include a control-power transformer, with spare capacity of 25 percent, within the switchboard. Supply voltage shall be 120 V ac.

L. Barriers: Between adjacent switchboard sections.

M. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.

N. Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.

 1. Space-Heater Control: Thermostats to maintain temperature of each section above expected dew point.

O. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six service disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.

P. Utility Metering Compartment: Barrier compartment and section complying with utility company's requirements; hinged sealable door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.

Q. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

R. Removable, Hinged Rear Doors and Compartment Covers: Secured by standard bolts, for access to rear interior of switchboard.

S. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments. All panels shall have pad lock clasps.
T. Buses and Connections: Three phase, four wire unless otherwise indicated.
 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 3. Copper feeder circuit-breaker line connections.
 5. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 6. Disconnect Links:
 a. Isolate neutral bus from incoming neutral conductors.
 b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
 7. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.

U. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

V. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers.

2.3 SURGE PROTECTION DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 2. General Electric Company.
 3. Square D; by Schneider Electric.

B. SPDs: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 1.

C. Features and Accessories:
 1. Integral disconnect switch.
 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 3. Indicator light display for protection status.
 4. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 5. Surge counter.

D. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 250kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
E. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:

1. Line to Neutral: 700 V for 208Y/120 V.
2. Line to Ground: 1200 V for 208Y/120 V.
3. Line to Line: 1000 V for 208Y/120 V.

F. SCCR: Equal or exceed 200 kA.

G. Nominal Rating: 20 kA.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

2.5 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, and the following:

3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
d. Megawatts: Plus or minus 1 percent.
e. Megavars: Plus or minus 1 percent.
f. Power Factor: Plus or minus 1 percent.
g. Frequency: Plus or minus 0.1 percent.
h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

2.6 CONTROL POWER

A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Mounting Accessories: For anchors, mounting channels, bolts, washers, and other mounting accessories, comply with requirements in Section 260548.16 "Seismic Controls for Electrical Systems" or manufacturer's instructions.

2.8 IDENTIFICATION

A. Presentation Media: Painted graphics in color contrasting with background color to represent bus and components, complete with lettered designations.

B. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.

1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
3. Protect from moisture, dust, dirt, and debris during storage and installation.
4. Install temporary heating during storage per manufacturer's instructions.

B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NEMA PB 2.1.

B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."

1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to switchboards.
6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.

D. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

F. Install filler plates in unused spaces of panel-mounted sections.

G. Install overcurrent protective devices, surge protection devices, and instrumentation.

1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Install spare-fuse cabinet.

I. Comply with NECA 1.
3.3 CONNECTIONS
A. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.
B. Support and secure conductors within the switchboard according to NFPA 70.
C. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3.4 IDENTIFICATION
A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform the following tests and inspections:
 1. Acceptance Testing:
 a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 b. Test continuity of each circuit.
 2. Test ground-fault protection of equipment for service equipment per NFPA 70.
 4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 5. Perform the following infrared scan tests and inspections, and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
c. Instruments and Equipment:

1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

6. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Switchboard will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 “Overcurrent Protective Device Coordination Study.”

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 262413
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.2 DEFINITIONS

A. MCCB: Molded-case circuit breaker.
B. SPD: Surge protective device.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.
B. Shop Drawings: For each panelboard and related equipment,
 1. Include dimensioned plans, elevations, sections, and details,
 2. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks,
 3. Detail bus configuration, current, and voltage ratings,
 4. Short-circuit current rating of panelboards and overcurrent protective devices,
 5. Include evidence of NRTL listing for SPD as installed in panelboard,
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components,
 7. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.

1.4 INFORMATIONAL SUBMITTALS

A. Panelboard schedules for installation in panelboards.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 FIELD CONDITIONS

A. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified,
 2. Altitude not exceeding 6600 feet.
1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 2. Height: 84 inches maximum.
 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

F. Incoming Mains Location: Convertible between top and bottom.

G. Phase, Neutral, and Ground Buses: Tin-plated aluminum.

H. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 3. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

I. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
J. Future Devices: Panelboards shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

K. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 3. Square D; by Schneider Electric.
 4. Siemens.

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches high, provide two latches, keyed alike.

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 3. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.

B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 3. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 g. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install panelboards and accessories according to NEMA PB 1.1.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 “Seismic Controls for Electrical Systems.”

D. Mount top of trim 72 inches above finished floor unless otherwise indicated.
E. Mount panelboard cabinet plumb and rigid without distortion of box.

F. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

G. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

H. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

I. Install filler plates in unused spaces.

J. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

K. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262416
SECTION 262500 - ENCLOSED BUS ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Plug-in bus assemblies.

1.3 DEFINITIONS
A. kAIC: kiloampere interrupting capacity.
B. SPD: Surge protective device.

1.4 ACTION SUBMITTALS
A. Shop Drawings: For each type of product.
 1. Show fabrication and installation details for enclosed bus assemblies. Include plans, elevations, and sections of components. Designate components and accessories, including clamps, brackets, hanger rods, connectors, straight lengths, and fittings.
 2. Show fittings, materials, fabrication, and installation methods for.
 3. Indicate required clearances, method of field assembly, and location and size of each field connection.
 4. Detail connections to switchgear, switchboards, transformers, and panelboards.
 5. Cable and conductor terminal sizes for bus and plug-in device terminations.

B. Delegated-Design Submittal: For seismic-restraint details, signed and sealed by a qualified professional engineer.
 1. Include design calculations for selecting seismic restraints.
 2. Detail fabrication, including anchorages and attachments to structure and to supported equipment.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and sections, drawn to scale. Include scaled bus-assembly layouts and relationships between components and adjacent structural, mechanical, and electrical elements. Show the following:

1. Vertical and horizontal enclosed bus-assembly runs, offsets, and transitions.
2. Clearances for access above and to the side of enclosed bus assemblies.
3. Vertical elevation of enclosed bus assemblies above the floor or bottom of structure.
4. Support locations, type of support, and weight on each support.
5. Location of adjacent construction elements including luminaires, HVAC and plumbing equipment, fire sprinklers and piping, signal and control devices, and other equipment.

B. Qualification Data: For testing agency.

C. Seismic Qualification Certificates: For enclosed bus assemblies, plug-in devices, accessories, and components.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed bus assemblies to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Plug-in Units: 10 percent of amount installed for each size indicated, but no fewer than 2 unit(s).

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle enclosed bus assemblies according to NEMA BU 1.1, "General Instructions for Handling, Installation, Operation, and Maintenance of Busway Rated 600 Volts or Less."

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

A. Source Limitations: Obtain enclosed bus assemblies and plug-in devices from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 857.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design enclosed bus assemblies, plug-in devices, and components.

B. Seismic Performance: Enclosed bus assemblies, plug-in devices, and components shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."

2. Component Importance Factor: 1.0.

C. Derate enclosed bus assemblies for continuous operation at indicated ampere ratings for ambient temperature not exceeding 122 deg F.

2.3 ENCLOSED BUS ASSEMBLIES

A. Plug-in Bus Assemblies: Low-impedance bus assemblies in totally enclosed, nonventilated housing; single-bolt joints; ratings as indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Starline.

2. Electrical Characteristics:

 a. Voltage: 120/208 V.
 b. Phase: See drawings.
 c. Percent of Neutral Capacity: 100.

3. Short-Circuit Interrupting Rating:
a. For Bus Amperage of less than 800: 65 symmetrical kAIC.

5. Bus Materials: Current-carrying copper conductors, fully insulated with Class 130C insulation except at stabs and joints; plated surface at stabs and joints.

6. Ground: 50 percent capacity, internal bus bar of material matching bus material.

7. Enclosure: Steel, with manufacturer’s standard finish.

8. Plug-in Openings: 24 inches o.c. on each side of bus, and hinged covers over unused openings. Plug-in openings shall be finger-safe with covers open or closed.

10. Mounting: Arranged flat, edgewise, or vertically without derating. Rated for hanger spacing of up to 10 feet for horizontally mounted runs and up to 16 feet for vertically mounted runs.

11. Expansion Section: Manufacturer’s standard expansion fitting for the provided busway with expansion capability to accommodate thermal expansion of bus and enclosure, and to accommodate movement across building expansion joints.

B. Joints:

1. Busway joints shall use one high-strength steel bolt with Belleville washers.

2. Bolts shall be torque indicating type and at ground potential.

3. Bolts shall be two-headed design to indicate when proper torque has been applied and require only a standard long handle wrench to be properly activated.

4. Access shall be required to only one side of the busway for tightening joint bolts.

5. Joint connection assemblies shall be removable without disturbing adjacent busway lengths.

6. Joint connection assemblies that rely on the joint cover to provide ground continuity are unacceptable.

2.4 PLUG-IN DEVICES

A. Molded-Case Circuit Breakers: UL 489; hookstick-operated handle, lockable with two padlocks, and interlocked with cover in closed position. Interlocked to prevent plug-in device insertion into or removal from bus with switch in closed position.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Starline.

B. Accessories: Hookstick operator, adjustable to maximum extension of 14 feet.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Coordinate layout and installation of enclosed bus assemblies and suspension system with other construction that penetrates ceilings or floors or is supported by them, including luminaires, HVAC equipment, fire-suppression system, and partition assemblies.

B. Equipment Mounting:

C. Support bus assemblies independent of supports for other elements such as equipment enclosures at connections to panelboards and switchboards, pipes, conduits, ceilings, and ducts.

 1. Design each fastener and support to carry load indicated by seismic requirements and to comply with seismic-restraint details according to Section 260548.16 "Seismic Controls for Electrical Systems."

 2. Design each fastener and support to carry 200 lb or 4 times the weight of bus assembly, whichever is greater.

 3. Support bus assembly to prevent twisting from eccentric loading.

 4. Support bus assembly with not less than 3/8-inch steel rods. Install side bracing to prevent swaying or movement of bus assembly. Modify supports after completion to eliminate strains and stresses on bus bars and housings.

 5. Fasten supports securely to building structure according to Section 260529 "Hangers and Supports for Electrical Systems."

 6. Bolts and nuts that are loosened for any reason after tightening to manufacturer's recommended torque setting shall be discarded and replaced with new bolts and nuts.

D. Install expansion fittings at locations where bus assemblies cross building expansion joints. Install at other locations so distance between expansion fittings does not exceed manufacturer's recommended distance between fittings.

E. Construct rated firestop assemblies where bus assemblies penetrate fire-rated elements such as walls, floors, and ceilings. Seal around penetrations according to Section 078413 "Penetration Firestopping."

F. Coordinate bus-assembly terminations to equipment enclosures to ensure proper phasing, connection, and closure.

G. Tighten bus-assembly joints with torque wrench or similar tool recommended by bus-assembly manufacturer. Tighten joints again after bus assemblies have been energized for 30 days.

H. Install bus-assembly, plug-in units. Support connecting conduit independent of plug-in unit.

I. Comply with NECA 1.
3.2 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:

1. After installing equipment test, for compliance with requirements according to NETA ATS.

2. Visual and Mechanical Inspection:

 a. Compare equipment nameplate data with Drawings and Specifications.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, and grounding.
 d. Verify correct connection according to single-line diagram.
 e. Inspect bolted electrical connections for high resistance using one or more of the following methods:

 1) Use of low-resistance ohmmeter.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data.
 3) Perform thermographic survey.

3. Electrical Tests:

 a. Perform insulation resistance measurements through bolted connections and bus joints with low-resistance ohmmeter.
 b. Perform insulation resistance tests of each busway, phase to phase, and phase to ground.
 c. Perform a dielectric withstand voltage test on each busway, phase to ground with phases not under test grounded for one minute.
 d. Measure resistance of assembled busway sections on insulated busway and compare values with adjacent phases.
 e. Perform phasing test on each busway tie section energized by separate sources.
 f. Verify operation of busway space heaters.

D. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

E. Enclosed bus assemblies will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.
3.4 **ADJUSTING**

A. Set field-adjustable, circuit-breaker trip ranges as indicated.

3.5 **CLEANING**

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

3.6 **PROTECTION**

A. Provide final protection to ensure that moisture does not enter bus assembly.

END OF SECTION 262500
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Standard-grade receptacles, 125 V, 20 A.
2. GFCI receptacles, 125 V, 20 A.
3. Twist-locking receptacles.
4. Pendant cord-connector devices.
5. Cord and plug sets.
6. Toggle switches, 120/277 V, 20 A.
7. Occupancy sensors.
8. Wall plates.
9. Floor service fittings.

1.3 DEFINITIONS

A. AFCI: Arc-fault circuit interrupter.
B. BAS: Building automation system.
C. EMI: Electromagnetic interference.
D. GFCI: Ground-fault circuit interrupter.
E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
F. RFI: Radio-frequency interference.
G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Samples: One for each type of device and wall plate specified, in each color specified.
1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing-label warnings and instruction manuals that include labeling conditions.

1.7 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Service-Outlet Assemblies: One for every 10, but no fewer than one.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS
 A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 B. Comply with NFPA 70.
 C. RoHS compliant.
 D. Comply with NEMA WD 1.
 E. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 2. Devices shall comply with requirements in this Section.
 F. Devices for Owner-Furnished Equipment:
 1. Receptacles: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.
 G. Device Color:
 1. Wiring Devices Connected to Normal Power System: As selected by Architect <Insert color> unless otherwise indicated or required by NFPA 70 or device listing.
 2. Wiring Devices Connected to Essential Electrical System: Red.
 3. SPD Devices: Blue.
 H. Wall Plate Color: For plastic covers, match device color.
 I. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.
2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

A. Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding.
3. Configuration: NEMA WD 6, Configuration 5-20R.
4. Standards: Comply with UL 498 and FS W-C-596.

2.3 GFCI RECEPTACLES, 125 V, 20 A

A. Duplex GFCI Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
3. Configuration: NEMA WD 6, Configuration 5-20R.
4. Type: Feed through.
5. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.

2.4 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Receptacles, 120 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Configuration: NEMA WD 6, Configuration L5-20R.

B. Twist-Lock, Single Receptacles, 250 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.5 PENDANT CORD-CONNECTOR DEVICES

A. Description: Matching, locking-type plug and receptacle body connector, heavy-duty grade.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton (Arrow Hart).
2. Hubbell Premise Wiring.
3. Leviton Manufacturing Co., Inc.

C. Configuration: NEMA WD 6, Configurations L5-20P and L5-20R.

D. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.

E. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

F. Standards: Comply with FS W-C-596.

2.6 CORD AND PLUG SETS

A. Match voltage and current ratings and number of conductors to requirements of equipment being connected.

B. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

C. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.7 TOGGLE SWITCHES, 120/277 V, 20 A

A. Single-Pole Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
d. Pass & Seymour/Legrand (Pass & Seymour).

2. Standards: Comply with UL 20 and FS W-S-896.

B. Three-Way Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Comply with UL 20 and FS W-S-896.

C. Four-Way Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Standards: Comply with UL 20 and FS W-S-896.

2.8 OCCUPANCY SENSORS

A. Wall Switch Sensor Light Switch, Dual Technology:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual (ultrasonic and passive infrared) technology.

4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.

5. Adjustable time delay of 15 minutes.

6. Able to be locked to Automatic-On mode.

B. Wall Sensor Light Switch, Passive Infrared:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Description: Switchbox-mounted, combination, lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.

4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.

5. Adjustable time delay of 15 minutes.

6. Able to be locked to Automatic-On mode.

2.9 WALL PLATES

A. Single Source: Obtain wall plates from same manufacturer of wiring devices.

B. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.

2. Material for Finished Spaces: 0.035-inch-thick, satin-finished, Type 302 stainless steel.

4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.

2.10 FLOOR SERVICE FITTINGS

A. Flush-Type Floor Service Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton (Arrow Hart).
 b. Hubbell Premise Wiring.
 c. Thomas & Betts Power Solutions; ABB Group.
 d. Wiremold / Legrand.

2. Description: Type: Modular, flush-type, dual-service units suitable for wiring method used, with cover flush with finished floor.

3. Compartments: Barrier separates power from voice and data communication cabling.

4. Service Plate and Cover: Rectangular, solid brass with satin finish.

5. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

6. Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 jacks for twisted pair cable, complying with requirements in Section 271513 "Communications Copper Horizontal Cabling."
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtailed.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailling existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtailed that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests and inspections:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

E. Wiring device will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Enclosed switches.
 2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product. Include construction details, material descriptions,
 dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include
 the following for each fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to
 accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating,
 local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment
 calculations are based.
 2. Dimensions and manufacturer's technical data on features, performance, electrical
 characteristics, and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves
 (instantaneous peak let-through current) for each type and rating of fuse. Submit in
 electronic format suitable for use in coordination software and in PDF format.
 5. Coordination charts and tables and related data.
 6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For fuses to include in emergency, operation, and
 maintenance manuals:
 1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bussmann, an Eaton business.
2. Edison; a brand of Bussmann by Eaton.
3. Littelfuse, Inc.
4. Mersen USA.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

1. Type RK-1: 250-V, zero- to 600-A rating, 200 kAIC.
2. Type RK-5: 250-V, zero- to 600-A rating, 200 kAIC, time delay.
3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, [fast acting], [time delay].
4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, [fast acting], [time delay].
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, [time delay].
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, [time delay].
7. Type T: 250-V, zero- to 1200-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

2.3 SPARE-FUSE CABINET

A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.

1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
2. Finish: Gray, baked enamel.
3. Identification: "SPARE FUSES" in 1-1/2-inch-high letters on exterior of door.
4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
1. Motor Branch Circuits: Class RK1, time delay.
2. Large Motor Branch (601-4000 A): Class L, time delay.
4. Other Branch Circuits: Class RK1, time delay.
5. Control Transformer Circuits: Class CC, time delay, control transformer duty.
6. Provide open-fuse indicator fuses or fuse covers with open fuse indication.
3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:

 1. Fusible switches.
 2. Nonfusible switches.
 3. Shunt trip switches.
 4. Enclosures.

1.3 DEFINITIONS

 A. NC: Normally closed.
 B. NO: Normally open.
 C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

 A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and Insert calculation program format electronic format.

 B. Shop Drawings: For enclosed switches and circuit breakers.

 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include wiring diagrams for power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Data: Certificates, for enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and Insert calculation program format electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Type HD, Heavy Duty:

1. Single throw.
2. Three pole.
3. 240-V ac.
4. 200 A and smaller.
5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Hookstick Handle: Allows use of a hookstick to operate the handle.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Type HD, Heavy Duty, Three Pole, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Hookstick Handle: Allows use of a hookstick to operate the handle.
4. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.5 SHUNT TRIP SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bussmann, an Eaton business.
2. Littelfuse, Inc.
3. Mersen USA.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.
C. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 240-V ac, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, pilot, indicating and control devices.

E. Accessories:
 1. Oiltight key switch for key-to-test function.
 2. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
 3. Form C alarm contacts that change state when switch is tripped.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 24-V ac.
 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
 7. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.6 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1) and gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (NEMA 250 Types 3R, 12).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be directly operable through the dead front trim of the enclosure (NEMA 250 Type 3R). The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
 1. Commencement of work shall indicate Installer’s acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner’s written permission.
 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.
F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections for Switches:
 1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 i. Verify correct phase barrier installation.
 j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
2. **Electrical Tests:**

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

1. Test procedures used.

2. Include identification of each enclosed switch and circuit breaker tested and describe test results.

3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 **ADJUSTING**

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

END OF SECTION 262816
SECTION 262913.03 - MANUAL AND MAGNETIC MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

2. Enclosed full-voltage magnetic motor controllers.
3. Combination full-voltage magnetic motor controllers.
4. Enclosures.
5. Accessories.
6. Identification.

1.3 DEFINITIONS

A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. MCP: Motor circuit protector.
D. NC: Normally closed.
E. OCPD: Overcurrent protective device.
F. SCCR: Short-circuit current rating.
G. SCPD: Short-circuit protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For each type of magnetic controller.

1. Include plans, elevations, sections, and mounting details.
2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
3. Wire Termination Diagrams and Schedules: Include diagrams for signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.

4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

C. Product Schedule: List the following for each enclosed controller:

1. Each installed magnetic controller type.
2. NRTL listing.
3. Factory-installed accessories.
5. SCCR of integrated unit.
6. For each combination magnetic controller include features, characteristics, ratings, and factory setting of the SCPD and OCPD.
 a. Listing document proving Type 2 coordination.
7. For each series-rated combination state the listed integrated short-circuit current (withstand) rating of SCPD and OCPDs by an NRTL acceptable to authorities having jurisdiction.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Seismic Qualification Data: Certificates, for magnetic controllers, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For magnetic controllers to include in operation and maintenance manuals.

1. In addition to items specified in "Operation and Maintenance Data," include the following:
 a. Routine maintenance requirements for magnetic controllers and installed components.
 b. Manufacturer’s written instructions for testing and adjusting circuit breaker and MCP trip settings.
 c. Manufacturer’s written instructions for setting field-adjustable overload relays.
d. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.

e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. If stored in areas subject to weather, cover controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers.

1.10 FIELD CONDITIONS

A. Ambient Environment Ratings: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than 23 deg F and not exceeding 104 deg F.
3. The effect of solar radiation is not significant.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.
C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.

D. Seismic Performance: Magnetic controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the controller will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.0.

2.2 MANUAL MOTOR CONTROLLERS

A. Motor-Starting Switches (MSS): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton.
 b. General Electric Company.
 d. Square D; by Schneider Electric.
 2. Standard: Comply with NEMA ICS 2, general purpose, Class A.
 3. Configuration: Nonreversing.
 4. Surface mounting.
 5. Green pilot light.

B. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton.
 b. General Electric Company.
 d. Square D; by Schneider Electric.
 2. Configuration: Nonreversing.
 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
 4. Overload Relays: NEMA ICS 2, bimetallic class as schedule on Drawings.
 5. Pilot Light: Red.

2.3 COMBINATION FULL-VOLTAGE MAGNETIC MOTOR CONTROLLER

A. Description: Factory-assembled, combination full-voltage magnetic motor controller consisting of the controller described in this article, indicated disconnecting means, SCPD and OCPD, in a single enclosure.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Eaton.
2. General Electric Company.
3. Rockwell Automation, Inc.
5. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.

E. Contactor Coils: Pressure-encapsulated type.
 1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:
 1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. Spare CPT Capacity as Indicated on Drawings: 50 VA.

G. Overload Relays:
 1. Thermal Overload Relays:
 a. Inverse-time-current characteristic.
 b. Class 10 tripping characteristic.
 c. Heaters in each phase shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.
 2. Solid-State Overload Relay:
 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

H. Fusible Disconnecting Means:
 1. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate indicated fuses.
 2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

I. Nonfusible Disconnecting Means:
 1. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
 2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
2.4 ENCLOSURES
A. Comply with NEMA 250, type designations as indicated on Drawings, complying with environmental conditions at installed location.
B. The construction of the enclosures shall comply with NEMA ICS 6.
C. Controllers in hazardous (classified) locations shall comply with UL 1203.

2.5 ACCESSORIES
A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 a. Push Buttons: As indicated in the controller schedule.
 b. Pilot Lights: As indicated in the controller schedule.

2.6 IDENTIFICATION
A. Controller Nameplates: Baked enamel signs, as described in Section 260553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.
B. Arc-Flash Warning Labels:
 1. Comply with requirements in Section 260573.19 "Arc-Flash Hazard Analysis." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.
 2. Comply with requirements in Section 260553 "Identification for Electrical Systems." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis. Labels shall be machine printed, with no field-applied markings.
 a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 1) Location designation.
 2) Nominal voltage.
 3) Flash protection boundary.
 4) Hazard risk category.
 5) Incident energy.
 6) Working distance.
 7) Engineering report number, revision number, and issue date.
 b. Labels shall be machine printed, with no field-applied markings.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for motor controllers, their relationship with the motors, and other conditions affecting performance of the Work.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems" unless otherwise indicated.

C. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

E. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

F. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Tests and Inspections:

2. Visual and Mechanical Inspection:

 a. Compare equipment nameplate data with drawings and specifications.

 b. Inspect physical and mechanical condition.
c. Inspect anchorage, alignment, and grounding.
d. Verify the unit is clean.
e. Inspect contactors:
 1) Verify mechanical operation.
 2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.
f. Motor-Running Protection:
 1) Verify overload element rating is correct for its application.
 2) If motor-running protection is provided by fuses, verify correct fuse rating.
g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

3. Electrical Tests:
 a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulation-resistance values shall be according to manufacturer's published data or NETA ATS Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than those of this table or manufacturer's recommendations shall be investigated and corrected.
 b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
 c. Test motor protection devices according to manufacturer's published data.
 d. Test circuit breakers as follows:
 1) Operate the circuit breaker to ensure smooth operation.
 2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.
 e. Perform operational tests by initiating control devices.

E. Motor controller will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.
3.5 SYSTEM FUNCTION TESTS

A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.

1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
3. Verify the correct operation of sensing devices, alarms, and indicating devices.

B. Motor controller will be considered defective if it does not pass the system function tests and inspections.

C. Prepare test and inspection reports.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchgear.

END OF SECTION 262913.03
SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.
B. See Section 262419 "Motor-Control Centers" for VFCs installed in motor-control centers.

1.2 DEFINITIONS
A. CE: Conformite Europeene (European Compliance).
B. CPT: Control power transformer.
C. DDC: Direct digital control.
D. EMI: Electromagnetic interference.
E. OCPD: Overcurrent protective device.
F. PID: Control action, proportional plus integral plus derivative.
G. RFI: Radio-frequency interference.
H. VFC: Variable-frequency motor controller.

1.3 ACTION SUBMITTALS
A. Product Data: For each type and rating of VFC indicated.
B. Shop Drawings: For each VFC indicated.
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Seismic Qualification Certificates: For each VFC, accessories, and components, from manufacturer.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.

C. Product certificates.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB Low Voltage HVAC Drives.
2. Danfoss Inc.
3. Rockwell Automation, Inc.

2.2 SYSTEM DESCRIPTION

A. General Requirements for VFCs:

1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.

B. Application: variable torque.

C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL.
as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of NEMA MG 1 motors.
2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.

F. Unit Operating Requirements:
 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 2. Input AC Voltage Unbalance: Not exceeding 3 percent.
 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 4. Minimum Efficiency: 97 percent at 60 Hz, full load.
 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
 7. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
 8. Humidity Rating: Less than 95 percent (noncondensing).
 11. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 12. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
 13. Speed Regulation: Plus or minus 5 percent.
 14. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
 15. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

G. Inverter Logic: Microprocessor based, 16 bit, isolated from all power circuits.

H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

I. Internal Adjustability Capabilities:
 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 3. Acceleration: 0.1 to 999.9 seconds.
 4. Deceleration: 0.1 to 999.9 seconds.
 5. Current Limit: 30 to minimum of 150 percent of maximum rating.

J. Self-Protection and Reliability Features:
 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
3. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
5. Inverter overcurrent trips.
6. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
7. Critical frequency rejection, with three selectable, adjustable deadbands.
8. Instantaneous line-to-line and line-to-ground overcurrent trips.
11. Short-circuit protection.

K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

L. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.

M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

P. Integral Input Disconnecting Means and OCPD: UL 489, thermal-magnetic circuit breaker with pad-lockable, door-mounted handle mechanism.

1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
3. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
5. NC alarm contact that operates only when circuit breaker has tripped.

2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.

1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."
2.4 CONTROLS AND INDICATION

A. Status Lights: Door-mounted LED indicators displaying the following conditions:

1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
2. Security Access: Provide electronic security access to controls through identification and password with at least one level of access: View only; view and operate; and view, operate, and service.
 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:
 a. A minimum of two programmable analog inputs: 0- to 10-V dc.
 b. A minimum of six multifunction programmable digital inputs.

2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:
a. 0- to 10-V dc.
b. 4- to 20-mA dc.
c. Potentiometer using up/down digital inputs.
d. Fixed frequencies using digital inputs.

3. Output Signal Interface: A minimum of one programmable analog output signal(s) (0- to 10-V dc), which can be configured for any of the following:

a. Output frequency (Hz).
b. Output current (load).
c. DC-link voltage (V dc).
d. Motor torque (percent).
e. Motor speed (rpm).
f. Set point frequency (Hz).

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

1. Number of Loops: One.

2.5 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.

1. Dry and Clean Indoor Locations: Type 1.
2. Outdoor Locations: Type 3R.

B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.6 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.

1. Push Buttons: Covered.

B. Reversible NC/NO bypass contactor auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

E. Supplemental Digital Meters:
1. Elapsed-time meter.
2. Kilowatt meter.

F. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 4X enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

G. Cooling Fan and Exhaust System: For NEMA 250, Type 1; UL 508 component recognized: Supply fan, with composite intake and exhaust grills and filters; 120-V ac; obtained from integral CPT.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

B. Roof-Mounting Controllers: Install VFC on roofs with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished roof surface unless otherwise indicated, and by bolting units to curbs or mounting on freestanding, lightweight, structural-steel channels bolted to curbs. Seal roof penetrations after raceways are installed.

1. Curbs and roof penetrations are specified in Section 077200 "Roof Accessories."
2. Structural-steel channels are specified in Section 260529 "Hangers and Supports for Electrical Systems."

C. Seismic Bracing: Comply with requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in each fusible-switch VFC.

F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."

G. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors are installed.

H. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

I. Comply with NECA 1.
3.2 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

3.3 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each VFC with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:

 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:

 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
 3. Test continuity of each circuit.
 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect before starting the motor(s).
 5. Test each motor for proper phase rotation.
 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. VFCs will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.
3.5 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Architect before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

E. Set field-adjustable circuit-breaker trip ranges

F. Set field-adjustable pressure switches.

3.6 DEMONSTRATION

A. Train Owner’s maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923
SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.
B. Related Requirements:
 1. Section 262413 "Switchboards" for factory-installed SPDs.
 2. Section 262416 "Panelboards" for factory-installed SPDs.

1.3 DEFINITIONS
A. Inominal: Nominal discharge current.
B. MCOV: Maximum continuous operating voltage.
C. Mode(s), also Modes of Protection: The pair of electrical connections where the VPR applies.
D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.
E. OCPD: Overcurrent protective device.
F. SCCR: Short-circuit current rating.
G. SPD: Surge protective device.
H. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.
1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Maintenance Data: For SPDs to include in maintenance manuals.

1.7 WARRANTY
A. Manufacturer's Warranty: Manufacturer agrees to replace or replace SPDs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS
A. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. Comply with UL 1449.
D. MCOV of the SPD shall be the nominal system voltage.

2.2 SERVICE ENTRANCESUPPRESSOR
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Current Technology Inc.
 2. Eaton
 3. General Electric Company
 4. LEA International
 5. Liebert; a brand of Vertiv
 6. Schneider Electric USA, Inc
 7. Siemens Industry, Inc., Energy Management Division
 8. Square D; by Schneider Electric

B. SPDs: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 1
 1. SPDs with the following features and accessories:
 a. Integral disconnect switch.
b. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
c. Indicator light display for protection status.
d. Surge counter.

C. Comply with UL 1283.

D. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 320 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

E. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V for 208Y/120 V.
 2. Line to Ground: 1200 V for 208Y/120 V.
 3. Line to Line: 1000 V for 208Y/120 V.

F. SCCR: Equal or exceed 100 kA.

G. Inominal Rating: 20 kA.

2.3 PANEL SUPPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ABB USA
 2. Current Technology Inc
 3. Eaton
 4. General Electric Company
 5. LEA International
 6. Liebert; a brand of Vertiv
 7. Siemens Industry, Inc., Energy Management Division
 8. Square D; by Schneider Electric

B. SPDs: Comply with UL 1449, Type 1.
 1. Include LED indicator lights for power and protection status.
 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.

C. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

D. Comply with UL 1283.

E. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V for 208Y/120 V.
 2. Line to Ground: 700 V for 208Y/120 V.
 3. Neutral to Ground: 700 V for 208Y/120 V.
4. Line to Line: 1200V for 208Y/120V

F. SCCR: Equal or exceed 100 kA.

G. Nominal Rating: 20 kA.

2.4 ENCLOSURES

A. Indoor Enclosures: NEMA 250, Type 1.

B. Outdoor Enclosures: NEMA 250, Type 3R.

2.5 CONDUCTORS AND CABLES

A. Power Wiring: Same size as SPD leads, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Class 2 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14 AWG, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.

C. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.

D. Use crimped connectors and splices only. Wire nuts are unacceptable.

E. Wiring:

 1. Power Wiring: Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

 2. Controls: Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.
1. Compare equipment nameplate data for compliance with Drawings and Specifications.
2. Inspect anchorage, alignment, grounding, and clearances.
3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. An SPD will be considered defective if it does not pass tests and inspections.
C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

A. Complete startup checks according to manufacturer's written instructions.
B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests, and reconnect them immediately after the testing is over.
C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 264313
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Related Requirements:

1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product, arranged by designation.
B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale and coordinated with each other, using input from installers of the items involved:
B. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
C. Product Certificates: For each type of luminaire.

D. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE 7.

B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Standards:

1. ENERGY STAR certified.
2. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
3. UL Listing: Listed for damp location.
4. Recessed luminaires shall comply with NEMA LE 4.

C. CRI of minimum 80. CCT of 3500 K.

D. Rated lamp life of 50,000 hours to L70.

E. Lamps dimmable from 100 percent to 0 percent of maximum light output.

F. Internal driver.

G. Nominal Operating Voltage: 120 V ac.
1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

H. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear painted finish.

2.3 MATERIALS
A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

2.4 METAL FINISHES
A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT
A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
C. Install lamps in each luminaire.
D. Supports: Sized and rated for luminaire weight.

E. Flush-Mounted Luminaire Support: Secured to outlet box.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls Attached to a minimum 20 gauge backing plate attached to wall structural members.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- diameter aircraft cable supports adjustable.
 2. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire using approved fasteners in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

K. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 265119
SECTION 265213 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Testing Agency Certified Data: For indicated luminaires and signs, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires and signs shall be certified by manufacturer.
b. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Samples: For each product and for each color and texture specified.

D. Samples for Initial Selection: For each type of luminaire with factory-applied finishes.

E. Samples for Verification: For each type of luminaire.
 1. Include Samples of luminaires and accessories to verify finish selection.

F. Product Schedule:
 1. For emergency lighting units. Use same designations indicated on Drawings.
 2. For exit signs. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing laboratory providing photometric data for luminaires.

B. Product Certificates: For each type of luminaire.

C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Provide seismic qualification certificate for each piece of equipment.

D. Product Test Reports: For each luminaire for tests performed by a qualified testing agency.

E. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
2. Luminaire-mounted, emergency battery pack: One for every 20 emergency lighting units. Furnish at least one of each type.
3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer’s standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Power Unit Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.
2. Warranty Period for Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Bulb Shape: Complying with ANSI C79.1.

G. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast.

1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F, with an average value exceeding 95 deg F over a 24-hour period.
 b. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
 c. Humidity: More than 95 percent (condensing).
 d. Altitude: Exceeding 3300 feet.

4. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.

 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
5. Battery: Sealed, maintenance-free, nickel-cadmium type.
6. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
7. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
8. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

H. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.
1. Emergency Connection: Operate one LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire.
2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay reconnects lamps from battery, and battery is automatically recharged and floated on charger.
5. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the emergency power unit manufacturer, whichever is less.
6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
8. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amerlux.
 b. Cooper Lighting, an Eaton business.
 c. Evenlite, Inc.
 d. Hubbell Industrial Lighting; Hubbell Incorporated.
 e. Lithonia Lighting; Acuity Brands Lighting, Inc.
 f. Philips Lighting Company.
 g. Ruud Lighting Direct.
2. Operating at nominal voltage of 120 V ac.
3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
4. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.

2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Housings:
 1. Extruded aluminum housing.
 2. Clear anodized finish.

D. Conduit: Electrical metallic tubing, minimum 3/4 inch in diameter.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire and emergency power unit weight.
 2. Able to maintain luminaire position when testing emergency power unit.
 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.

E. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

F. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Perform startup service:
 1. Charge emergency power units and batteries minimum of one hour and depress switch to conduct short-duration test.
 2. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 ADJUSTING

A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 265213
Section 27 10 01 – STRUCTURED CABLELING GENERAL REQUIREMENTS

1. SCOPE

A. This document describes general products and execution requirements relating to furnishing and installing Telecommunications Cabling for Oregon State University. Backbone and horizontal cabling comprised of Copper and Fiber Optic, and support systems are covered under this document. All installations are warranted and shall be pre-registered with Ortronics/Superior Essex before work begins as does Corning Fiber Systems.

B. The Horizontal (workstation) Cabling System shall consist of a minimum of (1) Category 3 and (2) Category 6, 4-pair Unshielded Twisted Pair (UTP) Copper Cables to each work area outlet in office locations unless otherwise noted for specific locations. The cables shall be installed from the Work Area Outlet to the appropriate Telecommunications Room (TR) and routed to the appropriate rack or backboard serving that area and terminated as specified in this document.

C. All cables and related pathways, supports, terminations, and grounding hardware shall be furnished, installed, wired, tested, labeled, and documented by the Telecommunications contractor as detailed in this document and required by contract conditions.

D. Product specifications, general design considerations, and installation guidelines are provided in this document. Quantities of telecommunications outlets, communication room details, equipment racks, cable routing and outlet types will be provided as project specific information by bid specification and/or bid drawings. The contractor shall meet or exceed all requirements for any infrastructure system as detailed within this document. This document shall be referenced within a projects specific scope of work.

2. APPROVED CONTRACTOR:

A. The Telecommunications contractor submitting a response regarding an Oregon State University Voice/Data Infrastructure solicitation must be an approved Ortronics Certified Installer Plus (CIP) and a certified Corning Cabling Systems NPI Installer. Solicitation responses from a single contractor not certified by Ortronics and Corning Fiber Systems as (CIP/NPI) will not be accepted. Solicitation responses will only be accepted from firms certified by Corning Cable Systems and Ortronics. The Telecommunications contractor is responsible for workmanship and installation practices in accordance with the Ortronics CIP Program and as the Corning Cabling Systems Program dictates.

B. It is the intent of Oregon State University's Campus Infrastructure Standard to ensure that a contractor is both an Ortronics CIP and a Corning NPI installer. Contractors must possess an Ortronics CIP and a Corning NPI certification within the state of Oregon to qualify for solicitation responses.

C. A contractor that is a valid Ortronics CIP cannot engage a subcontractor to perform any work within the project scope.

D. A contractor that is a valid Corning NPI cannot engage a subcontractor to perform any work within the project scope.

3. SUBMITTALS:

A. Submit appropriate cut sheets and samples for all products, hardware and cabling as detailed in project specifications and drawings.

B. Work shall not proceed without OSU Information Services approval of the submitted items.

4. REFERENCES
A. All work shall be performed in accordance with the following Codes and industry Standards, unless noted otherwise:

01. NFPA 70 – National Electrical Code, current version adopted by local or State AHJ.

03. ANSI/TIA/EIA 569-C – Commercial Building Standard for Telecommunications Pathways and Spaces, current version.

04. ANSI/TIA/EIA 606-B – Administration Standard for Commercial Telecommunications Infrastructure, current version.

05. ANSI/TIA/EIA 607-B – Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications, current version.

06. IEEE 241 - IEEE Recommended Practice for Electric Power Systems in Commercial Buildings, pertaining to communication systems.

5. WARRANTY

A. Ortronics/Superior Essex nCompass Limited Life Time warranty for horizontal subsystem.

01. nCompass Category 6+ Cabling, Connectivity Hardware and Patch Cables shall be covered by a nCompass Limited Lifetime warranty labor and application assurance warranty. The application assurance portion shall provide coverage for the cabling system to support the applications that are designed for the specifications outlined in ANSI/TIA/EIA 568-C.0-2. These applications include, but are not limited to 10BASE-T, 100BASE-T, 1000BASE-T and 155 Mb/s ATM.

02. Corning 25-year Warranty for fiber optic riser and outside plant backbone subsystems.

6. SUMMARY

A. This Section includes general requirements specifically applicable to Division 27.

01. Work Specifically Excluded from Project:

a. Incoming common carrier services.

c. Wide Area Network Systems.

d. Materials provided by the owner as identified in the Contract Documents.

B. The Contractor shall be responsible for:

01. Providing all additional materials, and the necessary labor and services required to ensure all components of the system are completely installed in accordance with the intent of the Contract Documents.

02. Furnishing and installing all incidental items not actually shown or specified, but which are required by good practice to provide complete functional systems.

03. Coordinating the details of facility equipment and construction for all specification divisions that affect the work covered under this Division.

a. Coordinating all activities with the overall construction schedule.
04. Developing bill of materials, perform material management and efficient use of the materials whether they are issued by the Contractor, the owner or purchased by the Contractor.

05. Ensure materials in excess of those required to complete the project are kept in their original condition and packaging for restocking.

 a. Ensure project is properly registered for a nCompass warranty.

C. Intent of Drawings:

01. Communications plan drawings show only general locations of equipment, devices, raceways, cable trays, boxes, etc. All dimensioned locations and elevations are approximate. The contractor is responsible for the field coordination of communications work with the other trades prior to beginning work.

02. The contractor shall be responsible for the proper placement and routing of equipment, cable, raceways, cable tray, and related components; according to the Contract Documents and subject to prior review by contractor.

03. Refer all conflicts between Contract Documents to owner for resolution.

7. SYSTEM DESCRIPTION

A. The owner will implement a comprehensive integrated communications distribution system, as described in paragraph B below, to provide wiring infrastructure which may be used to support one or more of the following services and systems:

01. Telephony and Data telecommunications.

02. Wireless systems.

03. Facilities management systems.

04. Video telecommunications

B. The communications distribution system consists of the following major subsystems, as specified elsewhere:

01. Interbuilding Backbone: The interbuilding subsystem refers to all twisted-pair and fiber optic backbone communications cabling connecting the Main Building Entrance Facility Room (BEF) to each building Main Distribution Frame room (MDF) in all buildings on the campus. Note: typically outside plant cables.

02. Intrabuilding Backbone: The intrabuilding subsystem refers to all twisted-pair and fiber optic backbone communications cabling connecting the Main Distribution Frame room (MDF) to each Intermediate Distribution Frame Room (IDF) in the buildings.

03. Communication Rooms: Main Distribution Frame (MDF) and Intermediate Distribution Frame (IDF).

04. Horizontal Distribution: The horizontal distribution subsystem refers to all intra-building twisted-pair and fiber optic communications cabling connecting telecommunication rooms (IDF’s) to telecommunication outlets (TOs) located at individual work areas.

05. Work Area Distribution Subsystem: Patch cords, adapters, and devices located between the TO and station equipment.

C. The communications distribution system is based on a combination of the following communications transmission technologies as defined by specific project specifications:

01. 100 ohm 4-pair unshielded twisted-pair cable. (Cat 6, Cat 6a)
02. 100-ohm multi-pair unshielded twisted-pair cable. (Cat 3). Note: nCompass warranty does not apply to 100-ohm multi-pair cables.

03. OM3 and OM4 multimode fiber optic cable.

04. 850 nm Laser Optimized 50/125-micron multimode fiber optic cable.

05. 8.3/125-micron singlemode fiber optic cable.

06. 8-position telecommunications jacks.

07. 8-position telecommunications patch panels

08. Insulation displacement connector (IDC) type field terminated wiring blocks

09. Factory Terminated copper patch cords

10. Rack mount fiber optic hardware

11. Wall mounted fiber optic hardware

12. Fiber optic connectors.

13. Factory terminated fiber optic patch cords

D. The work locations and limits of work are shown on the drawings.

8. DESIGN/ENGINEERING REQUIREMENTS

A. BICSI RCDD Certification is required for anyone performing infrastructure design, specifications and/or drawings for solicitation and construction. All drawings issued for construction shall have valid RCDD stamp.

B. Compliance by the contractor with the provisions of this specification does not relieve contractor of the responsibilities of furnishing materials and equipment of proper design, mechanically and electrically suited to meet operating guarantees at the specified service conditions.

C. The following are incorporated into the design:

01. Minimum communication room size for BEF room shall be no less than 14' x 12'.

02. Minimum communication room size for MDF room shall be no less than 14' x 12'.

03. Minimum communication room size for an IDF room shall be no less than 10' x 12'.

04. All pathways, conduits, cable trays, slots and sleeves shall have no less than 50% future fill capacity when project is completed.

05. All pathways, conduits, cable trays, slots and sleeves shall not have other cabling (fire alarm, Audio Visual, security etc.) routed within or attached to them.

06. The location of communication rooms is intended to restrict the maximum horizontal subsystem wiring length (defined as a channel between a telecommunications room cross-connect termination field and a served TO) to 295 feet (90 meters).

07. All communication rooms shall have cooling calculated at 7KW of power consumption for each open frame communications rack. 12KW of power for each Communication cabinet.

08. It is the intent of this specification to ensure security of communication rooms and sensitive information. Electrical panels, fire alarm panels, and security systems are not to be incorporated into communication room space, racks, cabinets or walls.

9. PROJECT RECORD DOCUMENTS
A. Provide detailed project record documentation within 30 days of substantial completion of the work.

01. Maintain separate sets of red-lined record drawings for the communications work which show the exact placement and identification of as-built system components.

02. Provide communication pathway record drawings which indicate exact placement and routing for all components, e.g., maintenance holes, handholes, conduit, wireway, cable tray, pull boxes, enclosures, telecommunications outlet boxes, etc.

03. Provide communication room record drawings which indicate exact placement for all components; e.g., conduit, wireway, cable tray, backboards, equipment cabinets, equipment racks, cross-connect equipment, etc.

04. Provide communication wiring and cabling record “As-Builds” drawings and schedules which indicate exact placement, routing, and connection details for all components, e.g., twisted-pair and fiber optic cables, splices, cable cross-connect termination locations, enclosures, telecommunications outlets, cross-connect jumpers, patch cords, etc.

05. Provide network schematics when appropriate.

10. APPROVALS AND SUBSTITUTIONS

A. Substitutions are not authorized without written approval from owners authorized representative through addendum.
Section 27 11 00 – COMMUNICATIONS EQUIPMENT ROOM FITTINGS

1. SUMMARY
 A. The telecommunications spaces will be referred as Building Entrance Facility (BEF), Equipment Room (ER), Telecommunications Room (TR), Telecommunications Enclosure (TE), and Data Center (DC) in this document is intended to house racks, cabinets and equipment necessary for the support of the communications cabling infrastructure.
 B. Refer to Construction Standard 13 68 00 for more information about communication room requirements.

2. TELECOMMUNICATIONS BACKBOARDS
 A. Wall mounted termination block fields shall be mounted on A/C 4’ x 8’ x .75” void free plywood. The plywood shall be mounted vertically 12” above the finished floor. The plywood shall be painted with a minimum two coats of white fire retardant paint on all (6) sides. Mounting hardware shall also be painted white for cosmetic purposes.

3. FREE STANDING EQUIPMENT RACKS
 A. All racks and wire management shall be Ortronics as specified in project specifications and drawings. The equipment rack shall provide vertical and horizontal cable management and support for patch cords and protection for the horizontal cables inside the legs of the rack. Waterfall cable management shall be provided at the top of the rack for patch cords and for horizontal cables entering the rack channels for protection and to maintain proper bend radius and cable support. Wire management shall also be mounted above each patch panel and/or piece of equipment on the rack. The rack shall include mounting brackets for cable tray ladder rack to mount to the top of the rack. Rack shall be black in color.

 01. Equipment Rack as detailed by project specifications and drawings
 a. Approved manufacturers are Ortronics Mighty MO & Mighty MO 6, and misc.
 B. Racks shall be securely attached to the concrete floor using minimum 3/8” hardware or as required by local codes. Earthquake restrictions, requirements, and zoning codes shall be strictly followed.
 C. Racks shall be placed with a minimum of 36-inch clearance from the walls on all sides of the rack. When mounted in a row, maintain a minimum of 36 inches from the wall behind and in front of the row of racks and from the wall at each end of the row.
 D. All racks shall be grounded to the telecommunications ground bus bar in accordance with Section 2.9 of this document.
 E. Rack mount screws not used for installing patch panels and other hardware shall be bagged and left with the rack
 F. 7 foot high, 19 inches wide, 16.5 inch channel depth, EIA free-standing rack, UL listed, black finish.
 G. Ortronics Mighty Mo 6 OR-MM6716

 01. Refer to Ortronics catalog for additional accessories.
4. FREE STANDING EQUIPMENT CABINETS

A. Modular Freestanding Server Cabinet, 7 foot tall, 42 RUs, 32 inches wide, 42 inches deep, frame configured with cable opening at rear, frame levelers, two pairs of RU labeled mounting rails with 3/8” square holes, full profile mesh front door, split flat rear mesh rear door, two “L” shaped finger managers on rear rails, vertical PDU mount and lacing bar, divider or side panels, solid top panel in front, cable entry top panel in rear, #12-24 cage nuts (50), #12-24 mounting screws (100), additional adhesive rack unit labels.

B. Modular Freestanding Network Cabinet, 7 foot tall, 32 inches wide, 34 inches deep, frame configured with cable opening at bottom front, frame levelers, two pairs of RU labeled mounting rails, with #12-24 tapped holes, full profile plexiglass front door, full flat sold rear door, two “L” shaped finger managers on front rails, right and left locking side panels, fan top panel in front, cable entry top panel in rear, #12-24 mounting screws (50).

 01. Ortronics Mighty Mo Network Cabinet OR-MMC423234-0001I
 02. Refer to Ortronics catalog for additional accessories.

5. VERTICAL WIRE MANAGERS FOR FREE STANDING EQUIPMENT RACKS

A. 7 foot high, 10 inches wide, 13 inches deep with dual-hinged door and integral one rack unit high horizontal management, black finish.

 01. Ortronics Mighty Mo 6 OR-MM6VMD710
 02. Refer to Ortronics catalog for additional accessories.

6. HORIZONTAL WIRE MANAGERS

A. At the top and bottom of every rack or cabinet, install the following:

 01. OR-60400098
 02. Refer to Ortronics catalog for additional accessories.

7. TELECOMMUNICATIONS GROUNDING BUSBAR

A. The TBB shall be designed and/or approved by a qualified PE, licensed in the state that the work is to be performed. The TBB shall adhere to the recommendations of the TIAEIA-607 standard, and shall be installed in accordance with best industry practice. A licensed electrical contractor shall perform installation and termination of the main bonding conductor to the building service entrance ground.

B. Solid copper Bus Bar kit, 12.0 inches long x 4.0 inches wide, wall-mounted, with standoffs.

 01. Telecommunications Main Ground Bus Bar Kit OR-GB4X12TGBKTKIT
 02. Refer to Ortronics catalog for accessories.

8. WIRE CABLE TRAY (BASKET TRAY) – COMMUNICATION ROOMS

A. 12 or 24 inches wide, 4 inches deep, black, 10 foot lengths, steel construction.

 01. Cablofil P/N 105/300BL OR P/N 105/600BL
B. Black basket cable tray shall be required in all communication rooms and shall not have a liner. Cable tray installed buildings will have a color determined by A/E to match building paint schemes and tray liners will be required.

C. All trays will be grounded per local Electric Code requirements and ANSI/TIA/EIA-607.

D. All trays shall be cut using the Cablofil tray cutter: COUPFIL or CUTYFIL. All cut cable tray will be filed to remove burrs and painted to match color. All cutting, filing, and painting will be done outside of building.

01. Refer to Cablofil catalog for additional accessories.

9. INSTALLATION PRACTICES

A. All materials shall be installed as per the manufacturers’ instructions, unless noted otherwise.

B. Furnish and install telecommunication backboards on wall of communication equipment rooms as indicated. The bottom of the backboards shall be placed approximately twelve inches above finished floor (AFF), and must extend to a minimum height AFF of eight feet. Mount backboards with the smooth side facing away from the wall, and paint the backboard with two coats of fire resistant white paint prior to mounting. A minimum of six appropriate fasteners shall be used for every sixteen square feet of backboard.

C. Free-standing equipment racks shall be fastened to the communications room floor using a minimum of four 3/8 inch concrete anchors.

D. Equipment racks shall be positioned according to drawings with a minimum of 3 feet clearance in front and back. The contractor shall field verify the dimensions of the room prior to installation of racks and report any discrepancies to the owner or owners representative.

E. Vertical wire managers for free-standing racks shall be bolted to the side or front of the rack using the manufacturers recommended hardware.

F. All equipment racks, cabinets, enclosures, cable tray, conduits, and patch panels shall be bonded to the Telecommunications Grounding Busbar (TMG) (one per Telecommunications Room), which shall be bonded to the Telecommunications Main Grounding Busbar (TMGB), which shall be grounded to the main electrical ground in the main electrical room. Coordinate with electrical contractor. Coordinate exact routing and connection points with the electrical work. All surfaces that are used as a bond shall be filed to bare metal before completing connections.

G. Install cable tray as shown in drawing package. The locations shown may need to be adjusted slightly in the field to assure proper placement. Note: Drawings may be in Division 16 Electrical.

H. All tray sections shall be field cut to length as required with a minimum number of splice points. All field cuts shall be made using the manufacturers recommended equipment.

I. All wire basket cable tray’s shall be supported from the building structure using threaded rod and FAS type supports and shall be bonded to ground.

10. GROUNDING AND BONDING

A. The facility shall be equipped with a Telecommunications Bonding Backbone (TBB). This backbone shall be used to ground all telecommunications cable shields, equipment, racks, cabinets, raceways, and other associated hardware that has the potential to act as a current carrying conductor. The TBB shall be installed independent of the building’s electrical and
building ground and shall be designed in accordance with the recommendations contained in the ANSI/TIA/EIA-607 Telecommunications Bonding and Grounding Standard.

B. The main entrance facility/equipment room in each building shall be equipped with a telecommunications main grounding bus bar (TMGB). Each telecommunications room shall be provided with a telecommunications ground bus bar (TGB). The TMGB shall be connected to the building electrical entrance grounding facility. The intent of this system is to provide a grounding system that is equal in potential to the building electrical ground system. Therefore, ground loop current potential is minimized between telecommunications equipment and the electrical system to which it is attached.

C. All racks, metallic backboards, cable sheaths, metallic strength members, splice cases, cable trays, etc. Entering or residing in the TR or ER shall be grounded to the respective TGB or TMGB using a minimum #6 AWG green stranded copper bonding conductor and compression connectors.

D. All wires used for telecommunications grounding purposes shall be identified with a green insulation. Non-insulated wires shall be identified at each termination point with a wrap of green tape. All cables and busbars shall be identified and labeled in accordance with the System Documentation Section of this specification.

11. FIRESTOP

A. All Penetrations through fire-rated building structures (walls and floors) shall be sealed with an approved fire stop system approved by the local fire code. This requirement applies to through penetrations (complete penetration) and membrane penetrations (through one side of a hollow fire-rated structure). Any penetration item, i.e., riser slots and sleeves, cables, conduit, cable tray, and raceways, etc. shall be properly fire stopped.
PART 1 - GENERAL

1.01 CONTRACT CONDITIONS

A. Work of this section is bound by the Construction Agreement, Project Conditions, and Division 1 bound herewith in addition to this Specification and accompanying drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Division 01, General Requirements

B. Division 28, Electronic Safety and Security

1.03 WORK SCOPE

A. This Section includes:

1. Access Control and Alarm Management System
2. Card Readers and Proximity Cards
3. End Devices
4. Power Supplies

B. This Section describes the requirements of the security access control system, including but not limited to:

1. Furnishing and installing a UL-listed distributed processing computerized card access security control system.
2. Furnishing and installing combination card reader and digital keypads, audible alarms, other end devices and related control equipment at door locations required to control and monitor access from public areas to secure areas and other doors as specified.
3. Furnishing and installing wiring and conduit, junction boxes, pull boxes, terminal enclosures, etc., necessary for system wiring.

1.04 SUBSTITUTIONS

A. Products specified establish desired quality and appearance levels. Approved alternate manufacturer may be bid. Conform to requirements specified in Section 01 25 00.

B. Include with requests: Specified item, design, catalog number, and finish for each item on which approval is being requested. Blanket approvals by manufacturer's name only will not be given.

1.05 QUALITY ASSURANCE AND SUPPLIER QUALIFICATIONS

A. Supply and install card access control equipment by the manufacturer's authorized local distributor, who has been actively engaged in the sale, design, installation, and service of the supplied card access control system for a minimum of five years.

B. Supplier trained in the proper installation, operation, and service of the equipment by the manufacturers whose equipment is being supplied.

C. Provide the design team and owner with experience references, client contacts and locations of
a minimum of three systems currently maintained, and a record of product sales for the provided product.

D. Product support and maintenance staff capable of providing technical assistance and diagnostics via phone system with a 4 hour response from time of contact, and an on-site response time of 24 hours from time of contact.

E. Provide a compliance report listing specification items that can and cannot be complied with.

1.06 PRODUCT DELIVERY

A. Package each item separately, and identify with hardware schedule number. Deliver to General Contractor for installation in original, unopened containers with legible labels intact. Ship tagged and identified keys by registered mail to General Contractor. Include complete set of specialized hardware maintenance and removal tools for Owner's use. Store where directed by Owner.

1.07 PRODUCT STORAGE AND HANDLING

A. Protect against theft, damage, and discoloration.

1.08 PROTECTION

A. Protect other surfaces against damage and discoloration caused by work of this section.

1.09 COORDINATION

A. Coordinate with other trades affecting or affected by work of this section.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Access Control and Alarm Management System: Hirsch Velocity

B. Card Readers and Proximity Cards:

1. HID ThinUne II reader w/ ProxCard II cards
2. Or approved equal

C. End Devices:

1. Door Position Switch:

a. Sentrol
 b. Ademco
 c. GE
 d. Or approved equal

2. Request to Exit:

a. Bosch OS160
 b. Ademco
 c. SOC
 d. Or approved equal
D. Power Supplies:
 1. Altronix
 2. Eaton
 3. Or approved equal

2.02 GENERAL

A. Access Control system BOD is Hirsch Velocity.

B. New and current standard design materials, conforming to UL standards and meeting the requirements of enforcing authorities having jurisdiction. Like items of the same manufacture and type.

C. Set up and configure three Owner workstations with headend management software.

2.03 ACCESS CONTROL AND ALARM MANAGEMENT SYSTEM

A. Server-based software application platform capable of monitoring and managing complete access control device database.

B. Centrally managed system for multi-building controlled access device deployment.

C. Provides licenses for quantity of controlled doors and end devices specified.

D. Upgradeable to support 3x quantity of controlled doors and end devices specified for future scalability.

E. Compatible with 125 kHz proximity card readers.

F. Alarm management: view, acknowledge, define, and respond to alarms.

G. Anti-pass back/anti-tailgating management.

H. Badge designer: design and print customized 10 badges.

I. Card holder management: includes access rights set-up, personal data, card status, and visitor cards.

J. Control access: control access through door and elevator security points.

K. Data management, data security, searching, and back-up features.

L. Graphical map interface: capacity to monitor, locate, and control devices from a graphical map.

M. Produce comprehensive reports of system activity and configuration including history, system configuration, cardholder, access point usage, etc.

N. Visitor management: includes visitor check-in, access rights, ID badges, and reporting.

O. Inscription of data transmitted either wireless or via conductors between controller and security devices.

P. Software development kit tie capability to specified video management system.
2.04 CARD READERS AND PROXIMITY CARDS

A. RFIO proximity reader with Wiegand output
B. 125 kHz band
C. Read Range: 3-inch minimum.
D. Maximum reader dimensions: 5-inch by 3-inch
E. Remotely Powered
F. Tamper Output

2.05 END DEVICES

A. Door Position Switch:
 1. Hermetically sealed magnetic reed switch
 2. Single-pole, double throw momentary contact
 3. Wide-gap model
 4. Compatible with door types specified

B. Request to Exit
 1. Passive infrared sensor
 2. Minimum ± 14 degrees vertically adjustable beam pattern
 3. Form “C” contact sets
 4. 12-30 VDC power
 5. Finish: To match adjacent architectural finishes.

2.06 POWER SUPPLIES

A. 12 VDC and 24 VDC as required to remotely power access control and intrusion detection devices.

B. Integrated wall mount enclosures.

PART 3 - EXECUTION

3.01 SEQUENCE OF OPERATIONS

A. General:
 1. Access control headend alarms and notifications to be reported to campus security headend. Setup notifications via email and text. Confirm specific notification settings with Owner.
 2. Main exterior entrance doors and garage gates to be unlocked/open during business hours, and locked/closed otherwise.
 3. Non-main entrance doors and exit-only doors to be locked during hours.
 4. Device triggers log applicable information into head end database, including card key information (valid or readable information on non-authorized card keys), door information, and timestamp entry.
 5. Program existing key cards of authorized personnel to access new secured doors. Specific authorization includes, but is not limited to:
a. Access to Office areas only to authorized office personnel, including elevator access to only authorized levels.
b. Access to Loading Dock areas only to authorized product handling personnel, including elevator access to only authorized levels.
c. Access to Telecom Rooms only to authorized IT, AV, and Security personnel.

6. Configure headend system to allow campus security to locally or remotely perform full building lockdown and gate entry/exit operation.

7. Provide headend database licenses to as required to support devices shown and functions described.

B. Door Operations:

1. Doors with Card Readers:
 a. Presentation of an authorized card read unlocks doors and provides positive visual LED reader feedback.
 b. Presentation of an unauthorized or unreadable card read keeps doors in locked state and provides negative visual LED reader feedback.
 c. When approached from the secure side the request-to-exit or electrified door hardware detection unlocks doors and shunts door alarm.
 d. Doors operators trigger motorized door actuators during business hours, and only after authorized card read during non-business hours.
 1) Where two sets of entry or exit doors are in parallel, a single operator trigger operates both doors in succession.
 e. Provide alarm where door position switch is triggered without either previous authorized card read, request-to-exit or electrified door hardware detection.

2. Doors with combo biometric/card readers:
 a. Presentation of an authorized card read OR biometric read unlocks doors and provides positive visual LED reader feedback.
 b. Presentation of an unauthorized or unreadable card read OR biometric read keeps door(s) in locked state and provides negative visual LED reader feedback.
 c. When approached from the secure side the request-to-exit or electrified door hardware detection unlocks doors and shunts door alarm.
 d. Doors operators trigger motorized door actuators during business hours, and only after authorized card or biometric read during non-business hours.
 1) Where two sets of entry or exit doors are in parallel, a single operator trigger operates both doors in succession.
 e. Provide alarm where door position switch is triggered without either previous authorized card read, biometric read, request-to-exit or electrified door hardware detection.

3. Doors with door position switches only:
 a. When approached from the secure side the request-to-exit or electrified door hardware detection unlocks doors and shunts door alarm.
 b. Provide alarm where door position switch is triggered without request-to-exit or electrified door hardware detection.
4. Doors left open (propped open) longer than 20 minutes generates an alarm.
5. Trigger from the smoke control panel unlocks and opens/operates the following doors:
6. Trigger from the fire alarm panel, or upon loss of power:
 a. Unlocks egress doors - fail safe operation. Refer to architectural plans and door hardware schedule for doors identified as means of egress.
 b. Maintains locked doors at entries to loading/receiving areas.

3.02 GENERAL
 A. Install system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2.
 B. Furnish necessary interconnections, services, and adjustments required for a complete and operable system as specified.
 C. Install control signals, communications, and data transmission lines grounding as necessary to preclude ground loops, noise, and surges from affecting system operation.
 D. Equipment, materials, installation, workmanship, inspection, and testing in accordance with manufacturers' recommendations and as modified herein.
 E. Consult the manufacturers' installation manuals for wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for schematic system installation/termination/wiring data.
 F. Attach equipment to walls and ceiling/floor assemblies and hold firmly in place. Use adequate support for fasteners and supports to support the required load.

3.03 CURRENT SITE CONDITIONS
 A. Visit the site and verify that site conditions are in agreement with the design package.
 B. Report changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package.
 C. Do not take corrective action without written permission from the Owner.

3.04 EXAMINATION
 A. Examine pathway elements intended for cables.
 B. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
 C. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.05 PREPARATION
 A. Comply with recommendations in SfA CP-01.
 B. Comply with EIA/ITIA-606, Administration Standard for the Telecommunications Infrastructure of
Commercial Buildings.

C. Obtain detailed Project planning forms from manufacturer of access-control system; develop custom forms to suit Project.

D. Fill in data available from Project plans and specifications and publish as Project planning documents for review and approval.
 1. Record setup data for control station and workstations.
 2. For each Location, record setup of Controller features and access requirements.
 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 4. Set up groups, linking, and list inputs and outputs for each Controller.
 5. Assign action message names and compose messages.
 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 7. Prepare and install alarm graphic maps.
 8. Develop user-defined fields.
 10. Propose setups for guard tours and key control.
 11. Discuss badge layout options; design badges.
 12. Complete system diagnostics and operation verification,
 13. Prepare a specific plan for system testing, startup, and demonstration.
 14. Develop acceptance test concept and, on approval, develop specifics of the test.
 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.

E. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.06 CABLING

A. Comply with NECA 1, Good Workmanship in Electrical Contracting.

B. Install cables and wiring according to requirements in Division 28, Electronic Safety and Security.

C. Wiring Method:
 1. Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces where unenclosed wiring method may be used.
 2. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings.
 3. Conceal raceway and cables except in unfinished spaces.

D. Install LAN cables using techniques, practices, and methods that are consistent with Category 6 rating of components and that ensure Category 6 performance of completed and linked signal paths, end to end.

E. Install cables without damaging conductors, shield, or jacket.

F. Provide a lock for boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public.

G. Boxes above ceiling level in occupied areas of the building are not considered accessible.
H. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public, cover with a suitable cover plate and secure with tamperproof screws.

I. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.07 CABLE APPLICATION

A. Comply with EIA/TIA-569, Commercial Building Standard for Telecommunications Pathways and Spaces.

B. Cable application requirements are minimum requirements and exceeded if recommended or required by manufacturer of system hardware.

C. RS-232 Cabling: Install at a maximum distance of 50-feet.

D. RS-485 Cabling: Install at a maximum distance of 4000-feet.

E. Card Readers and Keypads:

1. Install number of conductor pairs recommended by manufacturer for the functions specified.

2. Unless manufacturer recommends larger conductors, install 22 AWG wire if maximum distance from Controller to the reader is 250-feet, and install 20 AWG wire if maximum distance is 500-feet.

3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.

4. Install minimum 18 AWG shielded cable to readers and keypads that draw 50 mA or more.

F. Install minimum 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet.

G. Install minimum 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet.

3.08 GROUNDING

A. Comply with Section 26 05 26, Grounding and Bonding for Electrical Systems

B. Comply with IEEE 1100, Power and Grounding Sensitive Electronic Equipment.

C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

D. Signal Ground:

1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.

2. Bus: Mount on wall of main equipment room with standoff insulators.

3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.
3.09 INSTALLATION

A. System installation in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered, and installed.

B. Configure components with appropriate service points to pinpoint system trouble in less than 30 minutes.

C. Design, engineer, install and test PACS to ensure components are fully compatible as a system and can be integrated with associated security Subsystems. whether the system is a standalone or a network.

D. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.

E. Visit the site and verify that site conditions are in agreement with the design package. The report changes to the site or conditions that will affect performance of the system. Do not take corrective action without written permission from the Owner.

F. Cold Galvanizing:
 1. Field welds and brazing on factory galvanized boxes, enclosures, and conduits.
 2. Coat with a cold galvanized paint containing at least 95 percent zinc by weight.

G. Control Panels:
 1. Connect power and signal lines to the controller.
 2. Program the panel as outlined by the design and per the manufacturer's programming guidelines.

H. ACAS:
 1. Coordinate with the Owner's IT personnel to place the computer on the local LAN or Intranet and provide the security system protection levels required to insure only authorized personnel have access to the system.
 2. Program and set-up the ACAS to ensure it is fully operational.

I. Card Readers:
 1. Connect signal inputs and outputs as shown and specified.
 2. Terminate input signals as required.
 3. Program and address the reader as per the design package.
 4. Surface or flush mounted and appropriate hardware provided to ensure the unit is installed in an enclosed conduit system.

J. Portal Control Devices:
 1. Install signal input and output cables and power cables.
 2. Surface or flush mounted as per the design package.
 3. Program devices and ensure they are working.

K. Door Status Indicators:
 1. Install signal input and output cables and power cables.
 2. Surface mounted and angled in a manner that they cannot be compromised from the
non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6-feet from the base of the door.

3. Surface for flush mount door position sensors and wide gap with the ability to operate at a maximum distance of up to 2-inches.

L. Entry Control Devices:

1. Install signal input and power cables.
2. Mount strikes and bolts within the door frame.
3. Mount mortise locks within the door and an electric transfer hinge utilized to transfer the wire from within the door frame to the mortise lock inside the door.
4. Install electromagnetic locks with the mag-lock mounted to the door frame and the metal plate mounted to the door.

M. System Start-Up:

1. Do not apply power to the PACS until the following items have been completed:
 a. PACS equipment items and have been set up in accordance with manufacturer’s instructions.
 b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 c. System wiring has been tested and verified as correctly connected as indicated.
 d. System grounding and transient protection systems have been verified as installed and connected as indicated.
 e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.

2. Satisfaction of the above requirements not to relieve the responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

N. Supplemental Contractor Quality Control:

1. Provide the services of technical representatives who are familiar with components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
2. Provide technical assistance on the job site during the preparatory and initial phases of quality control.
3. Available on an as needed basis to provide assistance with follow-up phases of quality control.
4. Participate in the testing and validation of the system and provide certification that the system installed is fully operational as construction document requirements have been fulfilled.

3.10 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of
systems involved. Assign software license to Owner.

3.11 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:

C. Perform the following field tests and inspections and prepare test reports:

1. LAN Cable Procedures:
 a. Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester.
 b. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements,
 c. Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-8,

2. Test each circuit and component of each system. Tests include, but are not limited to:
 a. Measurements of power supply output under maximum load,
 b. Signal loop resistance
 c. Leakage to ground where applicable.

3. Operate system components with battery backup battery power for a period of not less than 10 percent of the calculated battery operating time.

4. Provide special equipment and software if testing requires special or dedicated equipment.

5. Operational Test:
 a. After installation of cables and connectors, demonstrate product capability and compliance with requirements,
 b. Test each signal path for end-to-end performance from each end of pairs installed.
 c. Remove temporary connections when tests have been satisfactorily completed.

3.12 PROTECTION

A. Maintain strict security during the installation of equipment and software.

B. Lock and secure rooms housing the control station, and workstations that have been powered up with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, Central-Station Burglar-Alarm Units, during periods when a qualified operator in the employ of Contractor is not present.

3.13 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer’s technical representative for 4 hours to instruct personnel in operation and maintenance of units.

B. Submit training plans and instructor qualifications
END OF SECTION
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 2. System smoke detectors.
 4. Addressable interface device.
 5. Digital alarm communicator transmitter.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.

B. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
 6. Include battery-size calculations.
 7. Include input/output matrix.
 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 9. Include performance parameters and installation details for each detector.
 10. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level II minimum.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.

3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

C. Field quality-control reports.

D. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. Deliver copies to authorities having jurisdiction:

 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.

 c. Complete wiring diagrams showing connections between all devices and equipment.

 d. Riser diagram.

 e. Record copy of site-specific software.

 f. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:

 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.

 g. Manufacturer's required maintenance related to system warranty requirements.

 h. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.

2. Program Software Backup: On magnetic media or compact disk, complete with data files.

3. Device address list.

4. Printout of software application and graphic screens.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 1. Automatic sprinkler system water flow.

B. Fire-alarm signal shall initiate the following actions:
 1. Continuously operate alarm notification appliances.
 2. Identify alarm and specific initiating device at fire-alarm control unit.
 3. Transmit an alarm signal to the remote alarm receiving station.
 4. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 1. Valve supervisory switch.
 2. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, or remote annunciator.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal ac voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:
1. Initiate notification appliances.
2. Identify specific device initiating the event at fire-alarm control unit.
3. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.4 FIRE-ALARM CONTROL UNIT

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Simplex Grinnell: 4100.

B. General Requirements for Fire-Alarm Control Unit:
1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
4. Provide a fire alarm transmitter capable of communicating over the OSU campus Ethernet. Program the transmitter to fully interface with the OSU Campus Safety receiving station in Cascade Hall. Provide point identification for all alarm, supervisory and trouble signals as well as all intelligent/addressable devices and appliances.

C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

D. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
1. Pathway Class Designations: NFPA 72, Class B.
2. Pathway Survivability: Level 0.

E. Notification-Appliance Circuit:
 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.

F. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

G. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2.5 SYSTEM SMOKE DETECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Simplex Grinnell.

B. General Requirements for System Smoke Detectors:
 1. Comply with UL 268; operating at 24-V dc, nominal.
 2. Detectors shall be two-wire type.
 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 4. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.

C. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Ionization Smoke Detector:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
OREGON STATE UNIVERSITY
MERRYFIELD HALL RENOVATION
MAY 31, 2018
PERMIT/BIDDING DOCUMENTS

DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

2.6 NOTIFICATION APPLIANCES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 3. SimplexGrinnell LP.
 4. Wheelock; a brand of Eaton.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464.

D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word “FIRE” is engraved in minimum 1-inch-high letters on the lens.
 1. Mounting: Wall mounted unless otherwise indicated.
 2. Flashing shall be in a temporal pattern, synchronized with other units.

2.7 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

2.8 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall...
initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply.
 5. Loss of power.
 6. Low battery.
 7. Abnormal test signal.

E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, “Fire Alarm Systems.”

B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.

C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

D. Smoke- or Heat-Detector Spacing: Comply with NFPA 72.

E. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

F. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

G. Device Location-Indicating Lights: Locate in public space near the device they monitor.
3.2 **PATHWAYS**

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT. \(\frac{3}{4} \)" minimum.

B. Pathways shall be installed in EMT. \(\frac{3}{4} \)" minimum.

C. Exposed EMT shall be painted red enamel.

3.3 **CONNECTIONS**

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 1. Supervisory connections at valve supervisory switches.

3.4 **IDENTIFICATION**

A. Identify system components, wiring, cabling, and terminals.

B. Install framed instructions in a location visible from fire-alarm control unit.

3.5 **GROUNDING**

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.6 **FIELD QUALITY CONTROL**

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Perform the following tests and inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

C. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

D. Fire-alarm system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

F. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

G. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.7 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 283111
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes the following:
 1. Preparing subgrades.
 2. Subbase course for concrete walks and pavements.
 3. Subbase and base course for asphalt paving.
 4. Excavating and backfilling for utility trenches.

1.02 DEFINITIONS

A. Backfill: Soil material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
B. Base Course: Course placed between the subbase course and hot-mix asphalt paving.
C. Bedding Course: Course placed over the excavated subgrade in a trench before laying pipe.
D. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions changes in the Work.
 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
E. Fill: Soil materials used to raise existing grades.
F. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
G. Subbase Course: Course placed between the subgrade and base course for hot-mix asphalt pavement, or course placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
H. Subgrade: Surface or elevation remaining after completing excavation, or top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
I. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.
1.03 PROJECT CONDITIONS

A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted in writing by Architect and Owner and then only after arranging to provide temporary utility services according to requirements indicated.

B. Site Information: Research public utility records and verify existing utility locations prior to ordering any material. Notify the Architect and Owner immediately if any discrepancies are found in the project survey.

PART 2 - PRODUCTS

2.01 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: ASTM D 2487 Soil Classification Groups GW, GP, GM, SW, SP, and SM, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487, or a combination of these groups.
 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve or use ODOT 1-1/2-inch – 0-inch BASE AGGREGATE.

F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve or use ODOT 3/4-inch – 0-inch BASE AGGREGATE.

H. Backfill and Fill:
 1. Satisfactory soil materials.
 2. Initial Trench Backfill: Use ODOT 19.0mm – 0mm (3/4-inch – 0-inch) base aggregate.
 3. Final Trench Backfill: Refer to Engineered Fill.

2.02 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility.
PART 3 - EXECUTION

3.01 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, freezing temperatures or frost, and other hazards created by earthwork operations. Provide protective insulating materials as necessary.

B. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

C. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

3.02 EXPLOSIVES

A. Explosives: Do not use explosives.

3.03 EXCAVATION

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.04 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.05 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit, unless otherwise indicated.

1. Clearance: 12 inches each side of pipe or conduit.

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material, 4 inches deeper elsewhere, to allow for bedding course. Hand excavate for bell of pipes.

2. Excavate utility structures to provide 6 inches clearance (enlarge as needed) to allow for compaction of backfill material.
3.06 SUBGRADE INSPECTION

A. Proof-roll subgrade before filling or placing aggregate with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

B. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.07 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Architect.

1. Fill unauthorized excavations under other construction or utility pipe as directed by Architect.

3.08 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.09 BACKFILLS AND FILLS

A. Backfill: Place and compact backfill in excavations promptly, but not before completing the following:

1. Construction below finish grade including, where applicable, dampproofing, waterproofing, and perimeter insulation.
2. Surveying locations of underground utilities for record documents.
3. Inspecting and testing underground utilities.
4. Removing concrete formwork.
5. Removing trash and debris.
6. Removing temporary shoring and bracing, and sheeting.
7. Installing permanent or temporary horizontal bracing on horizontally supported walls.

3.10 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings.

D. Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase.

E. Place and compact initial trench backfill material, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the utility pipe or conduit.
1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

F. Place and compact final backfill of satisfactory soil to final subgrade elevation.

G. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.11 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:
 1. Under grass and planted areas, use satisfactory soil material.
 2. Under walks and pavements, use satisfactory soil material.
 3. Under steps and ramps, use engineered fill.
 4. Under building slabs, use engineered fill.
 5. Under footings and foundations, use engineered fill.
 6. Under and around utility structures, use engineered fill.

3.12 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 3 percent of optimum moisture content.
 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 2. Remove and replace, or scarify and air dry otherwise satisfactory soil material that exceeds optimum moisture content by 3 percent and is too wet to compact to specified dry unit weight.

3.13 COMPACITION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:
 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 92 percent.
 3. Under lawn or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 4. For utility trenches, compact each layer of initial and final backfill soil material at 95 percent.
3.14 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

B. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 1. Lawn or Unpaved Areas: Plus or minus 1 inch.
 2. Walks: Plus or minus 1/2-inch.
 3. Pavements: Plus or minus 1/2-inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2-inch when tested with a 10-foot straightedge.

3.15 SUBBASE AND BASE COURSES

A. Place subbase and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase and base course under pavements and walks as follows:
 1. Shape subbase and base course to required crown elevations and cross-slope grades.
 2. Compact subbase and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

3.16 DRAINAGE COURSE

A. Place drainage course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 1. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 2. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.17 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent geotechnical engineering testing agency to perform field quality-control testing.

B. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earthwork only after test results for previously completed work comply with requirements.

C. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.

D. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.

2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for each 100 feet or less of wall length, but no fewer than two tests.

3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for each 150 feet or less of trench length, but no fewer than two tests.

E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil to depth required; recompact and retest until specified compaction is obtained.

3.18 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.19 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for fire-service mains.

1.02 SUBMITTALS

A. Product Data: For the following:
 1. Valves and accessories.
 2. Fire department connections.
 3. Pipe and fittings.

B. Field quality-control test reports.

C. Operation and maintenance data for the following:
 1. Valves.

1.03 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Comply with FMG’s “Approval Guide” or UL’s “Fire Protection Equipment Directory” for fire-service-main products.

D. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.

1.04 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of service.
 2. Do not proceed with interruption of water-distribution service without Owner’s written permission.

1.05 COORDINATION

A. Coordinate connection to water main with City of Corvallis Development Services. Hot taps shall be provided by city crews at the contractor’s expense.
PART 2 - PRODUCTS

2.01 PIPE AND FITTINGS

A. Push-on-Joint, Ductile-Iron Pipe: Cement lined Class 52, AWWA C151, poly-encased per AWWA standards for method A, wet trench installation, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Pipe shall meet all requirements outlined in the City of Corvallis Standard Construction Specifications Section IV.2.C.02.
2. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.

2.02 PIPING SPECIALTIES

A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Tubular-Sleeve Pipe Couplings:

1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.

2.03 GATE VALVES

A. UL/FMG, Cast-Iron Gate Valves:

1. Gate valves shall meet all requirements outlined in the City of Corvallis Standard Construction Specification Section IV.2.C.06.

2. UL/FMG, Nonrising-Stem Gate Valves:
 a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 1) Standards: UL 262 and FMG approved.
 2) Minimum Pressure Rating: 175 psig.
 3) End Connections: Flanged.

2.04 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Valve Boxes: Reference City of Corvallis Standard Drawing No. 302.

2.05 FIRE DEPARTMENT CONNECTIONS

A. Fire Department Connections:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fire End & Croker Corporation.
 c. Guardian Fire Equipment, Inc.
 d. Kidde Fire Fighting.
2. Description: Exposed, freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch- high brass sleeve; and round escutcheon plate.

b. Connections: Two NPS 2-1/2 inlets and one NPS 4 bottom outlet.
c. Inlet Alignment: Inline, horizontal.
d. Finish Including Sleeve: Rough chrome-plated.

PART 3 - EXECUTION

3.01 EARTHWORK

A. Refer to Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.

3.02 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

C. Do not use flanges or unions for underground piping.

D. Flanges, unions, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

E. Underground Fire-Service-Main Piping NPS 4 to NPS 8 shall be the following:

1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed; mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical; grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints from water main to building.

F. Aboveground and Vault Fire-Service-Main Piping NPS 4 to NPS 8 shall be ductile-iron, grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.

3.03 PIPING INSTALLATION

A. Water-Main Connection: Hot taps shall be provided by City crews at Contractor’s expense.

B. Water-Main Connection: Contractor shall excavate for the hot tap and shall provide and install associated shoring, stainless steel full circle tapping saddle, and gate valve. The excavation for the hot tap shall be 8 feet long on the tapping side of the main, 4 feet wide centered on the tapping point, 1 foot behind the main, and 2 feet below the main. The tap shall be located a minimum of 18 inches from all joints and appurtenances.

C. Comply with NFPA 24 for fire-service-main piping materials and installation.

D. Install ductile-iron, fire-service piping according to City of Corvallis Standard Construction Specifications.

E. Bury piping with depth of cover over top at least 36 inches, with top at least 12 inches below level of maximum frost penetration.
F. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

3.04 JOINT CONSTRUCTION

A. Make pipe joints according to the following:

4. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure.

3.05 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Locking mechanical joints.
4. Bolted flanged joints.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.06 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

C. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

3.07 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test
pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

D. Pressure testing for the public portion of the line shall be per City of Corvallis Standard Construction Specifications.

3.10 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Division 31 Section "Earth Moving."

3.11 CLEANING

A. Clean and disinfect water-distribution piping as follows:

1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.

2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.

3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:

 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.

 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.

 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.

 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION