

BIOMASS ENERGY FOR THE OSU-CASCADES CAMPUS

PRELIMINARY ANALYSIS

Meagan Nuss

Project Development Manager Wisewood Energy

OSU-C Biomass Advisory Meeting

May 10, 2017

ABOUT WISEWOOD ENERGY

Our Mission

We outfit communities and businesses with state-of-the-art biomass energy systems that strengthen local economies, lower heating costs and promote environmental stewardship

> Technology in Service of Community and Environment

OUTLINE

- Project background
- District energy model
- Emissions and air quality
- Central Utility Plant
- Next steps
- Community scale biomass examples
- Group discussion

Biomass Energy for the OSU-C Campus **PROJECT BACKGROUND**

Source OF COMMUNITY RUNNING STANDER DE COMMUNITY RUNNICE OF COMMUNITY RUNNOW RUNNING STAND RUNNOW RUNN

PROJECT BACKGROUND

- **OSU-C begins master campus planning** with the Long Range Development Planning (LRDP) team
- OSU-C receives funds from 2016 USDA Wood Innovations Funding to study biomass feasibility alongside master planning
- **OSU-C retains Wisewood Energy** to provide biomass analysis for realistic campus scenarios
- LRPD team develops five energy efficiency scenarios, and recommends biomass central heating
- Wisewood Energy uses LRPD data to conduct biomass analysis

ENERGY TECHNOLOGIES CONSIDERED

Thermal Energy Sources

OPTION	EVALUATED?
Natural gas	No: Fossil fuel based
Biomass	Yes
Biomass with Geoexchange	Yes
Geoexchange without biomass	No: Heating/cooling loads unbalanced, ground temperature issues, not cost effective
Geoexchange with air ource heat pumps	No: Heat pumps increase need for PV

Table adapted from PAE Engineers.

ENERGY TECHNOLOGIES CONSIDERED

Electrical Energy Sources

OPTION	EVALUATED?
Wind	No: Inadequate wind resources, higher maintenance needs, intermittent generation
Photovoltaic	Yes
Biomass with Cogeneration	No: Consider for future

Table adapted from PAE Engineers.

LRDP ENERGY SCENARIOS

SCENARIO	DESCRIPTION	CAMPUS EUI (KBTU/SF/YR)	GEOTHERMAL	BIOMASS	ANNUAL HEAT DEMAND
GOOD	Biomass central heat Distributed cooling Buildings designed to code	79	No	Yes	62.7 MMBtu
BETTER	Biomass central heat Distributed cooling Buildings exceed code	56	No	Yes	48.0 MMBtu
BETTER PLUS	Biomass and geoexchange central heating and cooling Buildings exceed code	49	Yes	Yes	48.0 MMBtu
BEST	Biomass central heat Distributed cooling Buildings passive as applicable	38	No	Yes	29.5 MMBtu
BEST PLUS	Biomass and geoexchange central heating and cooling Buildings passive as applicable	33	Yes	Yes	29.5 MMBtu

Table adapted from PAE Engineers.

Biomass Energy for the OSU-C Campus DISTRICT ENERGY MODEL

Sance OF COMMUNITY RUNNING STANDER DE COMMUNITY RUNNICE OF COMMUNITY RUNNOW RUNNING STANDARD RUNNOW RUNNOR RUNNOW RUNNNOW RUNNOW RUNNOW RUNNOW RUNNOW RUNNNOW RUNNOW RUNNOW RUNNOW RUNNOW RUNNOW RUNNOK RUNNOW RUNNOW RUNNOK RUNNOW RUNNOW RUNNOK RUNNOW RUNNOW RUNNO

BIOMASS SYSTEM SIZING

- **Determine optimum biomass boiler size** for efficiency and effectiveness
- **Design biomass for full campus buildout**; realistic construction would be in phases
- 100% biomass heating in Good Scenario
- 70% biomass heating, 30% geoexchange heating (100% geoexchange cooling) in Best Plus

BIOMASS HEAT LOAD: GOOD SCENARIO

BIOMASS HEAT LOAD: BEST PLUS SCENARIO

GOOD AND BEST PLUS SUMMARY

	GOOD	BEST PLUS
BOILER OUTPUT (MBH)	14,000	6,000
NON-GEOFIELD HEAT LOAD COVERED BY BIOMASS	90%	94%
FUEL CONSUMPTION (GT/YR)*	5,300	1,600
CUP FOOTPRINT (SQ FT)**	11,400	8,900
ON-SITE STORAGE	196 tons	60 tons
FUEL DELIVERIES	1 - 10x per week	≤1 - 3x per week

*Assumes 35% moisture content wood fuel

**Footprint includes fuel storage

FUEL COST COMPARISON

FUEL SOURCE	NATURAL GAS BAU GOOD SCENARIO	BIOMASS GOOD SCENARIO	NATURAL GAS BAU BEST PLUS SCENARIO	BIOMASS BEST PLUS SCENARIO
NATURAL GAS	\$502,000	\$48,000	\$148,000	\$9,000
BIOMASS		\$134,000		\$41,000
ELECTRICITY	\$2,000	\$50,000	\$1,000	\$22,000
TOTAL	\$504,000	\$232,000	\$149,000	\$72,000

Savings from BAU:	Savings from BAU:
~\$272,000	~\$77,000

FUEL CONSUMPTION AND SUPPLY

- 1,600 5,300 GT/yr, 35% moisture content
- Boiler able to utilize material up to 55% moisture content, <4" particle size
- Unlocks most readily available, inexpensive fuel
- Recent study determined up to 280,000 GT/yr biomass available in Jefferson, Crook, Deschutes County
- Common practices for biomass residual remaining from management activities include burning, mastication, and leaving on-site

CARBON IMPACTS

- Biomass considered carbon neutral in the UN and European Union
- Carbon impacts of biomass depend on sitespecific characteristics
 - Feedstock and alternative fate
 - Management practices
 - Energy technology
 - Displaced fuel

Biomass Energy for the OSU-C Campus
EMISSIONS AND AIR QUALITY

Source OF COMMUNITY RUNNING STANDER DE COMMUNITY RUNNICE OF COMMUNITY RUNNOW RUNNING STAND RUNNOW RUNN

EFFICIENT

Development of emissions of Austrian Biomass Boilers, measured by the federal agency for agricultural engineering Wieselburg (BLT)

Development of emissions of Austrian Biomass Boilers, measured by the federal agency for agricultural engineering Wieselburg (BLT)

EMISSION CONTROLS FOR OSU-C

- Dynamic feedback from oxygen and temperature sensors in the combustion chamber and flue gas stream to optimize combustion
- Multi-cyclone array
- Electrostatic precipitator

ESTIMATED EMISSIONS

EMISSION	GOOD (TONS/YR)	BEST PLUS (TONS/YR)
CARBON MONOXIDE (CO)	0.899	0.276
NITROGEN OXIDES (NOX)	6.301	1.932
PARTICULATE MATTER (PM)	0.281	0.086
VOLATILE ORGANIC COMPOUNDS (VOC)	0.112	0.034
TOTAL	7.593	2.329

Biomass Energy for the OSU-C Campus **CENTRAL UTILITY PLANT**

SQUICE OF COMMUNITY MORE

PRELIMINARY SITE PLAN: BEST PLUS SCENARIO

PRELIMINARY MECHANICAL PLAN: GOOD SCENARIO

Ν

PRELIMINARY MECHANICAL PLAN: BEST PLUS SCENARIO

Community Scale Biomass PROJECT EXAMPLES

Sance OF COMA Sance OF COMA Solution

MADEL THEMMOOR

KETCHIKAN INTERNATIONAL AIRPORT Pellet Boiler in Ketchikan, Alaska

1 11

VIESMANN

HARNEY COMMUNITY ENERGY Wood Chip District Heating in Burns, Oregon

NEXT STEPS

- Incorporate feedback from biomass advisory meeting
- Meet with ODEQ to discuss air quality and emissions
- Incorporate final LRDP master planning documentation

THANK YOU!

Technology in Service of Community and Environment

MEAGAN NUSS PROJECT DEVELOPMENT MANAGER meagan@wisewoodenergy.com 503.545.8685

ADDRESS 2409 N Kerby Avenue Portland, OR 97227

WEBSITE wisewoodenergy.com

DISCUSSION QUESTIONS

Forest Health and Management

 What are the current and future forest management policies related to woody biomass harvesting to promote forest health and management?

Air Quality

• What are current air quality standards/regulations for biomass emissions and what, if any, are health implications? How does this compare to other emission sources?

Carbon

• Will open pile burning continue to be part of forest management practices in the area? What is an appropriate life-cycle framework to discuss carbon?