

OSU Cascades – Net Zero Campus

Recommendations

February 20, 2017

Viable Net Zero Options

- Building Energy Efficiency
 - Better 30% better than code
 - Best 50% better than code
- Electrical energy
 - Photovoltaic energy
- Thermal Energy
 - Biomass boiler
 - Combined biomass and geoexchange system

Net Zero Options Comparison

Option	Description	PV Fits on Campus	СарЕх	Utility	O&M	75 Year LCC	Simple Payback (yrs)
Good	Biomass central heat Distributed cooling Buildings designed to Code	No	\$41m	\$150k	\$890k	\$140m	28
Better	Biomass central heat Distributed cooling Buildings designed to be better than Code	Maybe	\$49m	\$100k	\$600k	\$120m	32
Better+	Campus EUI = 49 Biomass and geoexchange central heating and cooling Buildings designed to be better than Code	Maybe	\$54m	\$75k	\$500k	\$112m	34
Best	Biomass central heat Distributed cooling Buildings designed to be passive where applicable	Yes	\$59m	\$65k	\$400k	\$104m	37
Best+	Biomass and geoexchange central heating and cooling Buildings designed to be passive where applicable	Yes	\$61m	\$45k	\$300k	\$100m	38

Proposed System

Code Energy Use Breakout

Classroom Building

Housing Building

Energy Mix - Current

Energy Mix – Build Out

Business As Usual

- Buildings designed to Code minimum.
 - Code minimum envelope
 - Code minimum lighting
 - Chillers or DX Rooftop units at each building
 - Natural gas boilers at each building
- No central thermal energy systems.
- No on-site power generation.
- Same as "Good" option but without the Biomass Central Utility Plant (CUP) and Photovoltaic arrays.

Preliminary Phasing Plan

Phase	Year	New housing (# of beds)	New Academic Area (sqft)	New Building Area (sqft)	Total Building Area (sqft)	% of Full Buildout
Existing	2016				203,008	14%
1	2017-2019	0	55,000	55,000	258,008	18%
2	2019-2021	300	·	105,000	363,008	26%
3	2021-2023	300		210,000	573,008	41%
			,	·		
4	2023-2025	300	45,222	150,222	723,230	52%
5	2025-2027	400	100,512	240,512	963,742	69%
6	Beyond 10 yrs	400	299,615	439,615	1,403,357	100%

Phased Energy Consumption - BAU

Phased Utility Costs - BAU

Campus EUI Comparisons

Envelope

• Roof Insulation: R-50

• Wall Insulation: R-30

• Window Performance: R-5.6 (includes frame)

Optimize solar heat gain

Air Sealing

- Reduces the size of the mechanical system
- Reduces energy consumption
- Improves occupant comfort
- Lasts for the life of the building

Passive

- High performance envelope
- Buildings oriented on an east/west axis
- Minimal east and west windows
- Strategically placed and sized north and south windows
- Overhangs on south facing windows
- Operable windows
- Ventilation stacks
- Exposed mass or phase change materials

- Reduces the size of the mechanical system
- Reduces energy consumption
- Increases occupant control of space
- Lasts for the life of the building
- Increases daylighting opportunities

Lighting and Plug Loads

- Efficient lighting and daylighting
- LED task lights
- Ultra-low energy computers and monitors
- Energy star appliances
- Restrictions on mini refrigerators and space heaters in dorm rooms
- Occupancy sensor controlled receptacles
- Metering of loads

- Daylighting improves occupant comfort and productivity
- Reduced energy consumption
- Reduces the size of the mechanical systems

Mechanical

- Dedicated Outside Air Units with Heat Recovery
- Water source heating/cooling equipment
- Water cooled VRF Systems with Heat Recovery
- Radiant heating and cooling
- Hydronic Distribution

- Dedicated outside air improves air quality, reduces energy consumption and reduces duct and equipment sizes
- Water based heating and cooling distribution is more efficient than air and allows for decreased floor to floor heights.

Laboratory

- Low flow fume hoods
- Variable volume airflow control
- Run around heat recovery

- Safe, reliable fume exhaust
- Fan energy savings
- Heat recovery

Building EUI Standards

Energy Consumption by Phase

Thermal Energy Sources

Option	Description	Comments	Evaluated?
Natural Gas	Central or de-centralized. Creates heating water and domestic HW.	Fossil fuel based.	No
Biomass	Central or de-centralized. Creates heating water and domestic HW. Uses wood	Carbon neutral. Needs separate cooling source.	Yes
Biomass w/ Geoexchange	Horizontal "slinky" system using the ground as a heat sink. Geo provides full cooling and 30% of heating.	Low temperature system. Provides future flexibility.	Yes
Geoexchange	Horizontal "slinky" system using the ground as a heat sink. Geo provides full cooling and 100% of heating.	Heating/cooling loads unbalanced. Ground temperature issues. Not cost effective.	No
Geoexchange w/ air source HP	Horizontal "slinky" system using the ground as a heat sink. Geo provides full cooling and some % of heating. Heat pumps provide balance of heating energy.	Heat pumps increase need for PV.	No

Electrical Energy Sources

Option	Description	Comments	Evaluated?
Wind	Renewable energy using multiple turbines. Connect to utility grid.	Inadequate wind resources. Higher maintenance needs. Intermittent generation.	No
Photovoltaic	Roof mounted, canopy mounted, and ground mounted photovoltaic panels. Connect to utility grid.	Abundant solar resources. Low maintenance. Costs declining.	Yes
Biomass w/ Cogeneration	Using an organic Rankine cycle generator with the biomass boiler to generate electricity along with heat. System sized for the heat load of the campus.	Can combine with any of the thermal biomass options. Would not run in the summer unless a need for heat was found. Additional maintenance.	No. Consider for future.

Systems Overview

Energy System Size							
Option	Campus EUI	Biomass Plant (kW)		Ground Mount PV (sqft)			
Business as Usual	79	Not applicable	Not applicable	Not applicable			
Good	79	13,000	1	530,000			
Better	56	9,000	1	350,000			
Better +	49	7,000	1,400,000	370,000			
Best	38	6,000	-	190,000			
Best +	33	4,000	900,000	200,000			

Innovation District Effects

Ground Mount PV Area for Innovation District

- ■A Predominantly low energy users (office & retail) and no residential
- Predominantly high energy users (restaurant, labs) & residential units

Best Scenario: 200,000 sqft ground mount PV

Best with Innovation District: 400,000 sqft ground mount PV

Better Scenario: 360,000 sqft of ground mount PV

Better with Innovation District: 690,000 sqft of ground mount PV

Good Scenario: 530,000 sqft of ground mount PV

Good with Innovation District: 950,000 sqft of ground mount PV

Options Comparison

Options Comparison

Options Comparison

Option	Description	PV Fits on Campus	СарЕх	Utility	O&M	75 Year LCC	Simple Payback (yrs)
Good	Biomass central heat Distributed cooling Buildings designed to Code	No	\$41m	\$150k	\$890k	\$140m	28
Better	Biomass central heat Distributed cooling Buildings designed to be better than Code	Maybe	\$49m	\$100k	\$600k	\$120m	32
Better+	Campus EUI = 49 Biomass and geoexchange central heating and cooling Buildings designed to be better than Code	Maybe	\$54m	\$75k	\$500k	\$112m	34
Best	Biomass central heat Distributed cooling Buildings designed to be passive where applicable	Yes	\$59m	\$65k	\$400k	\$104m	37
Best+	Biomass and geoexchange central heating and cooling Buildings designed to be passive where applicable	Yes	\$61m	\$45k	\$300k	\$100m	38

Recap

Creating a better environment

Ruwan Jayaweera PE, LEED AP

Ruwan.jayaweera@pae-engineers.com

Rachel Wrublik, LEED AP

Rachel.Wrublik@pae-engineers.com