Technical Analysis Study

For PSU Fourth Avenue Building 1900 SW 4th Ave Portland, OR 97204

> Project #1527488429

Sponsored by: Energy Trust of Oregon Existing Buildings Program

Submitted by: Interface Engineering December 10, 2013 Version # 3

Contacts

Site Contact

The following facility personnel assisted with this report: Rick Viaene Portland State University Facilities & Property Management PO Box 751 Portland, OR 97207 Phone: 503.725.9996 Email: viaene@pdx.edu

Energy Trust Contact

The Program Management Contractor (PMC) is: Lyn Schmidt ICF International 615 SW Alder Street, Suite 200 Portland, OR 97205 Phone: 503.525.6140

ATAC Contact Information

The Allied Technical Assistance Contractor (ATAC) that prepared this report is: Adam Scherba, EIT Stacey Lin, PE Interface Engineering 708 SW Third Ave, Suite 400 Portland, OR 97204 Phone: 503.382.2266 Email: staceyl@interfaceeng.com

DISCLAIMER

In no event will Energy Trust of Oregon, Inc. or (ATAC/company) be liable for (i) the failure of the customer to achieve the estimated energy savings or any other estimated benefits included herein, or (ii) for any damages to customer's site, including but not limited to any incidental or consequential damages of any kind, in connection with this report or the installation of any identified energy efficiency measures.

NEXT STEPS FOR PARTICIPANT

APPLY FOR ENERGY TRUST INCENTIVES

Make an implementation decision: Please evaluate the information contained in this report and any potential measures and incentives listed in the Form 110C – Project Detail and Incentive Estimates (produced by PMC). Have your contractors bid for the measure(s) you wish to implement and send the PMC a copy of the final bid. PMC will review your contractor's proposed scope to determine compliance with Energy Trust's program requirements and the energy efficiency measures as described in this report. After we determine that the project bid specifications match the studied measure, Form 120C – Incentive Application will be provided for you to review. If you apply for Energy Trust incentives for your project, your signed Form 120 C - Incentive Application must be provided to the PMC BEFORE you issue purchase orders or make other financial commitments to begin the project work.

Upon Completion of the Project: The PMC must be notified once the project is completed in order to arrange a post-installation inspection for projects that receive incentives greater than \$5,000. The program must receive all required documentation and perform any required post installation inspections before incentives can be issued.

APPLY FOR ENERGY TRUST SOLAR INCENTIVES

Make a solar implementation decision: Please evaluate the solar site evaluation (SSE), if included in this report. Your PMC will arrange a meeting to discuss the results of the evaluation. Or, if you wish to move forward, your PMC will provide you with a list of qualified Trade Ally contractors. Obtain bids on the solar measures you want to implement. When you've selected a solar Trade Ally contractor for the installation, the Trade Ally will provide and submit the necessary incentive application paperwork to Energy Trust on your behalf. The PMC and Energy Trust's solar staff are available to answer all your solar questions.

Upon Completion of the Solar Project: The solar Trade Ally will arrange for the final Energy Trust inspections, and within 30 days of a successful inspection you'll receive your solar incentive check from Energy Trust.

EXECUTIVE SUMMARY:

This report documents a technical analysis performed for future energy efficiency improvements to the HVAC systems at the Fourth Avenue Building (FAB) located at 1900 SW Fourth Avenue in Portland, OR. The facility was built in 1962, is one story below ground, two above, and also contains two parking levels beneath part of the lower level. Total floor area is 200,000 square feet. The FAB is interconnected with two adjacent buildings: the 156,000 ft² City Tower and the 130,000 ft² Engineering Building. These interconnected buildings receive their main electrical service through the FAB and also share some building services.

The EEMs in this analysis affect the FAB and adjacent City Tower which currently shares a chilled water loop with FAB. FAB, City Tower and Engineering Building are on a single utility account. Using data from the last three years, the average annual energy use for the three buildings was 16,500 therms, and 12.4 million kWh. This translates to an Energy Use Index of 90 kBtu/sqft/yr. Table 1 below lists the energy efficiency recommendation for this facility. Combined, these recommendations are expected to reduce the building's gas usage by 64% and reduce the electricity consumption by 3%.

ENERGY EFFICIENCY MEASURE (EEM) SUMMARY

- **EEM 1: Chiller Plant Upgrade:** Replace existing chiller with a high efficiency chiller and a heat recovery chiller. Upgrade to variable speed pumping.
- **EEM 2: Well-Water Connection:** Install a plate and frame heat exchanger to take engineering building reinjection well water and make FAB chilled water
- **EEM 3: Heat Recovery to City Tower:** Provide heat to the city tower from FAB heat recovery and ground sources
- **EEM4: Chilled Water to City Tower:** Remove the city tower chiller and provide chilled water from FAB
- **EEM 5: OIT Datacenter Improvements:** Install heat aisle curtains in server room and add VFD to existing Liebert CRAC units
- **EEM 6: Add UPS Fan Coils to Heat Recovery Loop:** Re-configure CHW piping so that UPS room is served by dedicated heat recovery chiller

Table 1: EEM summary Table

Measure Number	Estimated Annual kWh Savings	Estimated Annual Therm Savings	Total Annual Energy Cost	Annual *Non-Energy Cost Savings	Installation Cost	** Simple Payback
EEM #1	824,694	14,249	\$ 73,627	\$ 7,800	\$ 679,841	8.3
EEM #2	n/a	n/a	n/a	n/a	n/a	n/a
EEM #3	75,469	0	\$ 5,434	\$ O	\$ 41,262	7.6
EEM #4	n/a	n/a	n/a	n/a	n/a	n/a
EEM #5	151,436	0	\$ 10,903	\$ 0	\$ 100,335	9.2
EEM #6	23,589	1,657	\$ 3,355	\$ O	\$ 17,390	5.2

*Non-energy cost benefits are from items such as avoided maintenance or water costs.

** Cost savings are based on Energy Trust average utility rates of \$0.072/kWh and \$1.00/therm for payback calculation. Actual participant rate may be different.

PROJECT DESCRIPTION

- Location: 1900 SW 4th Ave. Portland, OR
- Year built: 1962
- Building Square Footage: 200,000 ft² plus 166,000 ft² below grade parking
- Type of Facility: University Offices, University Classroom/Research, Datacenter, PacifiCorp Offices & Datacenter, Parking
- Operating Hours: Primary occupancy is 7:30 AM 5:30 PM weekdays with reduced occupancy weekends, holidays and school breaks. Areas occupied by PacifiCorp and the PSU data center are used 24/7.

	Electric Use (kWh)			Natural Gas Use (Therms)				
	Ending 6/2011	Ending 6/2012	Ending 6/2013	Average	Ending 6/2011	Ending 6/2012	Ending 6/2013	Average
Jun	953,386	1,002,697	1,051,028	1,002,370	19	0	0	б
Jul	1,059,667	1,079,564	974,267	1,037,833	0	0	0	0
Aug	978,965	1,035,708	1,042,546	1,019,073	0	0	0	0
Sep	928,692	1,069,343	1,026,778	1,008,271	9	9	34	17
Oct	966,569	966,603	970,852	968,008	216	403	296	305
Nov	2,107,855	1,909,437	998,280	1,671,857	1,391	1,721	2,264	1,792
Dec	327,662	309,613	1,073,832	570,369	3,930	3,923	2,264	3,372
Jan	1,064,885	1,068,993	978,754	1,037,544	5,482	2,699	5,695	4,625
Feb	1,114,703	1,138,549	923,140	1,058,797	4,875	2,699	4,415	3,996
Mar	1,038,781	1,034,604	943,918	1,005,768	1,575	1,007	1,221	1,268
Apr	1,080,594	981,294	949,553	1,003,814	1,640	322	319	760
May	1,021,091	1,025,660	933,230	993,327	988	61	0	350
Total	12,642,850	12,622,065	11,966,179	12,377,031	20,125	12,844	16,508	16,492
	Total Energy use in kBtu				43,879,663			
	Energy Use Index Kbtu/sf/yr				90			

Table 2: Historical Building Energy Use

Energy use and EUI shown for combination of FAB, Engineering Building and City Tower, which all share a utility account.

Building Shell

- Number of stories: 3
- Square footage and height of each story
 - Parking 1: 83,000 ft².
 - Parking 2: 83,000 ft².
 - Lower Level (below grade): 125,000 ft². 12.5' floor-floor ht.
 - Plaza Level (ground floor): 40,000 ft². 12.5' floor-floor ht.
 - \circ Second Level: 40,000 ft². 12.5' floor-floor ht.
- Total volume of the building: 2,562,500 ft³ (excludes parking)
- Tightness of the building: Average or better due to significant below grade square footage

Internal Loads

- Occupancy
 - Typical of a University building
- Lighting
 - Typical office/classroom lighting. Installed LPD estimated at 1.1 W/sqft.
- Equipment
 - Office computers, computer labs, datacenters (see details below)

Water Side HVAC System

- Chilled water loop system
 - Chiller type, IPLV, COP
 - Two chillers currently in service: WCU-4, WCU-5
 - 550 and 510 tons respectively
 - Trane CVHE 050 model
 - Full load efficiency is 0.53 kW/ton (6.6 COP)
 - Installed in 1985 (approx.)
 - Controlled in a lead/lag arrangement
 - o Pumps
 - Condenser Pumps
 - CWP-4, CWP-5
 - Constant speed
 - Scheduled to run as needed for WCU-4/5 operation or in support of DHRC chilled water system.
 - Evaporator pumps
 - Primary
 - CHWP-4, CHWP-5
 - o Constant Speed
 - Secondary
 - o P-18-1, P-18-2, P-18-3.
 - o Lead/lag controls
 - o Recently replaced with premium efficiency motor

- Variable speed drive
- o Each is 25 HP
- Cooling Tower
 - Fan type, power, schedule
- o Details of operations
 - 24/7 operation to serve data-center, UPS, Telecom and other year-round loads
 - CHW temperature reset between 44 and 55F based on maximum AHU cooling demand
- Dedicated Heat Recovery Chiller (DHRC) system
 - o Chiller
 - DHRC-1, DHRC-2, DHRC-3 Heat Recovery Modular Chillers
 - 50 Tons each. Designed for n+1 redundancy
 - Variable flow valving
 - Model: Multistack M550X6H1W
 - NPLV efficiency 0.664 kW/ton, Full load efficiency 1.443 kW/ton
 - Full load heating COP = 3.43
 - o Pumps
 - CHWP-1A, CHWP-1B Chilled water pumps
 - Variable flow
 - 285 GPM
 - 10 HP
 - CWP-1A, CWP-1B Condenser Water Pumps
 - Variable flow
 - 390 GPM
 - 7.5 HP
 - CWP-2A, CWP-2B Condenser Water Bypass Pumps
 - Variable flow
 - 390 GPM
 - 3 HP
 - o Heat Exchangers
 - HX-1, HX-2
 - Located between DHRC and cooling tower
 - Plate and frame
- Hot Water Loop System

- o Boiler
 - GB-1 Gas Boiler
 - 84% eff
 - 1,209 kBtu/h Capacity, 80 GPM
 - EB-1 Electric Boiler
 - Backup boiler
- o Pumps

- HWP-1
 - 80 GPM, constant flow boiler circulation pump
 - 2 HP
- P-19-1, P-19-2 Heating Water pumps
 - Premium efficiency motors
 - Variable speed
 - 5 HP

Air Side HVAC System

• The FAB is currently served by the following main air handling systems:

System Tag	Description	CFM	Area Served
SF-GA	VAV	36,760	Lower Level
SF-1A	VAV	23,390	Plaza level interior
SF-1B	VAV Dual Duct	7,970	Plaza level perimeter
SF-2A	VAV	43,490	2 nd floor interior
SF-2B	VAV	14,000	2 nd floor perimeter
ASU-9	CV. Abandoned	6,130	Lower level
ASU-12	VAV	9,600	Lower level
ASU-14	VAV	21,000	Lower level
ASU-15	VAV	21,000	Lower Level

- In addition to the main air handling units, there are multiple cooling only constant volume fan coils and computer room AC units serving labs and data center zones
- Controls Cooling setpoints are typically kept at 72-75F, and heating setpoints vary from 50 to 73F. Night setbacks are 65 for heating, 82 for cooling. HVAC fans run daily from 6am to 10pm, with reduced hours on weekends.
- Other Building Energy Equipment
 - Datacenters
 - There are three datacenters in the FAB: MAIN, ENG and COLO. The table below reports as-operated loads, which were calculated by the installed UPS and PDU equipment.

Datacenter	Room #	Load	HVAC Equipment
MAIN	090-07	72 kW	(PII 2 (17 tops) (PII 4 (17 tops))
ENG	090-06	24 kW	CKO-3 (17 tolls), CKO-4 (17 tolls)
COLO	090-04	37 kW	CRU-1 (17 tons), CRU-2 (17 tons), CRU- 5 (XX tons)
Total		133 kW	

- UPS
 - The building has an uninterruptible power supply, which is served by two fan coil units, FCU-6A and FCU-6B. Each FCU is approximately 6 tons running at 3,000 CFM.
- Transformer Room served by small fan coil
- Switchgear served by small fan coil

DETAILED DESCRIPTION OF THE PROPOSED MEASURES

EEM1 – CHILLER PLANT UPGRADE

Baseline Condition

In the building's current configuration two chillers (WCU-4 and WCU-5) provide cooling for all of the air handlers in the FAB, with the exception of the data center which is served by dedicated heat recovery chillers. WCU-4 and WCU-5 are both Trane CVHE 050 model chillers, with capacities of 550 and 510 tons respectively. Only one chiller operates at a given time, with the second chiller serving as a backup unit. While the chiller's nameplate full load efficiency is 0.53 kW/ton, they are often operated at a very low load. Facilities personnel have measured the as-operated low load efficiency to be 2.5 kW/ton. Both chillers were installed in approximately 1985, and rebuilt in 2008 and 2011.

Pumping is currently constant speed on the primary CHW loop and condenser water loop, with variable speed secondary.

Proposed Condition

The proposed EEM would install two new chillers to replace one of the existing chillers. One chiller would be designed to meet peak summer cooling demand using a highly efficient magnetic bearing compressor. The second chiller would be a heat recovery unit sized to meet the building's base cooling load while simultaneously providing heat to the hot water loop. An existing 500 ton chiller will remain installed as a backup unit.

Pumping will be upgraded to a variable speed primary CHW loop and variable speed CW loop.

The following will be required to implement this measure:

- 500 ton high efficiency magnetic bearing centrifugal chiller
- 100 ton heat recovery chiller (1700 MBH heating capacity)
- Controls
- Piping modification to tie new heat recovery chiller into hot water loop
- VFD on CHW and CW pumps

Table 3: Summary of EEM 1

	kWh Savings	Therm Savings	
Estimated energy savings	824,694	14,249	
Age of equipment being replaced		28 yr	
Past major rebuild or main	Existing chillers were rebuilt in 2008 & 2011		
component replacement? What			
and when?			
Early retrofit or end-of-life	Early Retrofit		
replacement			
Measure Cost	\$ 679,841		
Notes	Maintenance savings of approximately \$7,800 per		
	year are a	also expected	

Table 4: EEM 1 Conditions

ltem	Baseline Condition	Proposed Condition	
Chiller full load kW/ton	0.65	0.487	
Heat recovery chiller	No	Yes	
Chilled Water Primary pumping	Constant Speed	Variable Speed	
Condenser Water pumping	Constant Speed	Variable Speed	

EEM2 – WELL-WATER CONNECTION

Baseline Condition

The FAB currently has no connection to the ground-well which provides water to heat pumps serving the adjacent Engineering Building (EB).

Proposed Condition

This measure investigated the feasibility of using EB well water to generate chilled water for FAB. A full year of temperature trend data from the building automation system (BAS) revealed that average well water temperatures are 55°F or higher, which will not generate cold enough chilled water for the FAB.

A possible use of the well water would be to cool the condenser on a new Liebert computer room air conditioning (CRAC) unit being considered for the data center as a redundant unit. Since this unit's intent is to add redundancy to the system, energy savings are not accounted for in the current study.

Table 5: Summary of EEM 2

	kWh Savings	Therm Savings	
Estimated energy savings	n/a	n/a	
Age of equipment being replaced		n/a	
Past major rebuild or main	n/a		
component replacement? What			
and when?			
Early retrofit or end-of-life		n/a	
replacement			
Incremental Cost		n/a	
Notes		n/a	

EEM3 - HEAT RECOVERY TO CITY TOWER

Baseline Condition

The City Tower is located directly above the FAB, and FAB chilled water is used for cooling in the City Tower. Heating in the tower is currently provided by electric resistance terminal reheat units, as well as heating coils in ASU-11, 12 and 13 served by the FAB hot water loop. City Tower AHU-1 currently serves floors 3-7 and does not contain a heating coil.

Proposed Condition

This measure proposes modifying the hydronic piping to AHU-1 so that the existing cooling coil can also be used as a heating coil during cold weather. Energy savings assume that EEM1 will be implemented before (or in combination with) this measure so that additional heat recovery capacity is available.

Piping will be added to connect the existing chilled water coil to the FAB HW loop (the HW loop is served by the FAB heat recovery chillers). Controls will be installed to isolate this coil from the chilled water loop and run the coil as a heating coil during cold weather. Adding the option for a changeover to heating at the coil in AHU-1 will displace electric resistance heating during morning warm-up, and should also allow a supply air temperature reset which will reduce reheat energy on cold days (some zones will always require cooling, so reheat cannot be fully eliminated). Additional energy savings would be possible by switching to hot water terminal units; however, the initial cost of retrofitting all terminal units does not make this a viable option.

The following will be required to implement this measure:

- HW piping from HW loop to CHW branch serving AHU-1
- 2 way control valves
- Isolation valves
- Additional control points and sequence programming

Non-Energy Savings Description

This measure will eliminate the need to drain the cooling coil, which is currently done annually. Estimated labor cost savings of \$800/year.

Table 6: Summary of EEM 3

	kWh Savings	Therm Savings	
Estimated energy savings	75,469	0	
Age of equipment being replaced		n/a	
Past major rebuild or main	n/a		
component replacement? What			
and when?			
Early retrofit or end-of-life	n/a		
replacement			
Incremental Cost	\$ 41,262		
Notes	Calculation assumes I	EEM1 is also implemented	
	1		

Table 7: EEM 3 Conditions

Item	Baseline Condition	Proposed Condition	
AHU-1 Heating Coil	None	Changeover from CHW to HW	
City tower heat source, floors 3-7	Electric reheat coils	Preheat at AHU, electric reheat	

EEM4 – CHILLED WATER TO CITY TOWER

Baseline Condition

The city tower currently has a 100 ton water-cooled chiller (CH-1) that serves ASU-11 and ASU-13. Instead of a traditional cooling tower configuration, the condenser on CH-1 is cooled by the FAB chilled water loop.

Proposed Condition

It has been proposed that CH-1 might be removed from the city tower, and chilled water could be provided directly from the FAB chillers.

Further investigation has determined that the current City Tower chiller (CH-1) is required. This chiller produces chilled water at a temperature of 34°F, and serves air handlers ASU-11 and ASU-13. Both air handlers were part of the original City Tower construction, but were undersized to meet the cooling load with a typical chilled water temperature of 45°F. In order to achieve the required level of cooling a colder CHW supply temperature is required. Since ASU-11 and 13 are still in good working order - replacement is not expected to be cost effective.

Table 8: Summary of EEM 4

	kWh Savings	Therm Savings	
Estimated energy savings	n/a	n/a	
Age of equipment being replaced		n/a	
Past major rebuild or main	n/a		
component replacement? What			
and when?			
Early retrofit or end-of-life		n/a	
replacement			
Incremental Cost		n/a	
Notes	This measure is not re	ecommended at this time.	

EEM5 - OIT DATACENTER IMPROVEMENTS

Baseline Condition

The Portland State University Office of Information Technology (OIT) currently maintains 3 datacenters as shown in the table below. ENG and COLO are jointly served by 3 air handling units, and share an under-floor air distribution system. MAIN also has under-floor distribution and is served by two units. CRU's 1 through 4 are Liebert FH376C models from 2006, and CRU-5 is a newer Liebert CW060 unit from 2009. All units have constant speed fans.

	Datacenter	Room #	Load	HVAC Equipment
	MAIN	090-07	72 kW	CRU-3 (17 tons), CRU-4 (17 tons)
	ENG	090-06	24 kW	CRU-1 (17 tons), CRU-2 (17 tons), CRU-
	COLO	090-04	37 kW	5 (17 tons)
Total		133 kW	85 tons	

Proposed Condition

<u>Hot aisle containment:</u> Modern datacenter design uses a hot-aisle / cold-aisle configuration to avoid air mixing and increase energy efficiency. A retrofit is proposed that will modernize the existing facility by adding containment panels to isolate the existing hot aisle. This will result in reduced mixing between the cold supply air and warm return air, and allows a higher supply air temperature to be used.

<u>Variable air volume</u>: Variable speed drives and associated controls will be added to all CRAC units. This will allow a reduction in fan speed and therefore fan energy use.

<u>Air Sealing:</u> Ensure raised floor is well sealed at all non-essential opening. This will help maintain static pressure in the under-floor plenum, enabling greater energy savings from the variable speed fan retrofit. Supply and return air diffusers that serve un-used regions of the datacenter should be sealed.

<u>Temperature Control:</u> A walk-through of the datacenter revealed room temperatures as low as 53°F. If equipment requirements allow, the temperature setpoints should be adjusted so that server racks are exposed to air temperatures of 72°F or higher. This could result in an increased discharge air temperature from the CRAC units, reduced airflow, and possibly a reduction in chilled water supply temperature. A comprehensive review of current control sequences will be conducted and adjustments made to bring the system up to current best-practice for supply air rate, temperature and CHW temperature control.

Table 9: Summary of EEM 5

	kWh	Therm
	Savings	Savings
Estimated energy savings	151,436	0
Age of equipment being replaced		
Past major rebuild or main component		
replacement? What and when?		
Early retrofit or end-of-life replacement		
Incremental Cost	\$ 100,335	
Notes		

Table 10: EEM 5 Conditions

Item	Baseline Condition	Proposed Condition
Datacenter hot aisle contained?	No	Yes
Fan control	Constant Speed	Variable Speed
Room setpoint	65	80
Supply air temperature	55	65

EEM6 - ADD UPS FAN COILS TO HEAT RECOVERY LOOP

Baseline Condition

The uninterruptible power supply room (UPS) is currently served by fan coils units FCU-6A and FCU-6B. Each unit is 3,000 CFM and provides 6 tons of cooling for a total capacity of 12 tons. The fan coils are served by the chillers, WCU-4 and WCU-5.

Proposed Condition

Reconfigure the UPS fan coil units to be served by the dedicated heat recovery chillers (DHRC 1, 2, 3). Recovered heat can be used for space heating. Excess heat is rejected to cooling tower CT-1.

The following will be required to implement this measure:

- Piping modifications to tie FCU-6A/6B into the DHRCs chilled water and heating water loops.
- Control system updates to serve and monitor new load on DHRC

Non-Energy Savings Description

The UPS will be served by the newer and more reliable DHRC modular chiller. This change will also consolidate all of the university's datacenter loads, thereby facilitating better metering and benchmarking of IT energy use.

Table 11: Summary of EEM 6

	kWh Savings	Therm Savings
Estimated energy savings	23,589	1,657
Age of equipment being replaced		n/a
Past major rebuild or main		n/a
component replacement? What		
and when?		
Early retrofit or end-of-life		n/a
replacement		
Incremental Cost	\$	17,390
Notes		

Table 12: EEM 6 Conditions

Item	Baseline Condition	Proposed Condition
FCU-6A/6B CHW	Central chillers WCU-4/5	Heat recovery chiller (DHRC)
System		

Appendix

EEM 1: Detailed Calculations

Calculation Methodology

Existing cooling load is calculated by using BAS trend data to estimate chiller loading and efficiency as a function of temperature. This curve fit was validated by comparing the bin temperature calculation to measured chiller energy use over the part year. The existing gas bolier usage revus temperature is also analyzed to calculate the building's heating demand.

For the proposed ECM, a new heat recovery chiller is added to handle periods of low cooling load but high heat load. When the heat load is small (warmer weather), a second, larger chiller will be used to to efficiently produce chilled water up to 500 tons.

6 7 8 8 9 9	5 584 10 393 5 311 10 238 5 144 10 118 5 56	205.00 236.00 288.00 329.00 360.00 391.00	41% Std 47% Std 53% Std 60% Std 66% Std 72% Std 78% Std	0.27 0.27 0.29 0.33 0.36 0.38	54.74 63.01 71.29 84.93 108.57 127.80 146.63	25,306 19,605 17,552 16,002 12,377 11,939 6,500	0 0 0 0 0 0	-				3,696 2,487 1,968 1,506 911 747 402	8,130 5,471 4,330 3,313 2,005 1,643 884
10 10 11	0 16 5 17 0 4	422.00 453.00 484.00	84% Std 91% Std 97% Std	0.40 0.45 0.49 To	168.80 203.85 235.71 tal	2,138 2,743 746 427,371	0 0 0	- total kBtu therms	489,039 1,668,600 16,686	 71,422 243,693 2,437	pump Total kWh Total	144 190 54 55,636	317 417 120 122,399 178,035 605,406
Boiler Gas Use Referenced in a Portland, OR Temp Bin	above chiller calculatio	on to determine when heat	recovery is beneficial								Pre UPS Gas Use (kBtu)		as Use [kWh]
1 2 3 3 4 4 5 5 6 6 6 6 6 7 7 7 8 8 9 9 9 10 10 11	0 0 0 0 0 0 0 37 5 79 0 319 5 639 0 1099 5 1300 0 1249 5 348 1449 0 348 5 348 0 311 0 238 5 144 0 118 5 148 5 5 64 0 118 5 5 6 0 16 17 31 0 31 12 12 12 12 12 12 12 12 12 1									Total Therms Gas S/year	ş	7,020 37,740 68,730 229,680 364,230 364,230 364,230 351,000 149,880 - - - - - - - - - - - - - - - - - -	2.067 11.061 20.144 67.315 100,750 134,912 102,872 43,912 - - - - - - - - - - - - - - - - - - -
Summary													
Chiller [kWh]	Pre 1,430,100	Post Savin 605,406	gs 824,694										
Total	1,430,100	605,406	824,694										
GB-1 Gas [therms]	16,686	2,437	14,249										

HEAT RECOVERY CHILLER

JOB NAME	Heating	REP. OFFICE	Oregon Air Reps
JOB		SALESMAN	Mike Wilson
		CUSTOMER	
MODEL NUMBER	TGZ190AXXX		
UNIT TAGGING	CH-1	VERSION	SPECIAL FACTORY RATING

	DESIGN PERFORMANCE													
Heating Cooling Heating Heating Evaporator with 100% Water 4 Pass Condenser with 100% Water												Water		
мвн	мвн	Power (kW)	COP	NPLV	Flow	PD	EWT	LWT	Flow	PD	EWT	LWT		
1704.7	1230.7	138.9	3.6	10.2	307.7	11.0	54.0	46.0	170.5	12.8	110.0	130.0		

	DESIGN PERFORMANCE														
% Load	Heating	Cooling	Power	Heating	Cooling	E١	/aporator wi	ith 100% Wa	ter	4 Pas	s Condense	er with 100%	Water		
/*	MBH	MBH	(kW)	COP	EER	Flow	PD	EWT	LWT	Flow	PD	EWT	LWT		
100	1704.7	1230.7	138.9	3.6	8.9	307.7	11.0	54.0	46.0	170.5	12.8	110.0	130.0		
90	1534.2	1116.2	122.5	3.7	9.1	307.7	11.0	54.0	46.7	170.5	12.8	112.0	130.0		
80	1363.7	1001.7	106.1	3.8	9.4	307.7	11.0	54.0	47.5	170.5	12.8	114.0	130.0		
70	1193.3	884.1	90.6	3.9	9.8	307.7	11.0	54.0	48.3	170.5	12.8	116.0	130.0		
60	1022.8	763.5	76.0	3.9	10.0	307.7	11.0	54.0	49.0	170.5	12.8	118.0	130.0		
50	852.3	642.9	61.4	4.1	10.5	307.7	11.0	54.0	49.8	170.5	12.8	120.0	130.0		
40	681.9	516.8	48.4	4.1	10.7	307.7	11.0	54.0	50.6	170.5	12.8	122.0	130.0		
30	511.4	390.7	35.4	4.2	11.0	307.7	11.0	54.0	51.5	170.5	12.8	124.0	130.0		
20	340.9	264.6	22.4	4.5	11.8	307.7	11.0	54.0	52.3	170.5	12.8	126.0	130.0		
10 (HGBP)	170.5	138.5	22.4	5.3	6.2	307.7	11.0	54.0	53.1	170.5	12.8	128.0	130.0		

MAGNITUDE[™] Water Cooled Centrifugal Chiller

Job Information		Technical Data Sheet
Job Name	PSU Chiller Project	
Date	12/5/2013	
Submitted By	Mike Wilson	
Software Version	08.90	
Unit Tag	CH-1	

Unit Overview

Model Number	Capacity ton	NPLV kW/ton	Voltage	Drive Type	ASHRAE 90.1	LEED EA Credit 4
WME0500S	500.0	0.306	460 v / 60 Hz	VFD/UM	'04, '07 & '10	Pass

Unit

Model Number:	WME0500SSM2R/	/E3012-JU-2**/C	2612-FAYY-2****/F	134-BAAAPAB-U	
Approval:	AHRI and ETL / cE	TL			
Vessel Code:	ASME				
Compressor Quantity	Car	pacity Control	Refriger	ant Type	Refrigerant Weight
1	VFD / In	let Guide Vanes	34a	1092 lb	
		E	vaporator		
Entering Fluid Temperature	Leaving Fluid Tempe	rature	Fluid Type	Actual Fluid Flow	Minimum Fluid Flow
55.99 °F	45.00 °F		Water	1090.95 gpm	321.0 gpm
Length	Diameter	Number of		Tube	Fouling Factor
		Passes	Material	Wall Thickness	
12 ft	30 in	2	Copper	0.025 in	0.00010 °F.ft ² .h/Btu
		(Condenser		
Entering Fluid Temperatu	re Leaving	Fluid Temperature	Fluid	Туре	Fluid Flow
80.00 °F		89.11 °F	Wa	iter	1500.00 gpm
Length	Diameter Number of			Tube	Fouling Factor
		Passes	Material	Wall Thickness	the state of the state of the
12 ft	26 in	2	Copper	0.025 in	0.00025 °F.ft2.h/Btu

Unit Performance

	and in the	and the state of		The shall be		De	sign								
Capacity	Input	Efficie	ncy	RLA	NPLV	NPLV Part Load Efficiency					Fluid	Condenser Fluid			
ton	kW	kW kW/to		kW kW/ton		A	kW/ton	75% kW/ton	50% kW/ton	25% kW/to	Pres on Dr ft H	sure E op Ten 1 ₂ 0	ntering nperature °F	Pressure Drop ft H ₂ O	Leaving Temperature °F
500.0	243.6	0.48	17	343	0.306	0.365	0.267	67 0.294		.1	55.99	14.6	89.11		
				-	Performance	e Points Rate	d at AHRI Co	ndenser Re	lief		1920150	N States Free			
Point #	% of	Capacity	Input	Efficienc	y RLA		Evaporator Fluid				Conde	enser Fluid			
	Design	ton kW		kW/ton	on A	Flow	Tempe	Temperature F		Flow	Tem	perature	Pressure		
	Load					gpm	Entering °F	Leaving °F	Drop ft H ₂ O	gpm	Entering °F	g Leaving °F	ft H ₂ O		
1	100.0	500.0	243.6	0.487	343	1,090.95	55.99	45.00	17.1	1,500.00	80.00	89.11	14.6		
2	75.0	375.0	136.9	0.365	206	1,090.95	53.24	45.00	17.1	1,500.00	72.50	79.12	14.7		
3	50.0	250.0	66.7	0.267	108	1,090.95	50.50	45.00	17.1	1,500.00	65.00	69.34	14.7		
4	25.0	125.0	36.7	0.294	62	1.090.95	47.75	45.00	17.1	1 500 00	65.00	67.21	14.7		

EEM 3													
Cost Estimate													
				_									
Item		uip. Cost	Labor Hrs		Labor	Bai	e Total	Tot	tal O&P	Qty	Unit		Total
4" HW pipe (from 2nd floor to penthouse)	\$	22	0.3	\$	30	\$	52	\$	60	200	ea	\$	11,960
2 way valves	\$	2,500	4	\$	400	\$	2,900	\$	3,335	2	ea	\$	6,670
Isolation valves	\$	2,500	4	\$	400	\$	2,900	\$	3,335	2	ea	\$	6,670
Controls, Supply air temp reset program and test	\$	4,000	16	\$	1,600	\$	5,600	\$	6,440	1	ea	\$	6,440
0.44-4-1												<u>^</u>	24 740
Subtotal				-								\$	31,740
Contingency												\$ ¢	9,522
Payback Calculation													
Electric													
Baseline kWh		635,434											
Proposed kWh		559,965											
kWh Savings		75,469											
pct Savings Electric		12%											
Gas													
Baseline Therms		-											
Proposed Therms		-											
Therm Savings		-											
pct Savings Gas	#	DIV/0!											
Total													
Energy Cost Savings/year	\$	5,434											
Measure Cost	\$	41,262											
Circuite Devile all Manage		7.0											
Simple Payback, Years		7.6											
Ectimated Incontine	ć	10 067		-									
Estimated incentive	Ş	18,807											
Payback w/ Incentive		4.1											

EEM 3: Detailed Calculations

Calculation Methodology

This measure calculates energy savings from using FAB heat recovery to provide heat to the City Tower AHU-1. This air handler serves floors 3-7 with a VAV electric reheat system. In the baseline (esisting) configuration there is no heating coil in the air handler. Proposed ELM would add a heating coil and provide controls to minimize us of reheat boxes.

An on-Cluster energy model is used to model heating demand in the City Tower. A simple geometry was created to match the building's floor area. URBs bling information was reviewed to worth the model energy use's resonable. In the model, a heating coll is added with the IRAT-CONTROL = WARKEST control setting The Wark and the transmission of the setting and the setting and the is astilled (lumber reset along when the point model and setting in other zones). Reheat at the zone level will serve the zones that require additional heat.

The difference in electrical energy (inclusive of pumps) between baseline and proposed models represents the energy savings for this measure.

Baseline (existing Condition) Utility Bills for City Tower Start Date NMh NMh 1/11/1012 195103 8407 1/11/1012 195403 188 1/11/1012 195404 188 1/11/1012 195415 189 5/11/1012 11571 4956 5/11/1012 11572 4956 5/11/1012 21572 4956 5/11/1012 21572 4956 5/12/1012 2555574 9/30/1012 25658 5283 11/30/1012 26535 4237 VMV/year 11/30/1013 150514 22951 2,384,513 8135959.995 **52.2** 1/1/2012 3/1/2012 4/1/2012 5/1/2012 6/1/2012 7/1/2012 8/1/2012 9/1/2012 10/1/2012 11/1/2012 12/1/2012 4/1/2013 est Inputs for AHU-1. No central heating coil Die Offic Spelan Reproduct Concender Andres Spelantes (2013 Note Spelant) (2010) Spelant Tuber : Spelantes (2014 Note Spelantes) (2014) Spelant Tuber : Spelantes (2014 Note Spelantes) (2014 Note Lass multihular | Ease Concellates | Ress | Predia Concellates | See Selected the Study Track | The Selected the Sele The second secon eQUEST Outputs NUMBER OF A DESCRIPTION STORY - MIN Balling Deergy Reflocation

 Line
 <thLine</th>
 Line
 Line
 <thL THE FRAMEWORK AND A REPORT OF THE ACCOUNT OF THE AC

2168.1 188.5

Note: FAB_STEAM in the report above, refers to a "purchased heat meter" in eQUEST. This was used to account for heat that is supplied by FAB to AHU's at City Tower

 Space Heating
 Pumps & Aux
 Total

 1925.6
 242.5

 188.5
 0
 Electric MMBtu HW from FAB MMBtu

Proposed

Constitution for	and the last of	4-E-04				
ment face dates				the line is a	dia koʻy	dana.
	water (Carding)	marine march	nettone Telev	1 Adapted	- 11	
conception of the	the second second	Constraint lines	- man (man) - C			-
reating furgetile			the local and	tout.		
Head Description	Int Party Long	- X	Date Schering Re-	hade here	14	7
June that fearms			Ind Deale Nam Law	the local		*
mating frequely:		mark.	Indust Indu To			11444
med lines being		and a second sec				
the second second			and the second second	Manhood Street		-
We Costing Fast Loss			Conc. (and a	Reinan .		-
We Casing Not Last			THE PART NAME	Manager -		i.
No Coding Part Loss and Maker Col Banks And Maker Col Banks	rhaine in the		And the second	Managana -		
We Coding Fort Last field Water Col Data Mat Mater Col Data Microsoft Type:	There is a construction of the construction of	-	Tel Colt Science	Research	174	- FRA
We Coding Feet Last test Maker that Maker test Maker Cod Data test Tables Type: Wittenpy:		Tana National Science	Institute Industry Analysishing Solution Faced Contents Front France Solution	Research		F F F F F F F
His Coding Feet Laan Rat Balan Yuli Raad Rat Balan Yuli Rada Rat Yulia Yugar Hit Yunga Rat Yunga		1	The Dark School Street			* REFE

eQUEST Outputs

	261	- Date	55	N.C.S.		ALTER	1.65	22	1000	1.03	10.00	The states	ЖX
N. BLANDOCHY			3854.4	510.4							141.5	me.a	0.00
NL NETRAL-DA		1.1	4.4	1.4	1.4	4.4	8.8	0.0	4.4	0.0	6.0	1.4	
100H	4	1.1	4.4	\$85.7	1.4	4.4	8.8	8.8	4.4	0.0	8.0	1.4	6.0
IN CREALED-HAPP	a	1.4	4.4	1.4	1710.4		4.4			4.4	4.4	1.4	L ¹
1872 LA		1.4	1012.0	225.4	2201.4	4.4	249.4	115.2	0.0	2.1	148.8	212.3	101-62

THE DEPENDENT OF THE ALL OF THE A

Savings from heat recovery

	Baseline			Proposed					
	Space Heating	Pumps & Aux	Total	Space Heating	Pumps & Aux Tol	al I	Electric Savings (MMBtu)	kWh	
tu	1925.6	242.5	2168.1	1640.8	269.8	1910.6	257.	5 75,469	Heat (MMBtu)
MMBtu	188.5	0	188.5	635.7	0	635.7			447.2

Summary

Pre Post Savings 635,434 559,965 75,469 City Tower Electric Heating [kWh]

EEM 5														
Cost Estimate														
	-		Laboration.	laborate.					.		a t.	11-14		T-4-1
Item	Equ	15 000	Labor Hrs	labor rate	ć	10 000	вa	re lotal	10		Qty	Unit	ć	10tal
NED conversion for Liphort Units (includes now	Ş	15,000	100	100	Ş	10,000	Ş	25,000	Ş	25,000	2.5	ea	Ş	02,500
inverter duty motors for Liebert FH376 units (4))	\$	4,500	8	100	\$	800	\$	5,300	\$	6,095	5	ea	\$	30,475
Air sealing	\$	-	16	100	\$	1,600	\$	1,600	\$	1,840	3	ea	\$	5,520
Review and adjust Sequence of Operations	\$	-	16	100	\$	1,600	\$	1,600	\$	1,840	1	ea	\$	1,840
Subtotal													\$	100,335
Contingency													\$	-
Total													\$	100,335
Payback Calculation														
Electric														
Baseline kWh		511,606												
Proposed kWh		360,170												
kWh Savings		151,436												
pct Savings Electric		30%												
Gas														
Baseline Therms		0												
Proposed Therms		0												
Therm Savings		-												
pct Savings Gas		0%												
Total														
Energy Cost Savings/year	Ş	10,903												
Measure Cost	Ş	100,335												
Simple Payback, Years		9.2												
Estimated Incentive	\$	37,859												
Payback w/ Incentive		5.7												

EEM 5: Detailed Calculations

Calculation Methodology

An eQUEST energy model is used to calculate savings for this measure. The baseline model is set up to closely replicate current datacenter operation as follows:

Datacenter Room Setpoint - 65 Supply air temperature - 55 Fans - constant volume

The proposed model makes the following changes:

Datacenter Room Setpoint - 80 Supply air temperature - 65 Fans - variable volume. Min flow = 60%.

Baseline (existing Condition)

Baseline Determiner	Freezer Instances			008-2.2-47h2	10/16/2013	11:20:27 BDL BON 1
LIGHTS	TANK HINC LIGHTS BOULD	REATING COLLIN	NEAT PINDS 9 REARCT 6 AUX	VENT DEFENS	NT 2012 DONE SUPPLIN NOT R	S USAGE TOTAL
EN1 ELECTRICITY 38177 63.1	0.0 3974.4	0.0 739.	2 23.0 303.1	679.5 0.0	0.0 0.	.0 0.0 8785.0
ENI NAFURAL-SAS	0.0 0.0	0.0 0.	0.0 0.0	0.0 0.0	0.0 0	.0 .0 .0
HB 77 63.1	0.0 0976.4	0.0 789.	2 20.0 000.1	679.5 0.0	0.0 0	.0 0.0 6705.0
201 201	DAL SITE ENERGY DAL SOURCE ENERGY	5705.04 MBCU 17055.14 MBCU	1205.2 MBTU/SQFT-1 9415.7 MBTU/SQFT-1	R GROES-AREA 121 R GROES-AREA 343	6.2 XHTU/90FT-YR 5.7 XHTU/90FT-YR	N 22 -AREA N 22 -AREA

DERCENT OF HOURS MAY SYSTEM JONE OUTSIDE OF THEOTILING RANGE = 0.00 PERCENT OF HOURS MAY FLANT LOAD HOT ANTIFICD = 0.00 HOURS ANY JONE MOUNT COLING TRADITION = 0.00 HOURS ANY JONE BELON HEATEST THEOTILING DAMAGE = 0 NOTE: ENERGY IS APPORTIONED HURLY TO ALL EMD-UNE CATEGORIES.

Proposed

Baseline Date REPORT- SEPS	Building	Energy Pe	a formance					D08-	2.2-47h2 M	10/22/20 EATHER FIL	19 11: E- Postla	15:41 BE	6 RIN 1
	LIGHTS	TASK LIGHTS	10 80 800 10	S DACE HEATING	SDACE COOLING	NEAT REJECT	2080-5 4 M/X	VENT	DEFRIC	NT PUND SUPPLEM	DONEST HOT WIN	EXT USACE	TOTAL
INL ELECTRO HETU	69.1	0.0	397 6.4	0.0	612.7	19.7	808.9	272.6	0.0	0.0	0.0	0.0	62.68.4
HETU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10177	69.1	0.0	297 6.4	0.0	632.7	19.7	222.9	272.6	0.0	0.0	0.0	0.0	52 68 .4

TOTAL SITE BARNEY & 168.37 MHTU 1087.6 MBTU/SQFT-VE GROSS-AREA 1087.6 MBTU/SQFT-VE HIT-AREA TOTAL SOURCE IMERGY 15805.15 MHTU 8290.7 MBTU/SQFT-VE GROSS-AREA 0292.7 MBTU/SQFT-VE HIT-AREA

Summary			
Pre	Post	Saving	s
Cooling	739.20	632.70	107
Pumps	303.90	303.90	-
Heat Rejectio	23.00	19.70	3
Fans	679.50	272.60	407
Total			
MMBtu	1745.60	1228.90	517
Total kWh	511,606	360,170	151,436

PRICING DOES NOT INCLUDE SHIPPING SHIPPING TERMS SHALL BE FOB ORIGIN AND ALL SHIPPING CHARGES SHALL BE PREPAID AND

WE SHALL NOT BE LIABLE FOR ANY LOSS OF PROFITS, BUSINESS, GOODWILL, DATA, INTERRUPTION OF BUSINESS, NOR FOR INCIDENTIAL

QUOTE IS VALID FOR 30 DAYS - PRICES SUBJECT TO CHANGE - PRICES BASED UPON TOTAL PURCHASE -

PRICING DOES NOT INCLUDE SALES AND/OR USE TAX UNLESS OTHERWISE STATED

		Account Execut	tive	Ship Via	Т	erms	
		Steve Karlsor	า	Per Customer PO	Ν	let 30	
Line	Qty	ECS Part Number		Description	tion Unit Price		Ext. Price
1			Below Panels	BOM is for Doors & Over Ra	ack Clear		
2	2	4.1.401.10010	I-40 Dua Anodized Wide- E/	l Sliding Door"W x _"H Clear d Aluminum Finish, Door Dims: 78 O 42"	" High x 89"	\$2,995.00	\$5,990.00
3	1	4.1.251.30010	I-25 Floo Floor Pa	r Panel Clear Anodized - (9"-25") nel Dims: 78" High x 12" Wide		\$440.00	\$440.00
4	2	4.1.251.31010	I-25 Ove O/R Pan	r Rack Panel Clear Anodized - (9" el Dims: 23" High x 72" long	'-25")	\$440.00	\$880.00
5	2	4.1.251.31010	I-25 Ove O/R Dim	r Rack Panel Clear Anodized - (9" s: 23" High x 60" Wide	'-25")	\$440.00	\$880.00
6	1	4.1.251.31010	I-25 Ove O/R Dim	r Rack Panel Clear Anodized - (9" s: 23" High x 54.5" Wide	'-25")	\$440.00	\$440.00
7	7	4.1.251.31010	I-25 Ove O/R Dim	r Rack Panel Clear Anodized - (9" s: 23" High x 82.5" Wide	'-25")	\$440.00	\$3,080.00
8	8	3.4.000.10440	Fire Proc	of Cube - 4"x40"		\$84.00	\$672.00
9	1	Shipping	Shipping	& Handling		\$2,337.23	\$2,337.23
10	1	9.0.000.00000	Site Serv Includes services.	vices: Installation of Products (2) year warranty on all products	& installation	\$10,260.00	\$10,260.00
						SubTotal	\$24,979.23
						Тах	\$0.00

Customer:

ADDED TO INVOICE.

Suite 631

USA

ise Control Systems 15 South Grady Way

Renton, WA 98057

Portland State University Tudor Hison 1930 S.W. 4th Ave., Ste 90 Portland, OR 97201

t. 800-570-5755 f. 425-460-8485

QUOTE

Number ECSQ2961

Date

Ship To:

Tudor Hison

Portland State University

1930 S.W. 4th Ave., Ste 90

Portland, OR 97201

May 7, 2013

Liebert_® Variable Speed Upgrade Kits Save Money Through Energy Efficient Operation

Get more efficient operation from your existing Chilled Water CRAC systems and quick payback through lower electricity costs and utility rebates.

The Variable Speed Drive (VSD/VFD) Upgrade is easily installed on your Liebert Deluxe System/3 Chilled Water systems, providing immediate results with lower electrical bills.

Typically, CRAC fans run at a constant speed and deliver a constant volume of air flow. Adding a Variable Speed Drive to the fan motor allows fan speed and power draw to be reduced as load decreases. A 20 percent reduction in fan speed provides almost 50 percent savings in fan power consumption.

Liebert Deluxe System/3 Chilled Water systems are easily field retrofitted with the VSD/VFD motor kit to maximize energy efficiency

VSD Features

Lowest Total Cost of Ownership

 Average payback on electricity costs is less than two years

 Utility rebates available in some regions, providing even faster payback

Flexibility

• Easy field installation by a factory trained technician

Higher Availability

• Variable fan speed increases the life of the fan and motor

The VSD/VFD Motor Upgrade Kit is Ideally Suited For Chilled Water Models of Liebert Deluxe System/3:

 In IT operations looking for fast, easy methods of cutting costs long term
 In IT operations looking for fast ROI on cost saving initiatives

...a 20% reduction in fan speed provides almost 50% savings in power consumption

Save from \$1,700 to \$5,100/year per unit

Non
Tag
#DescriptionModel #Coverage
TypeCoverage
AmountVSD Upgrade on (1) (kit with ring) CW060DCSAT6463A (S#
C09C1403002) and on (4) (replacement motor) FH376C-AA0I (S#'s
745661-001 & 002, 832754-001 & 002). Work to be performed by
Liebert FDO (8x5). All parts and labor included for VSD upgrades.vSDUPGRADEHVAC\$30,754

Total price not including tax: \$30,754 any tax required must be included in customer purchase order

EEM 6										
Cost Estimate										
Item	Equip. Cost	Labor Hrs	Labor	Bar	e Total	Tota	I O&P	Qty	Unit	Total
1 1/4" CHW piping to/from FCU-6A (branch from existing DHRC piping)	\$ 14	0.1	\$ 10	\$	24	\$	27	180	ft	\$ 4,906
1 1/4" CHW piping to/from FCU-6B (branch from existing DHRC piping)	\$ 14	0.1	\$ 10	\$	24	\$	27	180	ft	\$ 4,906
Controls	\$ 1,500	16	\$ 1,600	\$	3,100	\$	3,565	1	ea	\$ 3,565
	\$-	0	\$ -	\$	-	\$	-	1	ea	\$ -
	\$-	0	\$ -	\$	-	\$	-	1	ea	\$ -
	\$-	0	\$ -	\$	-	\$	-	1	ea	\$ -
	\$-	0	\$ -	\$	-	\$	-	1	ea	\$ -
Subtotal										\$ 13,377
Contingency										\$ 4,013
Total										\$ 17,390
Payback Calculation										
Electric										
Baseline kWh	1,185,118									
Proposed kWh	1,161,529									
kWh Savings	23,589									
pct Savings Electric	2%									
Gas										
Baseline Therms	16,686									
Proposed Therms	15,029									
Therm Savings	1,657									
pct Savings Gas	10%									
Total										
Energy Cost Savings/year	\$ 3,355									
Measure Cost	\$ 17,390									
Simple Payback, Years	5.2									
Fatimated Inconting	6 7FF4									
Estimated incentive	\$ 7,554									
Payback w/ Incentive	2.9									

EEM 6: Detailed Calculations

Calculation Methodology

Existing UPS cooling load is calculated by measuring airflow and temperature provided by the fan-coik that serve the zone. In the existing configuration, energy is used by the fan-for air distribution, and by the central chiller plant to produce and distribute chilled water to the fan coils.

In the proposed EEM, an existing dedicated heat recovery chiller (DHRC) will be used to serve the same two fan-coil units. Airflow and chilled water distribution are expected to have similar energy use to the existing condition, therefore they are not included in this calculation.

Energy savings will be provided in two areas: 1. Increased efficiency of the DHRC compared to the efficiency of the central chillers which often operate all low efficiency part load conditions. 2. The addee load of the UFS room creates the potential for additional heat recovery. When there is a demand for the recover the raik will drive the use of a gas boller.

Baseline (existing Condition)

Schedule UPS is located in a core zone with negligible shell losses UPS load is constant 24/7/365.

WCU-4, WCU-5 Trend Data from Building Automation System Daily average chiller load and efficiency versus temperature based on DDC trends

Gas Usage Data from NW Natural Utility Billing The only gas end-use in gas boiler GB-1 which provides space heating in FAB and some areas of City Tower

Natural Gas Consumption vs Temperature · • . Linest fit T == 54: y = -30*T+1620 T > 54: y = 0

WCU-4/5 Chiller Energy Consumption

Portland, OR					
Temp Bin	Frequency [hrs]	Chiller Load [tons]	Efficiency [kW/ton]	Power [kW]	Energy [kWh]
. 0	0	50.00	2.79	139.50	
5	0	50.00	2.65	132.25	-
10	0	50.00	2.50	125.00	-
15	6	50.00	2.36	117.75	559
20	37	50.00	2.21	110.50	3,237
25	79	50.00	2.07	103.25	6,457
30	319	50.00	1.92	96.00	24,244
35	639	50.00	1.78	88.75	44,896
40	1096	50.00	1.63	81.50	70,715
45	1300	81.00	1.49	120.29	123,793
50	1249	112.00	1.34	150.08	148,398
55	1173	143.00	1.20	170.89	158,688
60	981	174.00	1.05	182.70	141,889
65	584	205.00	0.91	185.53	85,774
70	393	236.00	0.76	179.36	55,803
75	311	267.00	0.65	173.55	42,729
80	238	298.00	0.65	193.70	36,496
85	144	329.00	0.65	213.85	24,379
90	118	360.00	0.65	234.00	21,860
95	56	391.00	0.65	254.15	11,267
100	16	422.00	0.65	274.30	3,474
105	17	453.00	0.65	294.45	3,963
110	4	484.00	0.65	314.60	996
				Total	1,009,620

Proposed

Portiand, OK					
Temp Bin	Frequency [hrs]	Chiller Load [tons]	Efficiency [kW/ton]	Power [kW]	Energy [kWh]
0	0	44.46	2.79	124.04	-
5	0	44.46	2.65	117.60	-
10	0	44.46	2.50	111.15	-
15	6	44.46	2.36	104.70	497
20	37	44.46	2.21	98.26	2,878
25	79	44.46	2.07	91.81	5,742
30	319	44.46	1.92	85.36	21,558
35	639	44.46	1.78	78.92	39,922
40	1096	44.46	1.63	72.47	62,880
45	1300	75.46	1.49	112.06	115,326
50	1249	106.46	1.34	142.66	141,057
55	1173	137.46	1.20	164.26	152,540
60	981	168.46	1.05	176.88	137,372
65	584	199.46	0.91	180.51	83,456
70	393	230.46	0.76	175.15	54,493
75	311	261.46	0.65	169.95	41,843

WCU-4/5 Chiller energy use (same as above except load is reduced by 5.54 tons)

			Tot	al	960,310
110	4	478.46	0.65	311.00	985
105	17	447.46	0.65	290.85	3,914
100	16	416.46	0.65	270.70	3,429
95	56	385.46	0.65	250.55	11,108
90	118	354.46	0.65	230.40	21,523
85	144	323.46	0.65	210.25	23,968
80	238	292.46	0.65	190.10	35,818

Heat Recovery Chiller Energy Use & Useful Recovered Heat Monthly gas bills are used to determine how much heat load is served by GB-1 (gas boiler). Any load currently served by GB-1 could potentially be served by the DHRC.

Portland, OR													Pre UPS		Post UPS	
		Chiller Load w/o				Heat Output	Chiller Load w/ UPS				Heat Output	Add'l heat recovered	Gas Use	Gas Use	Gas Use	
Temp Bin	Frequency [hrs]	UPS [tons]	Efficiency [kW/ton]	Power [kW]	Energy [kWh]	[kWh]	[tons]	Efficiency [kW/ton]	Power [kW]	Energy [kWh]	[kWh]	post UPS [kWh]	[kBtu]	[kWh]	[kWh]	Gas Use [kBtu]
(37.	8 0.5	3 20.03	4 -	-	43.34	0.53	22.9702		-	-	-	-	-	-
5	. c	37.	8 0.5	3 20.03	4 -		43.34	0.53	22.9702		-	-	-	-	-	
10	0	37.	8 0.5	3 20.03	4 -		43.34	0.53	22.9702		-	-	-	-	-	
15	6	37.	8 0.5	3 20.03	4 120	421	43.34	0.53	22.9702	138	3 482	62	7,020	2,057	1,996	6,810
20	37	37.	8 0.5	3 20.03	4 741	2,594	43.34	0.53	22.9702	. 850	2,975	380	37,740	11,061	10,681	36,443
25	79	37.	8 0.5	3 20.03	4 1,583	5,539	43.34	0.53	22.9702	1,815	6,351	812	68,730	20,144	19,332	65,960
30	319	37.	8 0.5	3 20.03	4 6,391	22,368	43.34	0.53	22.9702	7,321	25,646	3,278	229,680	67,315	64,037	218,495
35	639	37.	8 0.5	3 20.03	4 12,802	44,806	43.34	0.53	22.9702	14,678	51,373	6,567	364,230	106,750	100,183	341,824
40	1096	37.	8 0.5	3 20.03	4 21,957	76,850	43.34	0.53	22.9702	25,175	88,114	11,263	460,320	134,912	123,649	421,890
45	1300	37.	8 0.5	3 20.03	4 26.044	91.155	43.34	0.53	22.9702	29.861	104.514	13.360	351.000	102.872	89,513	305.417
50	1249	37.	8 0.5	3 20.03	4 25.022	87.579	43.34	0.53	22.9702	28.690	100.414	12.836	149,880	43.927	31.092	106.085
55	1173	37.	8 0.5	3 20.03	4 23,500	82.250	43.34	0.53	22.9702	26,944	94,304	12.055	-	-	-	-
60	981	37.	8 0.5	3 20.03	4 19.653	68,787	43.34	0.53	22.9702	22.534	78.868	10.081	-	-	-	
65	584	37.	8 0.5	3 20.03	4 11.700	40,949	43.34	0.53	22.9702	13.419	46.951	6.002	-	-	-	
70	393	37.	8 0.5	3 20.03	4 7,873	27,557	43.34	0.53	22.9702	9,021	31,596	4,039	-	-	-	
75	311	37.	8 0.5	3 20.03	4 6,231	21,807	43.34	0.53	22.9702	7,144	25,003	3,196	-	-	-	
80	238	37.	8 0.5	3 20.03	4 4,768	16,688	43.34	0.53	22.9702	5,461	19,134	2,446	-	-	-	
85	144	37.	8 0.5	3 20.03	4 2.885	10.097	43.34	0.53	22.9702	3.308	11.577	1.480	-	-	-	
90	118	37.	8 0.5	3 20.03	4 2.364	8.274	43.34	0.53	22.9702	2.710	9,487	1.213	-	-	-	
95	56	37.	8 0.5	3 20.03	4 1.122	3.927	43.34	0.53	22.9702	1.286	4,502	575	-	-	-	
100	16	37.	8 0.5	3 20.03	4 321	1.122	43.34	0.53	22.9702	368	1.286	164	-	-	-	
105	17	37.	8 0.5	3 20.03	4 341	1.192	43.34	0.53	22.9702	390	1.367	175	-	-	-	
110	4	37.	8 0.5	3 20.03	4 80	280	43.34	0.53	22.9702	92	322	41	-	-	-	
				Total	175,498				Total	201,219)		1,668,600	489,039	440,481	1,502,922
									Add'l kWh used	1 25,721	L	Total Therms	16,686			15,029
															Therms	
												Gas Ś/vear	\$ 16.686		Saved	1.657
															Cost Sygs	\$ 1.657
															-	
Summany																
Summary																4
	Pre	Post	Savings													
WCI14/5			0-													
1100 4/5																

[kWh]	1,009,620	960,310	49,310
DHRC [kWh]	175,498	201,219	(25,721)
Total	1,185,118	1,161,529	23,589
GB-1 Gas			
[therms]	16,686	15,029	1,657
truettisj	10,080	13,025	1,0

15,029

1,657

III MULTISTACK

Steve Welch

JOB NAME: <u>PSU Data Center</u> LOCATION: CUSTOMER:

Multistack Order Number:

Customer P.O. Number:

Sales Representative:

Submittal Information

Monday, January 19, 2009

ENGINEER: ARCHITECT: CONTRACTOR

 Submitted by:
 Steve Welch / EW

 Quote #:
 QEW011420094

 Approved by:
 Date:

GENERAL INFORMATION				WATER-COOLED CHILLER FEATURES				
Chiller I.D. (3) MS50X6H1W								
Dimensions (inches):Length:98Width:56Height:67						 Stainless steel evaporator and condenser Lead compressor sequencing every 24 hours Automatic internal rescheduling if fault occurs Multiple, independent refrigeration systems Automatic logging of any fault conditions Electronic chilled water control 		
<u>CHILLED WATER DESIGN</u> Entering Temperature: Leaving Temperature: Evaporator Flow Rate: Evaporator Pressure Drop:	$ \frac{52.0}{42.0} 185.1 4.9 $	°F °F GPM Feet				 Modules fit through single width doors and into passenger elevators Filters in condenser and evaporator supply headers Stainless steel evaporator & condenser inlet headers Quick interconnect modular design B. 410A. B. Shirawart 		
CONDENSER WATER DESIGN Entering Temperature: Leaving Temperature: Condenser Flow Rate: Condenser Pressure Drop:	$ \frac{120.0}{130.0} \frac{261.0}{6.3} $	°F °F GPM Feet				 K-410A Kerrigerant Warranty: Compressor (5 Year) Total Access Design w/ Var. Flow (Evap. & Cond.) (2" C-Steel Valves) FRM (No Glycol Protection, includes PPM & ΔP Switch) Interoperability Web Portal (BACnet or Modbus) 		
CHILLER PERFORMANCE (AT F Cooling Capacity: Power Input: EER:	<u>ULL LO</u> <u>77.2</u> <u>111.4</u> <u>8.3</u>	AD) Tons KW	(2 Modules O	perating, 1 Re	dundant)			
Mart LOAD PERFORMANCE % Load KW/ton COP 100% 1.443 2.4 75% 0.827 4.3 50% 0.530 6.6 25% 0.530 6.6 NPLV 0.664 5.3	ECW 120°F 92.5°F 65°F 65°F	LCHW 42°F 42°F 42°F 42°F	-					
ELECTRICAL DATA MAIN POWER SUPPLY ELECTRICAL CIRCUIT(S) C4	<u>460 / 60 / 3</u> SINGLE	SINGLE	SINGLE	CHILLER BUSBAR SCHEMATIC - SINGLE MODULE DIRECT CONNECT = D - ROUTING OF BUSBARS:				
Minimum Circuit Ampacity (amps Maximum Over Current Protection	MODULE CIRCUIT <u>104</u> <u>175</u>	MODULE CIRCUIT <u>104</u> <u>175</u>	MODULE CIRCUIT <u>104</u> <u>175</u>					
				PLAN VIEW				

IMPORTANT: To assure full equipment design performance, life and reliability, the MULTISTACK chiller must be piped in accordance with Installation Manual unless specifically authorized otherwise by MULTISTACK in writing.