

Procurement & Contract Services

Purchasing and Contract Services

Klamath Falls: 541.885.1133 (office) 541.885.1215 (fax) 3201 Campus Drive Snell Hall 217 Klamath Falls, OR 97601 Wilsonville: 503.821.1277 (office) 503.533.5190 (fax) 27500 SW Parkway Ave. Wilsonville, OR 97070

REQUEST FOR QUOTES (RFQ) #2013-15

Issue Date: August 14, 2013

Project Name:	Softball Dugout Rep	Softball Dugout Replacement				
BID Due Date/Time:	August 27, 2013, 1:0	00 PM				
Mandatory Walkthrough:	August 21, 2013, 1:00 PM					
Project Coordinator:	Eric Rulofson Phone: 541-885-1600					
		Email:	Eric.Rulofson@oit.edu			
Contract Coordinator:	George Marlton	Phone:	503-821-1277			
		Email:	George.Marlton@oit.edu			

SUBMIT QUOTES VIA EMAIL TO <u>PURCHASING@OIT.EDU</u> OR MAIL/HAND DELIVERY TO THE ABOVE WILSONVILLE ADDRESS TO GEORGE MARLTON

PLEASE NOTE: EMAIL SUBMISSIONS SHOULD HAVE "RFQ #2013-15" IN THE SUBJECT LINE

1. ANNOUNCEMENT AND SPECIAL INFORMATION

Quoters are required to read and understand and comply with all information contained within this RFQ. All quotes are binding upon Quoter for thirty (30) days from the RFQ Due Date/Time. All payments for services will be paid in accordance to OAR 580-061-0050. Quotes received after the RFQ Due Date/Time may not be considered. Travel and other expense reimbursement will only be reimbursed in accordance with the OIT Contractor's Travel Reimbursement Policy at the time the expense is incurred.

It will be the responsibility of potential Quoters to refer daily to the OUS Procurement Gateway website (<u>https://secure.ous.edu/bid/</u>) to check for any available addenda, response to clarifying questions, cancellations or other information pertaining to this Request for Quotes.

A Mandatory Pre-Bid Conference will be conducted on August 21, 2013 at 1:00 PM in the Sunset Conference Room of the College Union located at 3201 Campus Drive, Klamath Falls, OR 97601. Attendance will be documented through a sign-in sheet prepared by the Oregon Tech representative. Prime bidders who arrive more than 5 minutes after start of the time of the meeting (as stated in this solicitation and by the Oregon Tech's representative's watch) or after the discussion portion of the meeting (whichever comes first) shall not be permitted to sign in and will not be permitted to submit a bid on the project.

2. SCOPE

The purpose of this RFQ is hire a contractor to provide all necessary labor, materials and permits for the installation of a new dugout for the Oregon Tech softball field. This project will utilize some services and materials supplied by others through in kind donations. The successful contractor will be responsible for the following:

- 1. Provide all permits.
- 2. Complete the final grading and excavation (rough excavation done by Owner).
- 3. Provide, place, and compact aggregate per plans and specifications.

4. Provide and construct foundation forms per plans and specifications.

Revised 05/13

- 5. Provide and install in the foundation two ³/₄" PVC stub ups for future electricity and data in each dugout storage area (total of four, location confirmed by owner).
- 6. Provide and install rebar in the concrete foundation and block per plans and specifications.
- 7. Pour and finish concrete per plans and specification (Owner supplied ready to pour concrete.
- 8. Provide mortar and construct dugout walls using concrete block per plans and specifications (Owner supplied concrete block delivered to the site).
- 9. Provide, install and paint the metal columns per plans and specifications (paint color: green to match existing green on announcer's booth).
- 10. Provide and construct the roof framing per plans and specifications. Use plywood sheathing only.
- 11. Provide and install standing lock seam metal roof (roof color: green to match existing green on announcer's booth).
- 12. Provide paint and paint all exposed wood (paint color and scheme to match existing green on announcer's booth).
- 13. Complete final site grading per the plans and specifications.
- 14. Provide all warranties and as built drawings.

The scope further includes the following attached drawings and structural engineering calculations from Precision Structural Engineering dated 7-2-13 and 6-19-13 respectively (See Exhibit A).

OIT Softball Dugouts drawing S1

OIT Softball Dugouts drawing S2

OIT Softball Dugouts drawing S3

OIT Softball Dugouts Engineering Calculations

*Note: The excavation to be completed to carefully to native soil, no extra backfill shall be used. Construction of foundation shall be built upon undisturbed native soil. The Geotechnical Soil test, found on drawing S1, General Notes F, 1, is eliminated.

All work shall be completed in accordance with the July 1, 2012 Oregon University System General Conditions for Public Improvement Contracts. Contractor shall further be required to complete an Owner safety orientation prior to commencement of work. Oregon Tech will utilize a contract form that is most convenient to Oregon Tech including but not limited to: OUS Retainer Program Supplement, Public Improvement Agreement or a Construction Purchase Order. Damages to existing site conditions caused by the contractor shall be the responsibility of the contractor to repair, replace, or rebuild as required. Site conditions: landscaping, irrigation, utilizes, grading, etc.

The Substantial Completion Deadline for this project is September 20, 2013. Time is of the essence for this project.

Owner furnished materials and labor:

- Concrete
- Concrete blocks

3. Quote

Quotes should be <u>short and concise</u> with the following information:

- A. Description of items and services to be provided;
- B. Price including all labor, materials, and permits;
- C. Warranty information; and
- D. Estimated delivery time upon order submission.

4. Evaluation

The quote received by the lowest responsive responsible Quoter will be awarded a contract. The "lowest responsive responsible Quoter" is the lowest Quoter who has substantially complied with all

requirements of the Request for Quote and who can be expected to deliver promptly and perform reliably.

OREGON INSTITUTE OF TECHNOLOGY CERTIFICATIONS RFQ #2013-15

Each Quoter must read, complete and submit a copy of this Oregon Institute of Technology Certification with their Quote. Failure to do so may result in rejection of Quote. By signature on this Certification the undersigned certifies that they are authorized to act on behalf of the Quoter and that under penalty of perjury the undersigned will comply with the following:

SECTION I. OREGON TAX LAWS

As required in ORS 305.385(6) the undersigned hereby certifies that to the best of the undersigned's knowledge, the Entity is not in violation of any Oregon Tax Laws. For purposes of this certification, "Oregon Tax Laws" means a state tax imposed by ORS 401.792 to 401.816 and ORS chapters 118, 314, 316, 317, 318, 320, 321 and 323; the elderly rental assistance program under ORS 310.630 to 310.706; and local taxes administered by the Department of Revenue under ORS 305.620. If a Contract is executed, this information will be reported to the Internal Revenue Service. Information not matching IRS records could subject Contractor to 31% backup withholding.

SECTION II. AFFIRMATIVE ACTION

The undersigned hereby certifies that they have not discriminated against Minority, Women or Emerging Small Business Enterprises in obtaining any required subcontracts, pursuant to OAR 580-061-0030(3).

SECTION III. COMPLIANCE WITH SOLICITATION

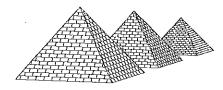
The undersigned further agrees and certifies that they:

- 1. Have read, understand and agree to be bound by and comply with all requirements, instructions, specifications, terms and conditions of the RFQ (including any attachments); and
- 2. Are an authorized representative of the Quoter, that the information provided is true and accurate, and that providing incorrect or incomplete information may be cause for rejection of the Quote or contract termination; and
- 3. Will furnish the designated item(s) and/or service(s) in accordance with the RFQ and Quote.

Firm Name:	Date:
Signature:	Title:
Name (Type or Print):	Telephone:
Email:	OR CCB # (if applicable):
Business Designation (check one):	
Corporation Partnership Sole Proprietor	rship 🗌 Non-Profit 🔲 Limited Liability Company
Oregon Certified Minority, Women, or Emerging S	Small Business: (Mark if applicable and certification #)
Minority: Women:	ESB:
Self-Reported Minority, Women, or Emerging Sma	all Business: (Mark if applicable)
Minority: Women:	ESB:

OREGON INSTITUTE OF TECHNOLOGY INSTRUCTIONS TO QUOTERS

Quotes are subject to the applicable provisions and requirements of the Oregon Administrative Rules and Oregon Revised Statutes.


QUOTE PREPARATION

- 1. **QUOTE FORMAT**: Quotes must be must be submitted as indicated in the RFQ. Quotes may be submitted in writing to OIT office via e-mail, mail or in person.
- 2. CONFORMANCE TO RFQ REQUIREMENTS: Quotes must conform to the requirements of the RFQ. Unless otherwise specified, all items quoted are to be new, unused and not remanufactured in any way. Any requested attachments must be submitted with the quote and in the required format. Quote prices must be for the unit indicated on the quote. Failure to comply with all requirements may result in quote rejection.
- 3. ADDENDA: Only documents issued as addenda by OIT serve to change the RFQ in any way. No other directions received by the Quoter, written or verbal, serve to change the RFQ document. NOTE: IF YOU HAVE RECEIVED A COPY OF THE RFQ, YOU SHOULD CONSULT THE UNIVERSITY PROCUREMENT GATEWAY WEBSITE (https://secure.ous.edu/bid/) TO ENSURE THAT YOU HAVE NOT MISSED ANY ADDENDA OR ANNOUNCEMENTS. QUOTERS ARE NOT REQUIRED TO RETURN ADDENDUMS WITH THEIR QUOTE. HOWEVER, QUOTERS ARE RESPONSIBLE TO MAKE THEMSELVES AWARE OF, OBTAIN AND INCORPORATE ANY CHANGES MADE IN ANY ADDENDUMS ISSUED, AND TO INCORPORATE ANY CHANGES MADE BY ADDENDUM INTO THEIR FINAL QUOTE. FAILURE TO DO SO MAY, IN EFFECT, MAKE THE QUOTER'S QUOTE NON-RESPONSIVE, WHICH MAY CAUSE THE QUOTE TO BE REJECTED.
- 4. USE of BRAND or TRADE NAMES: Any brand or trade names used by OIT in RFQ specifications are for the purpose of describing and establishing the standard of quality, performance and characteristics desired and are not intended to limit or restrict competition. Quoters may submit quotes for substantially equivalent products to those designated unless the RFQ provides that a specific brand is necessary because of compatibility requirements, etc. All such brand substitutions shall be subject to approval by OIT.
- 5. **PRODUCT IDENTIFICATION**: Quoters must clearly identify all products quoted. Brand name and model or number must be shown. OIT reserves the right to reject any quote when the product information submitted with the quote is incomplete.
- 6. FOB DESTINATION: Unless specifically allowed in the RFQ, *QUOTE PRICE MUST BE* F.O.B. DESTINATION with all transportation and handling charges paid by the Quoter.
- 7. **DELIVERY**: Delivery time must be shown in number of calendar days after receipt of purchase order.
- **8. EXCEPTIONS**: Any deviation from quote specifications, or the Oregon Institute of Technology Purchase Order Terms and Conditions may result in quote rejection.
- **9. SIGNATURE ON QUOTE**: Quotes must be signed by an authorized representative of the Quoter. Signature on a quote certifies that the quote is made without connection with any person, firm or corporation making a quote for the same goods and/or services and is in all respects fair and without collusion or fraud. Signature on a quote also certifies that the Quoter has read and fully understands all quote specifications, and the Oregon Institute of Technology Purchase Order Terms and Conditions (including insurance requirements). No consideration will be given to any claim resulting from quoting without comprehending all requirements of the RFQ.
- **10. QUOTE MODIFICATION**: Quotes, once submitted, may be modified in writing before the time and date set for quote closing. Any modifications should be signed by an authorized representative, and state that the new document supersedes or modifies the prior quote. Quoters may not modify quotes after quote closing time.
- **11. QUOTE WITHDRAWALS**: Quotes may be withdrawn by request in writing signed by an authorized representative and received by OIT prior to quote closing time. Quotes may also be withdrawn in person before quote closing time upon presentation of appropriate identification.

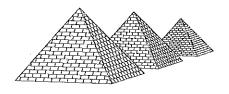
12. QUOTE SUBMISSION: Quotes may be submitted by returning to OIT Purchasing and Contract Services Office in the location designated in the introduction of the RFQ via e-mail, mail or in person but no oral or telephone quotes will be accepted. Envelopes, or e-mails containing Quotes should contain the RFQ Number and RFQ Title.

QUOTE EVALUATION AND AWARD

- 1. PRIOR ACCEPTANCE OF DEFECTIVE PROPOSALS: Due to limited resources, OIT generally will not completely review or analyze quotes which fail to comply with the requirements of the RFQ or which clearly are not the best quotes, nor will OIT generally investigate the references or qualifications of those who submit such quotes. Therefore, neither the return of a quote, nor acknowledgment that the selection is complete shall operate as a representation by OIT that an unsuccessful quote was complete, sufficient, or lawful in any respect.
- 2. **DELIVERY**: Significant delays in delivery may be considered in determining award if early delivery is required.
- **3.** CASH DISCOUNTS: Cash discounts will not be considered for award purposes unless stated in the RFQ.
- 4. **PAYMENT**: Quotes which require payment in less than 30 days after receipt of invoice or delivery of goods, whichever is later, may be rejected.
- 5. INVESTIGATION OF REFERENCES: OIT reserves the right to investigate references and or the past performance of any Quoter with respect to its successful performance of similar services, compliance with specifications and contractual obligations, and its lawful payment of suppliers, sub-contractors, and workers. OIT may postpone the award or execution of the contract after the announcement of the apparent successful Quoter in order to complete its investigation. OIT reserves the right to reject any quote or to reject all quotes at any time prior to OIT's execution of a contract if it is determined to be in the best interest of OIT to do so.
- 6. METHOD OF AWARD: OIT reserves the right to make the award by item, groups of items or entire quote, whichever is in the best interest of OIT.
- 7. **QUOTE REJECTION**: OIT reserves the right to reject any and all quotes.
- 8. QUOTE RESULTS: Quoters who submit a quote will be notified of the RFQ results. Awarded quote files are public records and available for review by appointment.

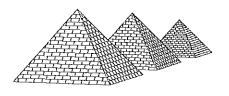
STRUCTURAL ENGINEERING CALCULATIONS

PROJECT: OIT Softball Dugouts


PROJECT LOCATION: 3201 Campus Dr Klamath Falls, OR 97601

PSE PROJECT NUMBER: KF213-3094

DATE: June 25, 2013

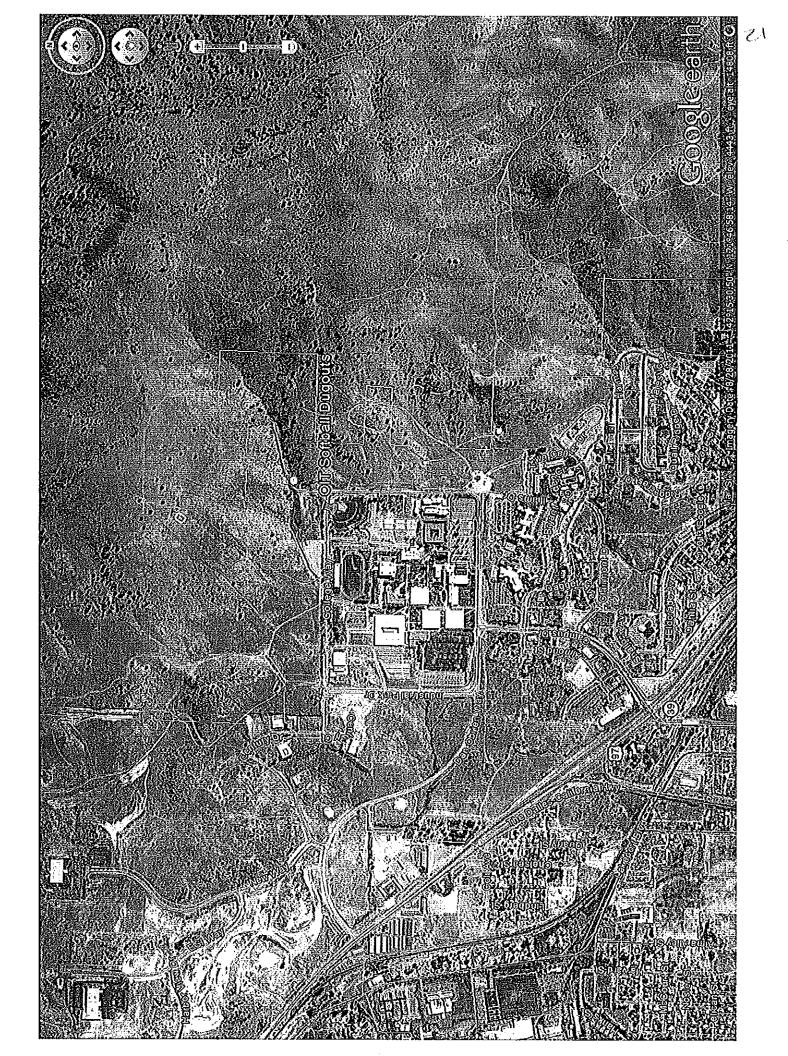


BY: Nabil Taha, Ph.D., P.E.

Table of Contents:

Subject:	Page:
1- References / Software:	10-19
2- Design Criteria:	20-29
3- Roof Framing Analysis & Design:	1,000 – 1,999
4- First Floor Framing / Foundation Analysis & Design:	2,000 - 2,999
5- Lateral Analysis & Design:	3,000 – 3,999

References:


- 1- Literature:
 - a. 2010 Oregon Structural Specialty Code (OSSC), based on the 2009 International Building Code (IBC)
 - b. Design of Wood Structures, Donald E. Breyer 4th ED.
 - c. Masonry Designers' Guide, TMC 5th Edition
- 2- Software:
 - a. RISA Foot Version 3.0, RISA Technologies, 26212 Dimension Dr. Suite 200
 - b. Wood Works Design Office 2007, American Forest & Paper Association

Design Criteria:

1- Location:	3201 Campus Dr. Klamath Falls, OR 97601 (Lat 42° 15' 31" Lon 121° 58' ")				
2- Seismic:	$\begin{array}{l} OC\\ SDC\\ Site Class\\ S_{ms}\\ S_{m1}\\ S_{DS}\\ S_{D1}\\ I_E\\ R \end{array}$	II D 1.011 0.586 0.674 0.391 1.0 5.0			
3- Wind:	Basic wind Exposure I _w	speed	95.0 mph (3 s. gust) C 1.0		
4- Snow:	45 psf (gro 32 psf (flat	•			
5- Soil Bearing Capacity:	1500 psf(presumptive	e value from IBC)		
6- Gravity Loads:	DL Floor: LL Floor: DL Roof: Exterior W	alls:	15 psf 40 psf 10 psf 81psf		
7- Deflection Criteria:	Floor LL D Roof TL De		L/480 L/180		

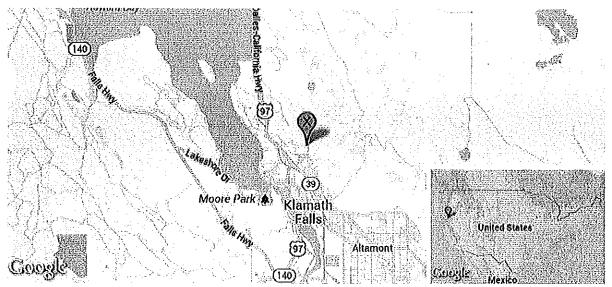
**Other criteria assumed as stated in design calculations.

22

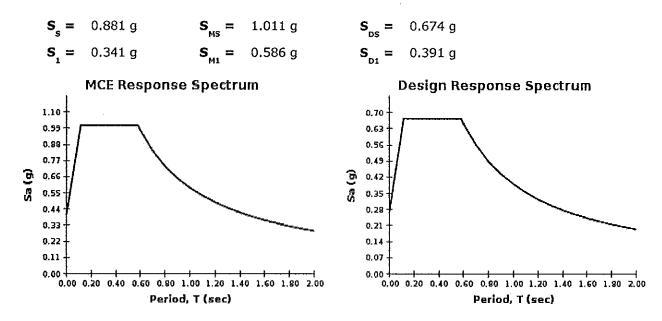
USGS Design Maps Summary Report

User-Specified Input

Report Title OIT Softball Dugouts Tue June 18, 2013 22:49:29 UTC


Building Code Reference Document ASCE 7-05 Standard

(which makes use of 2002 USGS hazard data)


Site Coordinates 42.2586°N, 121.7827°W

Site Soil Classification Site Class D - "Stiff Soil"

Occupancy Category Occupancy Category I

USGS-Provided Output

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

IBC SEISMIC DESIGN

EQUIVALENT LATERAL FORCE PROCEDURE

JOB NUMBER KF213-3094

DESIGNER

RMH

Design Information DATA VALUE SOURCE Seismic Design Parameters (Software) 0.341 \$₁= Seismic Design Parameters (Software) 1.011 S_{MS}= S_{M1}= 0.6 Seismic Design Parameters (Software) ASCE 7-05 Table 11.5-1 1.0 ΙĘ Occupancy 2 IBC Table 1604.5 Category 5 ASCE 7-05 Table 12.2-1 R Height per ASCE 7-05 9 hn

ASCE 7-05 Table 12.8-2

S_{MS}: Max considered spectral response acceleration for short periods

S_{M1}: Max considered spectral response acceleration for 1-second period

IE: Seismic importance factor

R: Response modification factor

1) Design spectral response acceleration

0.02

S_{DS}: 5% Damped spectral response acceleration at short periods Sp1: 5% Damped spectral response acceleration at 1 second period

$S_{DS}=2/3(S_{ms})$	S _{DS} ≓	2/3 X 1.011	S _{DS} ≓	0.674	[IBC Eq. 16-39]
S _{D1} =2/3(S _{m1})	S _{D1} ≃	2/3 X 0.586	S ₀₁ ≓	0.391	[IBC Eq. 16-40]

2) Seismic design category

Ct

From Table IBC 1613.5.6(1)	:	D	Governing Design D
From Table IBC 1613.5.6(2)	:	D	Category

3) Determine design base shear (V)

Equivalent Force Procedure $V=C_s \times W$ [ASCE 7-05, 12.8.1]

Cs : Seismic Response Coefficient W: Total dead load and other applicable loads

 $C_{s}=$

Ta: Approximate Fundamental Period

0.020 X9

 $T = T_a = C_t (h_n^{x})$

T=

C_s= 0.0297

0.135

0.75

[ASCE 7-05, 12.8.2.1, Eq. 12.8-7]

T= 0.104

A. [ASCE 7-05, 12.8.1.1, Eq. 12.8-2] $C_{s} = \frac{0.674}{5} 1.0$ $C_s = \frac{S_{DS}}{R/I}$

B. Nor greater than

$$C_{s} = \frac{S_{D1}}{T(R/I)}$$
 [ASCE 7-05, 12.8.1.1, Eq. 12.8-3]

Cs= 0.752

C. Nor less than [ASCE 7-05, 12.8.1.1, Eq. 12.8-5]

$$C_{S} = 0.044 (S_{DS}) (I)$$
 $C_{S} = 0.044 \times 0.674 \times 10^{-10}$

Governing C_s 0.135 Ξ

V= Cs x W

V = 0.135 X W

Refer to sheet two for W and Calculated V

1 OF 3

IBC SEISMIC DESIGN

VERTICLE FORCE DISTRIBUTION EQUIVALENT LATERAL FORCE PROCEDURE

JOB NUMBER KF213-3094

DESIGNER

LAJ

1. Determine dead load at each level of building.

Structur	ral portion	DL (PSF)	Area (SF)	Length (FT)	Height (FT)	Total Weight (LB)
a) Roof	Diaphram elev	alion from the t	ase level in ft	8		
	Roof	15	492.2	NA	NA	7383
	Misc.	0	0	0	0	0
	Misc. (LBS)	0	NA	NA	NA	0
c) 5th floor	Diaphram elev	ation from the b	ase level in ft	•	0	
	Ext. Walls	15	NA	0	0	0
	Int. Walls	10	NA	0	0	0
	Floor	15	0	NA	NA	0 .
	Misc.	0	0	0	0	0
	Misc. (LBS)	0	NA	NA	NA	0
d) 4th floor	Diaphram elev	ation from the t	base level in ft		0	
	Ext. Walls	15	NA	0	0	0
	Int. Walls	10	NA	0	0	0
	Floor	15	0	NA	NA	0
	Misc.	0	0	0	0	. 0
	Misc. (LBS)	0	NA	NA	NA	0
e) 3rd floor	Diaphram elev	ration from the t	base level in ft		0	
	Ext. Walls	15	NA	0	0	0
	Int. Walls	10	NA	0	0	0
	Floor	15	0	NA	NA	0
	Misc.	0	0	0	0	0
	Misc. (LBS)	0	NA	NA	NA	0
f) 2nd floor	Diaphram elev	ation from the l	oase level in ft		0	
	Ext. Walls	0	NA	0	1	0
	Int. Walls	0	NA	0	0	0
	Floor	0	0	NA	NA	0
	Misc.	0	0	0	0	0
	Misc. (LBS)	0	NA	NA	NA	0
g) 1st floor	Ext. Walls	81	NA	86	4	27864
	int. Walls	0	NA	0	4	0
	Misc.	0	0	0	0	0
			TOT	TAL DEAD LOA	\D (LB) ≍	35247

2) Determine verticle force distribution at each level

ASCE 7-02 9.5.5.4 pg. 148

Fx = Cvx X V ASCE 7-02 Eq. 9.5.5.4-1

$$C_{yx} = \frac{W_x x h_x^{\kappa}}{\sum w_i h_i^{\kappa}}$$
 ASCE 7-02 Eq. 9.5.5.4-2

F_x: Lateral seismic force at any level

V: Seismic base shear (Kips)

 $w_x \& w_i$: The portion of the total gravity load of the structure (W) located or assigned to level i or x

 $h_x \& h_x$: The height (ft) from the base to level *i* or x diaphram.

k : An exponent related to the structures period (T) as follows;

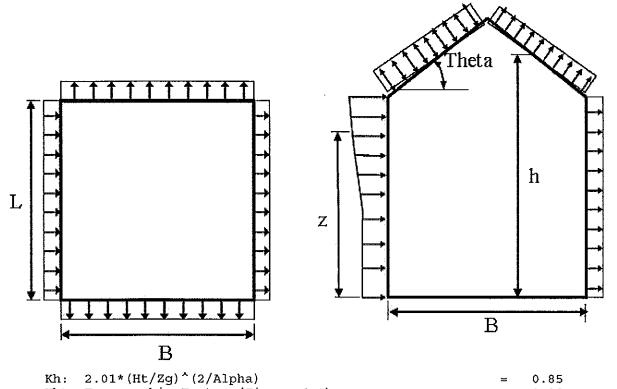
T ≤ 0.5 sec k = 1	T > 2.5 sec k = 2

$0.5 \leq T \leq 2.5~$ Interpolate between 1 & 2 ~

lefer to sheet		35 X W	V = 0.135	X 35247	V=	(kips) 4.751	T≖[] <i>k</i> ≃	0.1
Level (floor)	Wall Height (ft)	Diaphram Height (Ft)	W _x (kips)	W _x *h _x *	C _{vx}	F _x (kips)	Ailowable F _x (kips)	
Roof	5	8	7.383	59	1.000	4.75	3.39	
5	0	0	0.000	0	0.000	0	0.00	
4	0	0	0.000	0	0.000	0	0.00	
3	Û	0	0.000	0	0.000	0	0.00	
2	4	0	13.932	0	0.000	0.00	0.00	
	•		21.315	59	1.000	4.75	3.4	

Note: The Total Shear shown in the right hand column is an "allowable" load.

2 OF 3


MECAWind Version 2.1.1.3 per ASCE 7-05

Developed by MBCA Enterprises, Inc. Copyright 2013 www.mecaenterprises.com

Date	: 6/18/2013	Project No.	:
Company Name	:	Designed By	:
Address	:	Description	:
City	:	Customer Name	:
State	:	Proj Location	:
File Location:	C:\Program Files (x86)\MECAWind\Defau	llt.wnd	

Detailed Wind Load Design(Method 2) per ASCE 7-05

At Am Cc	= 95.00 mph = II = N/A = 1.00 = 9.50 = 0.11 = 0.15 = 0.20 = 0.20	Structure Type Exposure Category Flexible Structure Kd Directional Factor Zg Bt Bm 1 Zmin	= Building = C = No = 0.85 = 900.00 ft = 1.00 = 0.65 = 500.00 ft = 15.00 ft
Ht: Mean Roof Ht	= 7.75 ft = 8.00 ft = .00 ft	Slope of Roof (Theta) Type of Roof Eht: Eave Height Roof Area Bldg Width Across Ridg	= 7.50 ft = 360.00 ft [*]
Gust Factor Category I Ri Gust1: For Rigid Structu	gid Structures -	Simplified Method	0.85
Gust Factor Category II R. Zm: 0.6*Ht lzm: Cc*(33/Zm)^0.167 Lzm: l*(Zm/33)^Epsilon Q: (1/(1+0.63*((B+Ht)) Gust2: 0.925*((1+1.7*lzm*	/Lzm)^0.63))^0.5		0.23 427.06 ft 0.96
Gust Factor Summary Not a Flexible Structure	use the Lessor of	f Gust1 or Gust2 =	0.85
Figure 6-5 Internal Press GCPi : Internal Pressur			+/-0.55
Aog: Total Area of Openi: Vi: Unpartitioned Inter	ngs in Bldg Envel nal Value 2800*Aog))^0.5)) Ri	Volume Buildings, Ri lope = = (Eqn. 6-16) =	.00 ft ³
Figure 6-6 External Press Cp - Loads on Main Wind-F		ystems(Method 2)	

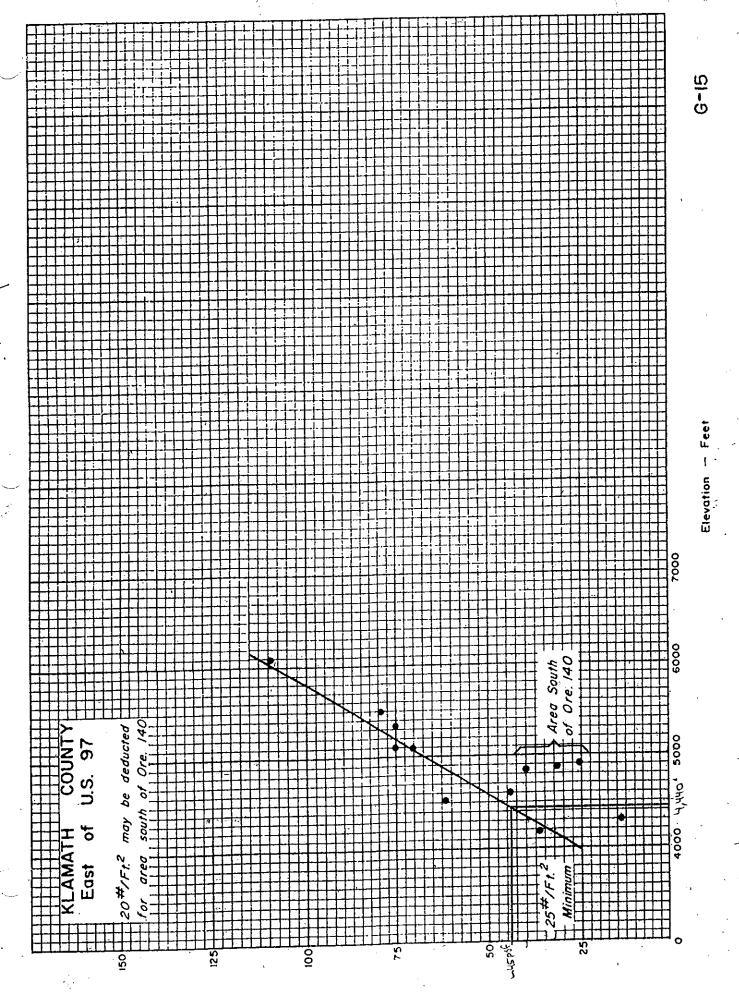
Kh: 2.01*(Ht/2g) (2/Alpha) Kht: Topographic Factor (Figure 6-4) Qh: .00256*(V)²*I*Kh*Kht*Kd Cpww: Windward Wall Cp(Ref Fig 6-6) Roof Area Reduction Factor based on Roof Area = 0.85 = 1.00 = 16.67 psf = 0.80 = 360.00 ft² = 0.89

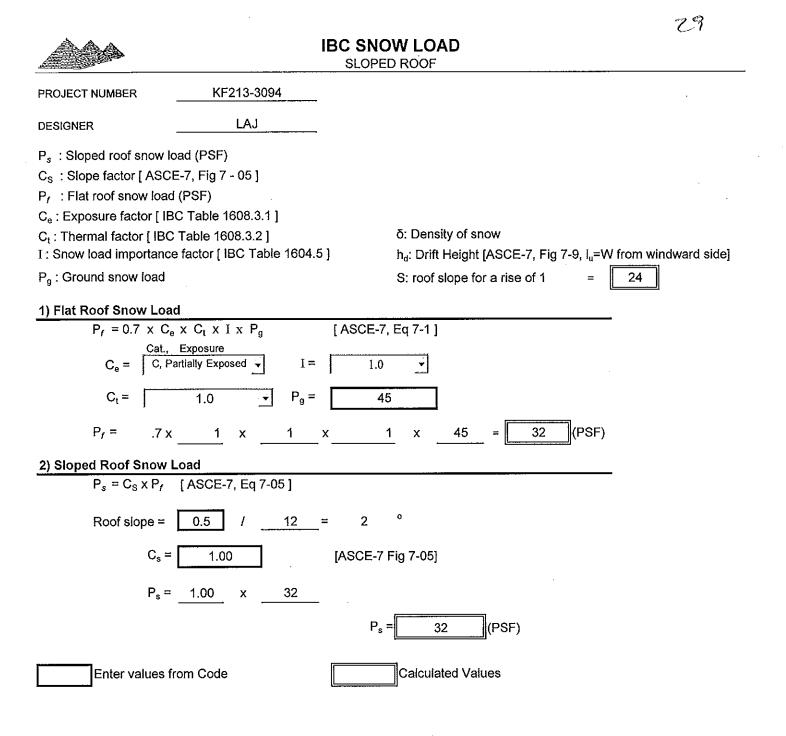
MWFRS-Wall Pressures for Wind Normal to 36 ft wall (Normal to Ridge)

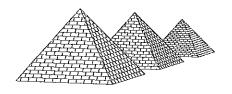
Wall		Ср	Pressure +GCpi (psf)				
Leeward Wall		-0.50	-	-16.25		2.08	
Side Walls Wall	Elev	-0.70 Kz	Kzt	-19.09	Press	-0.75 Press	Total
11Q11	ft			qz psf	+GCpi	-GCpi	+/-GCpi
Windward	8.00	0.85	1.00	16.67	2.17	20.51	18.42

Note: 1) Total = Leeward GCPi + Windward GCPi

Roof - Dist from Windward Edge	Cp	Pressure +GCpi(psf)	Pressure -GCpi(psf)
0.0 ft to 3.9 ft 3.9 ft to 7.8 ft	-1.03 -0.80	-23.70 -20.51	-5.36 -2.17
7.8 ft to 10.0 ft	-0.60	-17.67	0.67


MWFRS-Wall Pressures for Wind Normal to 10 ft wall (Along Ridge)


e Pressure E) -GCpi (psf)		
6.05 -0.75		


Wall	Elev ft	Kz	Kzt	psf	+GCpi	• •	Total +/-GCpi
Windward							14.45

Note: 1) Total = Leeward GCPi + Windward GCPi

Roof – Dist from Windward Edge	Ср	Pressure +GCpi(psf)	Pressure -GCpi(psf)

0.0 ft to 3.9 ft	~0.90	-21,92	-3.58
3.9 ft to 7.8 ft	~0.90	-21.92	-3.58
7.8 ft to 15.5 ft	-0.50	-16.25	2.08
15.5 ft to 36.0 ft	-0.30	-13.42	4.92

ROOF FRAMING ANALYSIS & DESIGN:

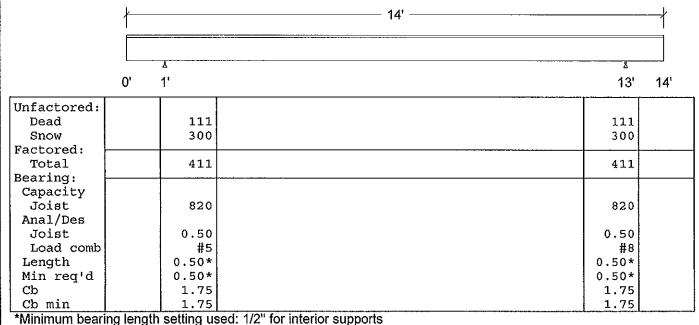
Pages 1,000 - 1,999

Precision Structural Engineering, Inc. Medford Office 4810 Shasta Way . Klamath Falls, OR 97603 836 Mason Way (off Sage Road) • Medford, OR 97501 Tel. (541) 850-6300 • FAX (541) 850-6233 Tel. (541) 858-8500 www.structure1.com • Email: PSEl@charter.net PROJECT NO. KF 213 - 3094 SHEET 1001 OF DATE 6/21/2013 PROJECT NAME OIT Softwall Dugants DESIGNED BY LAJ Design SUBJECT Roof CHECKED BY_ DATE Rafter Design: $W_0 + W_s$ DLroof = 10psf SL = 32psf $\overleftarrow{}$ $\overline{\lambda}$ Trib width = 24" 12' Line Load - Area load × Tributary wiath WD = 10psf × 15" = 13.3 plf Ws = 32psf × 16" 12.7 plf USE [2×8 No. 2 DFL @ 24" O.C.]

COMPANY

PROJECT KF213-3094 OIT Softball Dugouts Rafter Design

July 3, 2013 07:32


Design Check Calculation Sheet

WoodWorks Sizer 9.3

Loads:

Load	Туре	Distribution	Pat-	Location	[ft]	Magnitud	le	Unit
			tern	Start	End	Start	End	
DEAD LOAD	Dead	Full UDL	No			13.3		plf
SNOW LOAD	Snow	Full UDL	Yes			42.7		plf
Self-weight	Dead	Full UDL	NO			2.6		plf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in) :

Lumber-soft, D.Fir-L, No.2, 2x8 (1-1/2"x7-1/4")

Supports: All - Non-wood

Roof joist spaced at 24.0" c/c; Total length: 14';

Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help);

Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 :

•			
Criterion	Analysis Value	Design Value	Analysis/Design
Shear	fv = 43	Fv' = 207	fv/Fv' = 0.21
Bending(+)	fb = 946	Fb' = 1428	fb/Fb' = 0.66
Bending(-)	fb = 26	Fb' = 1416	fb/Fb' = 0.02
Deflection:			
Interior Live	0.26 = L/560	0.60 = L/240	0.43
Total	0.40 = L/361	0.80 = L/180	0.50
Cantil. Live	-0.07 = L/175	0.10 = L/120	0.68
Total	-0.11 = L/113	0.13 = L/90	0.79

SOFTWARE FOR WOOD DESIGN

1003

Rafter Design	WoodWorks® Sizer 9.3									r Design WoodWorks® Sizer 9.3				Sizer 9.3 Pag		Page
Additional	Data:															
FACTORS :	F/E(psi)CI	D CM	Ct	\mathbf{CL}	\mathbf{CF}	Cfu	Cr	Cfrt	Ci	Cn	LC#					
Fv'	180 1.3	15 1.00	1.00	-	-	-	-	1.00	1.00	1.00	2					
Fb'+	900 1.3	15 1.00	1.00	1.000	1.200	1.00	1.15	1.00	1.00	-	4					
Fb'-	900 1.3	15 1.00	1.00	0.991	1.200	1.00	1.15	1.00	1.00	-	2					
Fcp'	625 -	1.00	1.00			-	-	1.00	1.00	-	-					
E'	1.6 millio	on 1.00	1.00	-	-	-	-	1.00	1.00	-	4					
Emin'	0.58 millid	on 1.00	1.00	-	-	-	~	1.00	1.00	-	4					
CRITICAL LC	DAD COMBINA	TIONS:														
Bending(- Deflection D=dead L= All LC's Load Patt Load comb CALCULATIC Deflection "Live" de	live S=snov are listed erns: s=S/: pinations:	= D+S, M = (live = (tota w W=wind in the P 2, X=L+S ICC-IBC 76e06 Deflecti	= il) I=impa inalysi or L+ lb-in2 .on frc	28 lbs- act Lr=r s outpu Lr, _= m all r	oft coof liv t no patt non-dead	e Lc=c ern lc loads	concent bad in (live	this s , wind	epan l, snow	-	3					

1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2009), the National Design Specification (NDS 2005), and NDS Design Supplement.

2. Please verify that the default deflection limits are appropriate for your application.

3. Continuous or Cantilevered Beams: NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans.

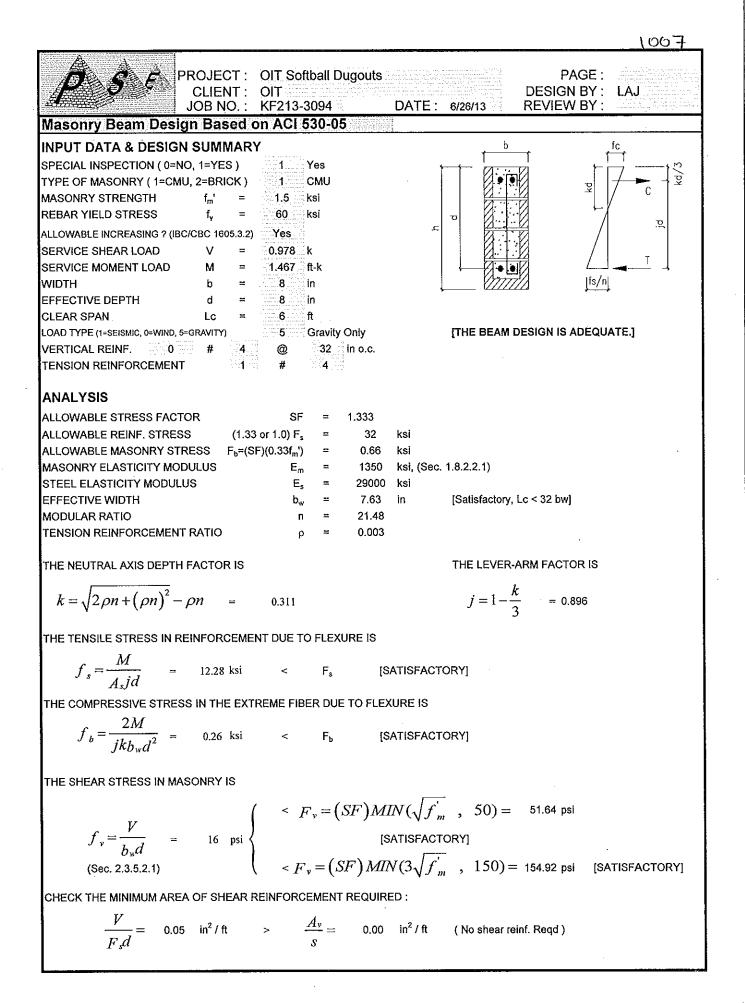
4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

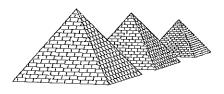
5. The critical deflection value has been determined using maximum back-span deflection. Cantilever deflections do not govern design.

Precision Structural Engineering, Inc. Medford Office 4810 Shasta Way . Klamath Falls, OR 97603 836 Mason Way (off Sage Road) • Medford, OR 97501 Tel. (541) 850-6300 • FAX (541) 850-6233 Tel. (541) 858-8500 www.structure1.com • Email: PSEI@charter.net PROJECT NO. KF 213-3094 _ SHEET 1004_OF DATE 6/21/2013 PROJECT NAME OIT Soft ball Dugowts DESIGNED BY LAJ DATE 7-8-17 SUBJECT Roof. Design NO CHECKED BY_ Beam Design: DL roof = 10 psf SL= 32 psf WD+ WS Trib width = $\frac{12'}{2} = 6'$ 8'-6 W = Area load × trib width $W_{0} = 10psf \times 6' = 60 plf$ $W_{0} = 32psf \times 6' = 192 plf$ [USE 4×8 NO.2 DFL]

COMPANY

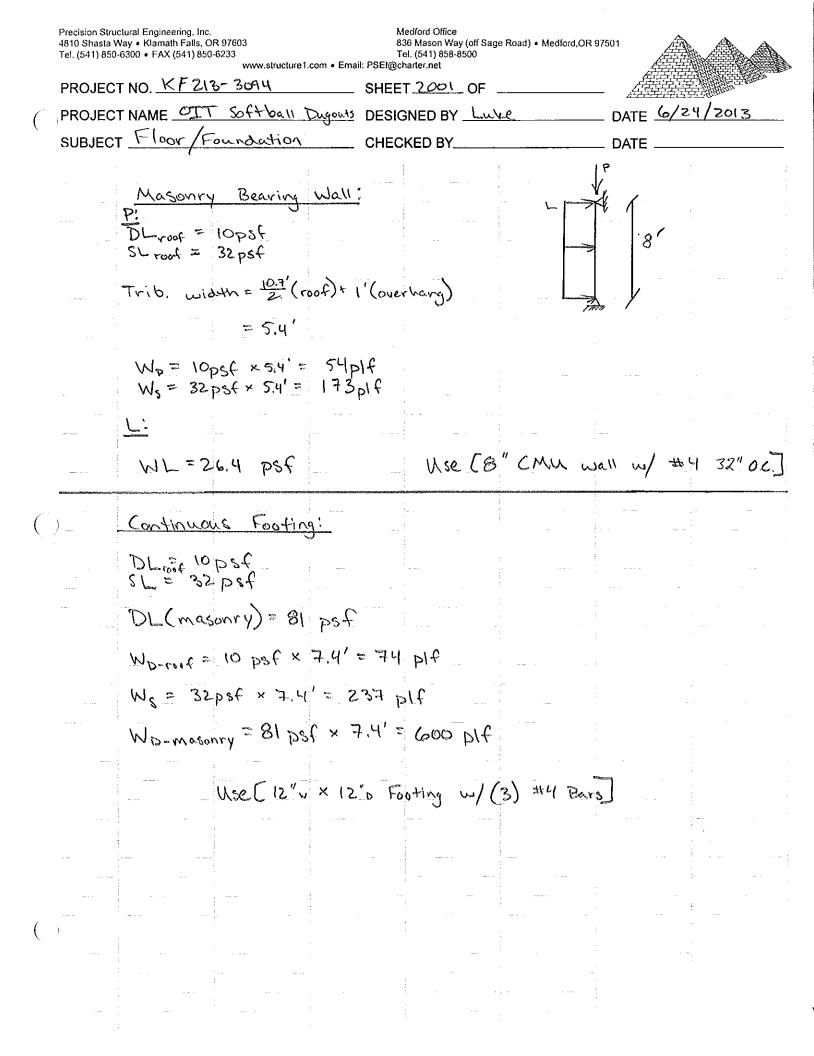
PROJECT KF213-3094 OIT Softball Dugouts (3) Beams

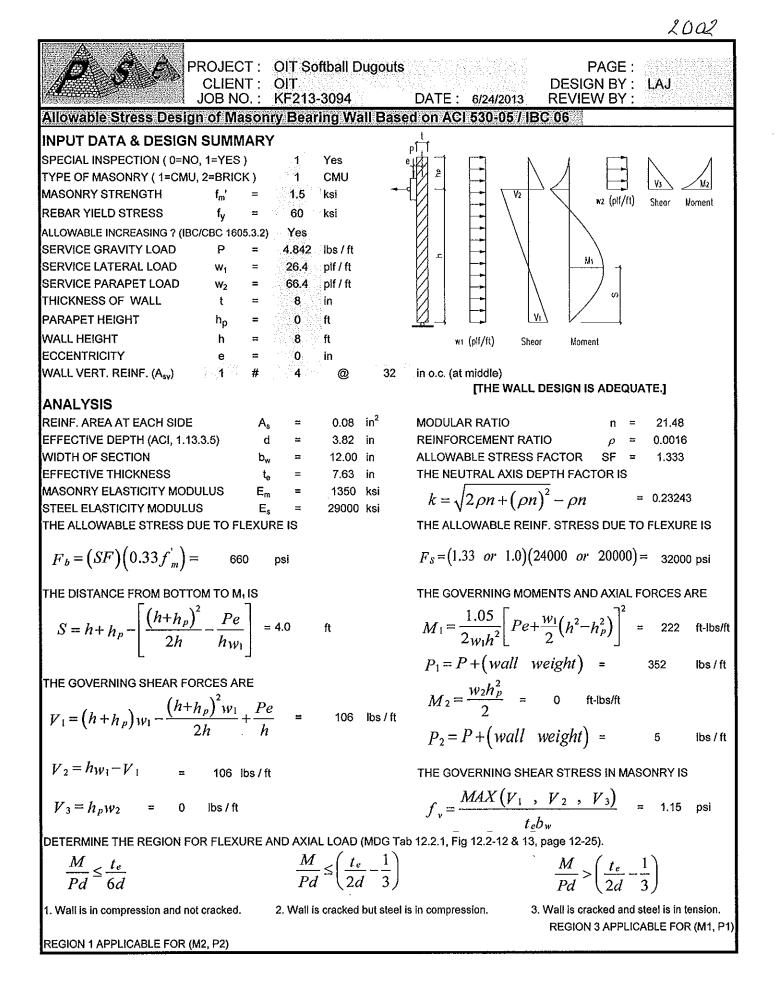

June 21, 2013 16:22


Design Check Calculation Sheet

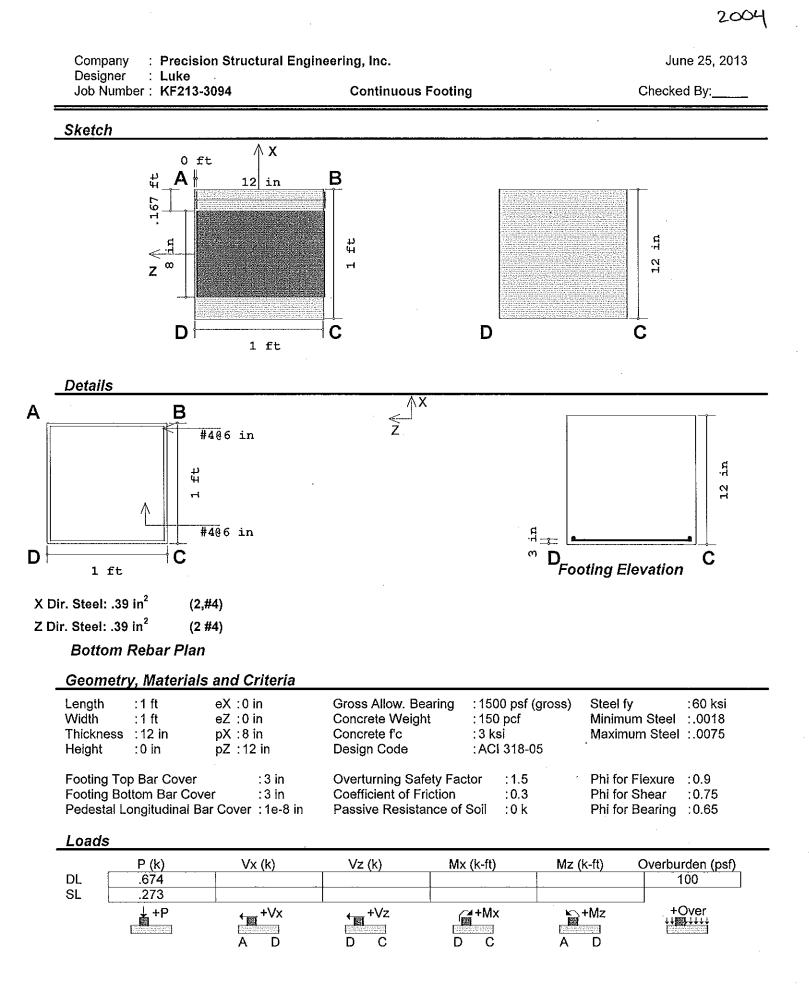
		Design		k Calculat /orks Sizer 9		heet			
Loads:									
Load `	Туре	Distribution		Location		Magni		Unit	
DEAD LOAD SNOW LOAD	Dead Snow	Full UDL Full UDL	tern	Start	End	<u>Start</u> 60.0 192.0	End	plf plf	
Self-weight	Dead	Full UDL				6.0		plf	
Maximum Rea	actions (lbs), Be	aring Capacitie	s (lbs)	and Bear	ing L	engths	(in) :		
	<u>}</u>				.5" —				ł
			r		г	- j	r		
	<u></u>								Ş
	0'								8'-6"
Unfactored: Dead Snow	281 816								281 816
Factored: Total	1097	-		·					1097
Bearing: Capacity Beam	1097								 1097
Anal/Des Beam	1.00								1.00
Load comb	#2								#2 0,50
Length Min req'd	0.50								0.50
Cb Cb min	1 00 1 00								1.00
		Lumber-soft	Support Total	s: All - Non-v length: 8'-6.5	bood ";		·		
Analysis vs. /	llowable Stress	(psi) and Defie	ction ((in) using N	DS 20	05 :			
Criterion	Analysis Val		/alue	Analysis					
Shear Bending(+)	fy = 55 fb = 912	Fb' = 13	343	fv/Fv' fb/Fb'	= 0				
Live Defl' Total Defl'	1					.45 .45			
Additional Da	fa:								
FACTORS: F/E()	psi)CD CM	Ct CL CI	Cf	iu Cr	Cfrt 1.00		Cn 1.00	LC# 2	
Fv' 180 Fb'+ 900	1.15 1.00 1			00 1.00	1.00	1.00	-	2	
Fcp' 625 E' 1.6		00			1.00		-	- 2	
	million 1.00 1 COMBINATIONS:	.00 - ·		· _	1.00	1.00	-	2	
Shear : Bending(+):	LC $#2 = D+S$, V LC $#2 \Rightarrow D+S$, M	= 2330 lbs-fi		935 lb	5				
	LC #2 = D+S (1 LC #2 = D+S (t	.ive) :otal)							
D=dead L=liv	e S=snow W=wind listed in the A	I=impact Lr=roo	of live	e Lc=conce	ntrat	ed E=ea	rthquak	e	
Load combina	tions: ICC-IBC	maryara oucput							
CALCULATIONS: Deflection:	EI = 178e06	lb-in2							
"Live" defle	ction = Deflecti tion = 1.50(Dead	on from all not	n⊶dead on) + I	loads (li ,ive Load	ve, w Defle	ind, sn ction.	ow)		

.

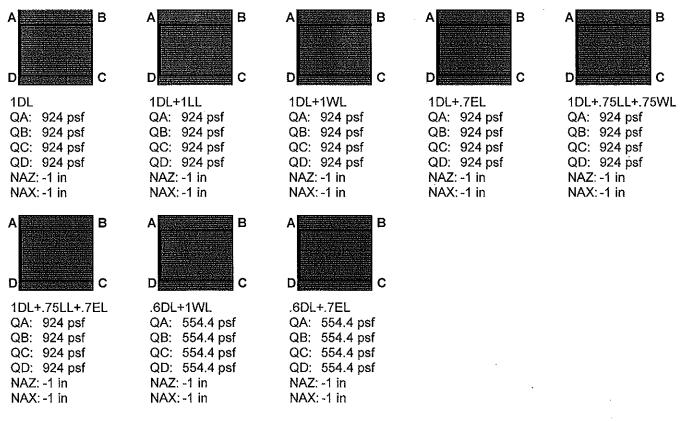

(



FIRST FLOOR/FOUNDATION ANALYSIS & DESIGN:


Pages 2,000 - 2,999

2003


(cont'd) CHECK REGION 1 CAPACITY 6367 ft-lbs / ft [Not applicable] M₁ $M_m = \frac{b_w t_e^2}{6} F_b - P \frac{t_e}{6} = \left\{ \right.$ 6403 ft-lbs / ft [Satisfactory] > M_2 CHECK REGION 2 CAPACITY 111 ft-lbs/ft < M1 [Not applicable] $M_m = P \frac{t_e}{2} - \frac{2P^2}{3b_w F_b} = \left\{ \right.$ 2 M2 ft-lbs/ft > [Not applicable] CHECK REGION 3 CAPACITY (The moment maybe limited by either the masonry compression or steel tension, MDG page 12-25). $M_{m} = MIN \left[\frac{1}{2} b_{w} k d F_{b} \left(d - \frac{kd}{3} \right) - P \left(d - \frac{t_{e}}{2} \right) , \quad A_{s} F_{s} \left(d - \frac{kd}{3} \right) + P \left(\frac{t_{e}}{2} - \frac{kd}{3} \right) \right]$ ft-lbs / ft > [Satisfactory] 807 M_1 = 705 ft-lbs / ft M_2 [Not applicable] THE ALLOWABLE SHEAR STRESS IS GIVEN BY $F_{v} = (SF) MIN \left(\sqrt{f_{m}} , 50 \right)$ = 51.64 psi fv [Satisfactory] **Technical References:** 1. "Masonry Designers' Guide, Third Edition" (MDG-3), The Masonry Society, 2001.

Company : Precision Structural	Engineering, Inc.	June 25, 2013
Designer : Luke		
Job Number: KF213-3094	Continuous Footing	Checked By:

Soil Bearing

Description	Categories and Factors	Gross Allow.(psf)	Max Bearing (psf)	Max/Allowable Rat
ASCE 2.4.1-1	1DL	1500	924 (A)	.616
ASCE 2.4.1-2	1DL+1LL	1500	924 (A)	.616
ASCE 2.4.1-3a	1DL+1WL	1500	924 (A)	.616
ASCE 2.4.1-3b	1DL+.7EL	1500	924 (A)	.616
ASCE 2.4.1-3c	1DL+.75LL+.75WL	1500	924 (A)	.616
ASCE 2.4.1-3d	1DL+.75LL+.7EL	1500	924 (A)	.616
ASCE 2.4.1-4	.6DL+1WL	1500	554.4 (A)	.37
ASCE 2.4.1-5	.6DL+.7EL	1500	554.4 (A)	.37

Footing Flexure Design (Bottom Bars)

Description	Categories and Factors	Mu-XX (k-ft)	Z Dir As (in ²)	Mu-ZZ (k-ft)	X Dir As (in ²)
ACI-99 9-1	1.4DL+1.7LL	1.1795e-7	0	.013	.000332852
ACI-99 9-2	1.05DL+1.275LL+1.275WL	8.84625e-8	0	.01	.000249637
ACI-99 9-3	.9DL+1.3WL	7.5825e-8	0	.008	.000213973
IBC 16-5	1.2DL+1LL+1EL	1.011e-7	0	.011	.0002853
IBC 16-6	.9DL+1EL	7.5825e-8	0	.008	.000213973

Company	: Precision Structural Enginee	ering, Inc.	June 25, 2013
Designer			
Job Number	*: KF213-3094	Continuous Footing	Checked By:

Footing Shear Check

Two Way (Punchi	ng) Vc: NA	One Way (X Dir	. Cut) Vc 11.	502 k	One Way (Z	Dir. Cut)	Vc: 11.502	k
			Punc	ching	X Dir.	Cut	Z Dir.	Cut
Description	Categorie	es and Factors	Vu(k)	_Vul∕øVc	Vu(k)	Vu/øVc	Vu(k)	Vu/øVc
ACI-99 9-1	1.4DL+1.7LL		NA	NA	.0004718	0	.0004718	
ACI-99 9-2	1.05DL+1.275	L+1.275WL	NA	NA	.00035385	0	.00035385	0
ACI-99 9-3	.9DL+1.3WL		NA	NA	.0003033	0	.0003033	0
IBC 16-5	1.2DL+1LL+1E	L	NA	NA	.0004044	0	.0004044	0
IBC 16-6	.9DL+1EL		NA	NA	.0003033	0	.0003033	0

Concrete Bearing Check (Vertical Loads Only)

Bearing Bc: 244.8 k

Description	Categories and Factors	Bearing Bu (k)	Bearing Bu/øBc
ACI-99 9-1	1.4DL+1.7LL	1.294	.008
ACI-99 9-2	1.05DL+1.275LL+1.275WL	.97	.006
ACI-99 9-3	.9DL+1.3WL	.832	.005
IBC 16-5	1.2DL+1LL+1EL	1.109	.007
IBC 16-6	.9DL+1EL	.832	.005

Overturning Check (Service)

Description	Categories and Factors	Mo-XX (k-ft)	Ms-XX (k-ft)	Mo-ZZ (k-ft)	Ms-ZZ (k-ft)	OSF-XX	OSF-ZZ
ASCE 2.4.1-1	1DL	0	.462	0	.462	NA	NA
ASCE 2.4.1-2	1DL+1LL	0	.462	0	.462	NA	NA
ASCE 2.4.1-3a	1DL+1WL	0	.462	0	.462	NA	NA
ASCE 2.4.1-3b	1DL+.7EL	0	.462	0	.462	NA	NA
ASCE 2.4.1-3c	1DL+.75LL+.75WL	0	.462	0	.462	NA	NA
ASCE 2.4.1-3d	1DL+.75LL+.7EL	0	.462	0	.462	NA	NA
ASCE 2.4.1-4	.6DL+1WL	0	.277	0	.277	NA	NA
ASCE 2.4.1-5	.6DL+.7EL	0	.277	0	.277	NA	NA

Mo-XX: Governing Overturning Moment about AD or BC Ms-XX: Governing Stablizing Moment about AD or BC OSF-XX: Ratio of Ms-XX to Mo-XX

Sliding Check (Service)

Description	Categories and Factors	Va-XX (k)	Vr-XX (k)	Va-ZZ (k)	Vr-ZZ (k)	SR-XX	SR-ZZ
ASCE 2.4.1-1	1DL	0	.257	0	.257	NA	NA
ASCE 2.4.1-2	1DL+1LL	0	.257	0	.257	NA	NA
ASCE 2.4.1-3a	1DL+1WL	0	.257	0	.257	NA	NA
ASCE 2.4.1-3b	1DL+.7EL	0	.257	0	.257	NA	NA
ASCE 2.4.1-3c	1DL+.75LL+.75WL	0	.257	0	.257	NA	NA
ASCE 2.4.1-3d	1DL+.75LL+.7EL	0	.257	0	.257	NA	NA
ASCE 2.4.1-4	.6DL+1WL	0	.154	0	.154	NA	NA
ASCE 2.4.1-5	.6DL+.7EL	0	.154	0	.154	NA	NA

Va-XX: Applied Lateral Force to Cause Sliding Along XX Axis Vr-XX: Resisting Lateral Force Against Sliding Along XX Axis SR-XX: Ratio of Vr-XX to Va-XX 2006

Precision Structural Engineering, Inc. Medford Office 250-A Main Street • Klamath Falls, OR 97601 836 Mason Way (off Sage Road) . Medford, OR 97501 Tel. (541) 850-6300 • FAX (541) 850-6233 Tel. (541) 858-8500 www.structure1.com • Email: psei@structure1.com PROJECT NO. KF 213- 3094 _ SHEET 2007 OF DATE 6/26/2013 PROJECT NAME OIT Soft bull Engouts DESIGNED BY Lute SUBJECT Floor / Foundation CHECKED BY_ DATE $P_{D} + P_{S}$ Post Design: DL = 32 psf7.4 Trib, width = 10.7' (roof) + 1' (overhang) = 6.4 Trib. Length = 8.5' (spacing between pasts) Pp= 10psf × 6,4' × 8.5' = 544 lbs Ps = 32 psf × 6,4' × 8,5' = 1,741 lbs USE [HSS 2.5 × 0.25 -> 2.5" & Pipe w/ 1/2" thickness Foundation Design: Ppead = 544 165 Psnow = 1,741 lbs Use [1'-0" W X Z'-0" L X 1'-0" deep W/ #4 bars @ 6" 0.C.]

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1	Density[k/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	2 3 1 1 4 2	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1

Hot Rolled Steel Design Parameters

	Label	Shape	Length	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp bo	Куу	Kzz	Cm-yy	Cm-zz	Cb	v swavz	z swav Function
1	Post	Post	7.4											Lateral

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2] Jyy [in4]	Izz (in4) J (in4)
1	Post	PIPE_2.5	Column	Pipe	A500 Gr.42	Typical	1.61 1.45	1.45 2.89

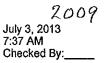
Basic Load Cases

	BLC Description	Category	X Gravi	.Y Gravi	Z Gravity	Joint	Point	Distrib	Area(M	.Surfac
1	Dead	DL		-1			1			
2	Snow	SL				2746.436.2				

Load Combinations

	Description	Solve	PDelta	SRSS	BLC	Fact	. BLC	Fact.	BLC	Fact.	.BLC	Fact	.BLC	Fact.	BLC	Fact.	BLC	Fact.	BLC	Fact
1	IBC 16-8	Yes			DL	1		1			-				Γ		Τ			
2	IBC 16-9	Yes			DĽ	1	LL	1	LLS	1	5.57				1.15		398	12512(5		
3	IBC 16-10 (a)	Yes			DL	1				1		1			1					
4	IBC 16-10 (b)	Yes			DL	1	SL	1	SLN	1	132				1.00		1996			SCR.
5	IBC 16-11 (b)	Yes			DL	1	LL	.75	LLS	.75	SL	.75	SLN	.75						

Joint Loads and Enforced Displacements


No Data to Print	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, k*ft^.
			No Data to Print	

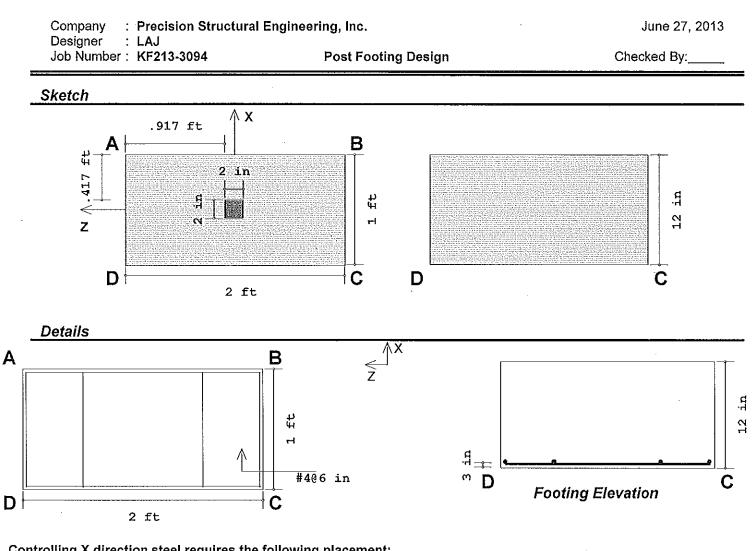
Member Primary Data

 	Labei	I Joint	J Joint	K Joint	Rotate(de	Section/Shape	Түре	Design List	Material	Design Rules
1	Post	BASE	TOP			Post	Column	Pipe	A500 Gr.42	Typical

Envelope Member Section Forces

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	Post	1	max	.02	4	0	1	0	1	0	1	0	1	0	1
2	· 资格外期的法门的 表示	朝新宿	min	.02	1	0	1	0 0 0	ी	0	10	0	1 1	0	
3		2	max	0	1	0	1	0	1	0	1	0	1	0	1
4			min	0	1	0	1	0	11	0	認言	0		0	
5		3	max	02	4	0	1	0	1	0	1	0	1	0	1
6			min	02		0	- 19 - 55	0		0	1 14	0		0	1 92

Envelope Member Section Deflections


	Member	Sec		x [in]	LC	y (in)	LC	z (in)	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
1	Post	1	max	0	1	0	1	Ò	1	0	1	NC	1	NC	1
2	$ \begin{array}{c} (1,1) \in \{1,2\}, (1,1) \in \{1,2\}, (1,2),$		min	0.0	1	0		0	1	0		NC	12	NC	影響
3		2	max	0	1	0	1	0	1	0	1	NC	1	NC	1
4			min	0		0	1	0	1	0	1 1	NC		NC	
5		3	max	0	1	0	1	0	1	0	1	NC	1	NC	1
6			min	0	1	0	1	0	1	0	ti i i i i i i i i i i i i i i i i i i	NC		NC	

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	<u>Z (k]</u>	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ (k-ft)	LC
1	BASE	max	0	1	.02	4	NC	NC	NC	NC	NC	NC	ċ.	1
2		min	0		.02	1	NC	NC	NC	NC	NC	NC	0	1
3	TOP	max	0	1	2.305	4	NC	NC	NC	NC	NC	NC	0	1
4		min	0	्र	.564	1	NC	NC	NC	NC	NC	NC	Ó	
5	Totals:	max	0	1	2.326	4	0	1						
6		min	0	1	.585	1	0	1						415343

Envelope AISC ASD Steel Code Checks

	Member	Shape	Code Check	Loc	LC	SheaLoc L., Fa [k Ft [ksi] Fb y Fb z C C ASD
1	Post	PIPE 2.5	.001	0	4	.000 0 1 14.982 25.2 27.72 27.72 1.4.6 .6 H1-1

Controlling X direction steel requires the following placement:

Region 1 (starts at A):	6 in	Steel: .2 in ² (1 #4 @NA)
Region 2 (middle):	12 in	Steel: .39 in ² (2 #4 @12 in)
Region 3 (ends at B):	6 in	Steel: .2 in ² (1 #4 @NA)

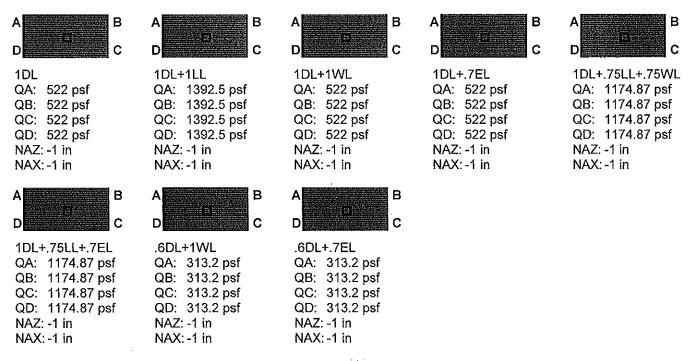
Bottom Rebar Plan

Geometry, Materials and Criteria

Length Width Thickness Height	:2 ft :1 ft :12 in :0 in	eX :0 eZ :0 pX :2 pZ :2	in in	Gross Allow. Bearing Concrete Weight Concrete f'c Design Code	: 150 : 3 k	00 psf (gross)) pcf si I 318-05	Steel fy Minimum Steel Maximum Steel	
Footing Top	p Bar Cover	r	: 3 in	Overturning Safety Fac	ctor	:1.5	Phi for Flexure	:0.9
Footing Bo	ttom Bar Co	over	: 3 in	Coefficient of Friction		:0.3	Phi for Shear	:0.75
Pedestal L	ongitudinal l	Bar Cove	: :.5 in	Passive Resistance of	Soil	:0 k	Phi for Bearing	:0.65

Loads

	P (k)	Vx (k)	Vz (k)	Mx (k-ft)	Mz (k-ft)	Overburden (psf)
DL	.544					100
LL	1.741					
	++P	← +Vx	, +Vz	<i>⊂</i> ≇ +Mx		+Over
				A +M×	► +Mz	↓↓ ◎ ↓↓↓↓↓
		A D	DC	DC	A D	


2010

Soil Bearing

Company

Designer

Description	Categories and Factors	Gross Allow.(psf)	Max Bearing (psf)	Max/Allowable Ratio
ASCE 2.4.1-1	1DL	1500	522 (A)	.348
ASCE 2.4.1-2	1DL+1LL	1500	1392.5 (A)	.928
ASCE 2.4.1-3a	1DL+1WL	1500	522 (A)	.348
ASCE 2.4.1-3b	1DL+.7EL	1500	522 (A)	.348
ASCE 2.4.1-3c	1DL+.75LL+.75WL	1500	1174.87 (A)	.783
ASCE 2.4.1-3d	1DL+.75LL+.7EL	1500	1174.87 (A)	.783
ASCE 2.4.1-4	.6DL+1WL	1500	313.2 (A)	.209
ASCE 2.4.1-5	.6DL+.7EL	1500	313.2 (A)	.209

Footing Flexure Design (Bottom Bars)

Description	Categories and Factors	Mu-XX (k-ft)	Z Dir As (in ²)	Mu-ZZ (k-ft)	X Dir As (in ²)
ACI-99 9-1	1.4DL+1.7LL	.782	.02	.323	.008
ACI-99 9-2	1.05DL+1.275LL+1.275WL	.586	.015	.242	.006
ACI-99 9-3	.9DL+1.3WL	.103	.003	.043	.001
IBC 16-5	1.2DL+1LL+1EL	.503	.013	.208	.005
IBC 16-6	.9DL+1EL	.103	.003	.043	.001

Footing Shear Check

Two Way (Punchi	ng) Vc: NA	One Way (X Dir	. Cut) Vc 11.	502 k	One Way (Z Dir. Cut)	Vc: 23.004	1 k
			Pun	ching	X Di	r. Cut	Z Dir	Cut
Description	Categorie	es and Factors	Vu(k)	_Vu/ <i>ø</i> Vc	Vu(k)	Vu/øVo	Vu(k)	Vu/øVc
ACI-99 9-1	1.4DL+1.7LL		NA	NA	.349	.04	.002	0
ACI-99 9-2	1.05DL+1.275	LL+1.275WL	NA	NA	.262	.03	.001	0
ACI-99 9-3	.9DL+1.3WL		NA	NA	.046	.005	.0002448	0
IBC 16-5	1.2DL+1LL+1E	EL ,	NA	NA	.224	.026	.001	0
IBC 16-6	.9DL+1EL		NA	NA	.046	.005	.0002448	0

June 27, 2013

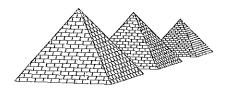
Checked By:__

Concrete Bearing Check (Vertical Loads Only)

Bearing Bc: 20.4 k

Description	Categories and Factors	Bearing Bu (k)	Bearing Bu/øBc
ACI-99 9-1	1.4DL+1.7LL	4.421	.333
ACI-99 9-2	1.05DL+1.275LL+1.275WL	3.316	.25
ACI-99 9-3	.9DL+1.3WL	.94	.071
IBC 16-5	1.2DL+1LL+1EL	2.994	.226
IBC 16-6	.9DL+1EL	.94	.071

Overturning Check (Service)


Description	Categories and Factors	Mo-XX (k-ft)	Ms-XX (k-ft)	Mo-ZZ (k-ft)	Ms-ZZ (k-ft)	OSF-XX	OSF-ZZ
ASCE 2.4.1-1	1DL	0	1.044	0	.522	NA	NA
ASCE 2.4.1-2	1DL+1LL	0	2.785	0	1.392	NÄ	NA
ASCE 2.4.1-3a	1DL+1WL	0	1.044	0	.522	- NA	NA
ASCE 2.4.1-3b	1DL+.7EL	0	1.044	0	.522	NA	NA
ASCE 2.4.1-3c	1DL+.75LL+.75WL	0	2.35	0	1.175	NA	NA
ASCE 2.4.1-3d	1DL+.75LL+.7EL	0	2.35	0	1.175	NA	NA
ASCE 2.4.1-4	.6DL+1WL	0	.626	0	.313	NA	NA
ASCE 2.4.1-5	.6DL+.7EL	0	.626	0	.313	NA	NA

Mo-XX: Governing Overturning Moment about AD or BC Ms-XX: Governing Stablizing Moment about AD or BC OSF-XX: Ratio of Ms-XX to Mo-XX

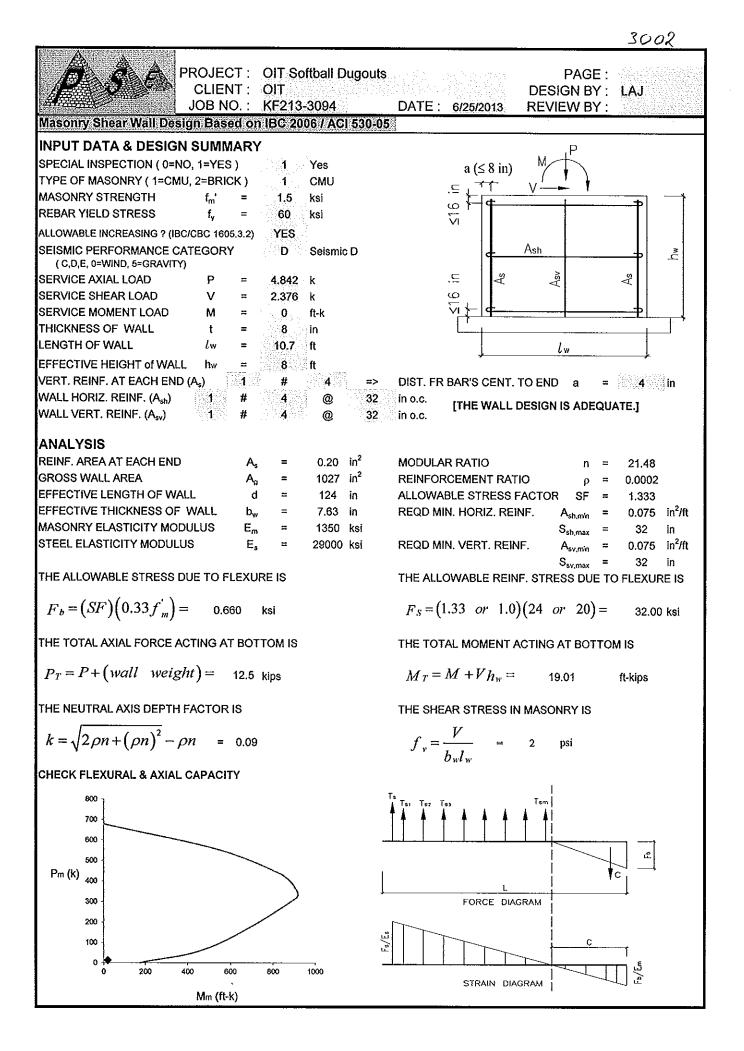
Sliding Check (Service)

Description	Categories and Factors	Va-XX (k)	Vr-XX (k)	Va-ZZ (k)	Vr-ZZ (k)	SR-XX	SR-ZZ
ASCE 2.4.1-1	1DL	0	.312	0	.312	NA	NA
ASCE 2.4.1-2	1DL+1LL	0	.835	0	.835	NA	NA
ASCE 2.4.1-3a	1DL+1WL	0	.312	0	.312	NA	NA
ASCE 2.4.1-3b	1DL+.7EL	0	.312	0	.312	NA	NA
ASCE 2.4.1-3c	1DL+.75LL+.75WL	0	.704	0	.704	NA	NA
ASCE 2.4.1-3d	1DL+.75LL+.7EL	0	.704	0	.704	NA	NA
ASCE 2.4.1-4	.6DL+1WL	0	.187	0	.187	NA	NA
ASCE 2.4.1-5	.6DL+.7EL	0	.187	0	.187	NA	NA

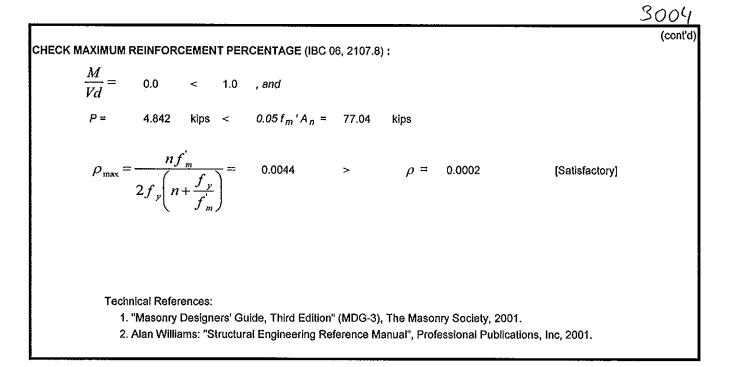
Va-XX: Applied Lateral Force to Cause Sliding Along XX Axis Vr-XX: Resisting Lateral Force Against Sliding Along XX Axis SR-XX: Ratio of Vr-XX to Va-XX

Precision Structural Engineering, Inc.

LATERAL ANALYSIS & DESIGN:


Pages 3,000 - 3,999

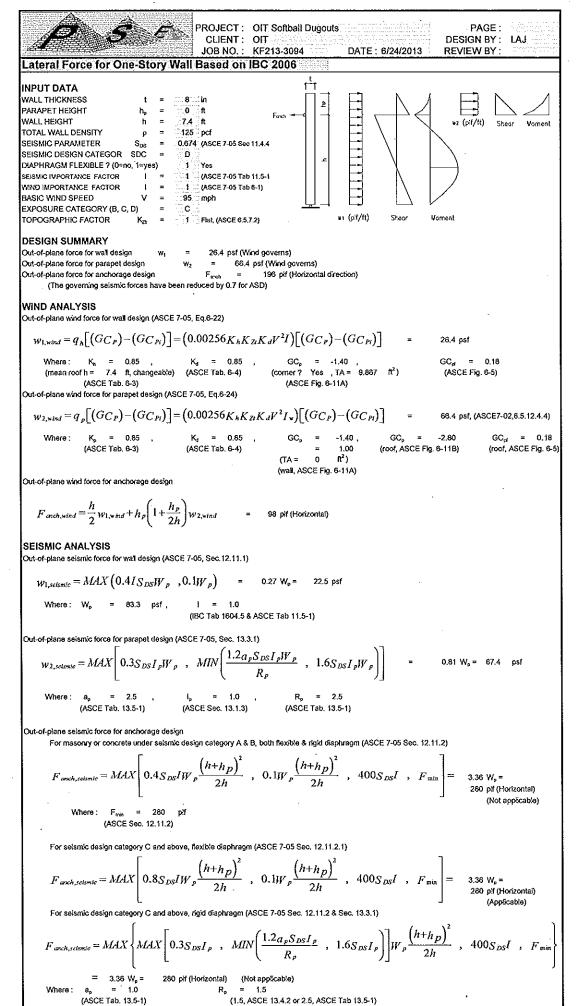
(


(

(

Precision Structural Engineering, Inc. 250-A Main Street • Klamath Falls, OR 97601 Medford Office 836 Mason Way (off Sage Road) . Medford, OR 97501 Tel. (541) 850-6300 • FAX (541) 850-6233 Tel. (541) 858-8500 www.structure1.com • Email: psei@structure1.com PROJECT NO. KF 213-3094 __ SHEET <u>3001</u> OF DATE 6/25/2013 PROJECT NAME OIT SOFTBAN Dugouts DESIGNED BY Luke SUBJECT Lateral CHECKED BY_ DATE -Vertical Reinforcement @ each end: Use [(1) #44, 4" from end] Horizontal Reinforcement: Wall Use[#4 spaced 32" O.C.] Wall Vertical Reinforcement: Use [8" CMM well w/ #4 @ 32" O.C.]

THE CODE SEC. 2.3.2.2.1 PERMITS COMPRESSION FORCES TO BE RESISTED BY COMPRESSION REINFORCEMENT ONLY IF THE LATERAL SUPPORT REQUIREMENTS OF CODE SEC. 2.1.6.5 ARE MET. SINCE IT IS VIRTUALLY IMPOSSIBLE TO MEET THESE PROVISIONS IN WALLS, THE CONTRIBUTION OF REINFORCING STEEL TO COMPRESSIVE FORCE MUST BE NEGLECTED. THE MAXIMUM DESIGN AXIAL LOAD STRENGTH IS Pm = t Lw SF (fm' / 3) = 677.952 kips. THE DESIGN MOMENT CAPACITY AT MAXIMUM AXIAL LOAD STRENGTH IS 0 ft-kips, THE DESIGN AXIAL AND MOMENT CAPACITIES AT THE WALL CRACKED BUT STEEL STRESS ZERO ARE 438 kips AND 830 ft-kips. FOR THE BALANCED STRAIN CONDITION UNDER COMBINED FLEXURE AND AXIAL LOAD. THE MAXIMUM STRAIN IN THE MASONRY AND IN THE TENSION REINFORCEMENT MUST SIMULTANEOUSLY REACH THE VALUES AS \mathcal{E}_m = Fb / Em and \mathcal{E}_s = Fs / Es . THE DESIGN AXIAL AND MOMENT CAPACITIES AT THE BALANCED STRAIN CONDITION ARE 319 kips AND 911 ft-kips. SUMMARY OF LOAD VERSUS MOMENT CAPACITIES ARE SHOWN IN THE TABLE BELOW, AND THEY ARE PLOTTED ON THE INTERACTION DIAGRAM ABOVE. Pm (kips) Mm (ft-kips) AT AXIAL LOAD ONLY 678 = 0 AT LARGE AXIAL LOAD 558 528 AT 0 % TENSION 438 830 AT 25 % TENSION 401 878 AT 50 % TENSION 369 902 AT BALANCED STRAIN CONDITION 319 911 AT SMALL AXIAL LOAD = 80 514 AT FLEXURE ONLY o 174 THE DESIGN FORCES P & M ARE ALSO PLOTTED ON THE INTERACTION DIAGRAM. FROM THE INTERACTION DIAGRAM, THE ALLOWABLE MOMENT AT AN AXIAL LOAD P IS Mm = 216 ft-kips. M [Satisfactory] > CHECK SHEAR CAPACITY THE ALLOWABLE SHEAR STRESS IS GIVEN BY $(SF) MIN\left[\frac{1}{3}\left(4-\frac{M_T}{Vd}\right)\sqrt{f_m}, \left(80-\frac{45M_T}{Vd}\right)\right], \text{ for } \frac{M_T}{Vd} < 1.0$ $(SF) MIN(\sqrt{f_m}, 35), \text{ for } \frac{M_T}{Vd} \ge 1.0$ Fv. without reinf. 55.57 psi > 1.5 f_v [Satisfactory] (factor 1.5 from IBC 2106.5.1) $(SF) MIN\left[\frac{1}{2}\left(4-\frac{M_T}{Vd}\right)\sqrt{f_m}, \left(120-\frac{45M_T}{Vd}\right)\right], \text{ for } \frac{M_T}{Vd} < 1.0$ $(SF) MIN(1.5\sqrt{f_m}, 75), \text{ for } \frac{M_T}{Vd} \ge 1.0$ F_{v, max} 83.35 psi > f_v [Satisfactorv] CHECK THE MINIMUM AREA OF SHEAR REINFORCEMENT REQUIRED : 1.5 $\frac{Y}{F.d} = 0.01 \text{ in}^2/\text{ft} < \frac{A_v}{s} = 0.08 \text{ in}^2/\text{ft}$ (No shear reinf. reqd.)


(

(

(

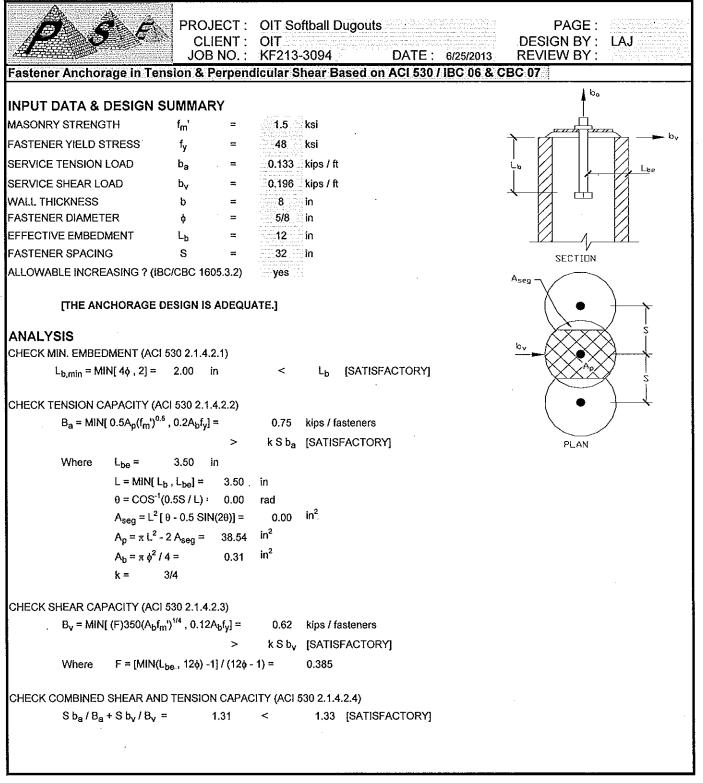
Precision Structural Engineering, Inc. Medford Office 250-A Main Street . Klamath Falls, OR 97601 836 Mason Way (off Sage Road)

Medford, OR 97501 Tel. (541) 850-6300 • FAX (541) 850-6233 Tel. (541) 858-8500 www.structure1.com • Email: psei@structure1.com PROJECT NO. KF 213-3094 SHEET 3006 OF DATE 6/25/2013 PROJECT NAME OT Softwell Dugarts DESIGNED BY Luke SUBJECT Lateral CHECKED BY_ DATE V= 196 plf × (32" × tim) V=523263 21 2 V Plate w/ "8" A.B. @ 32" O.C.] Use [2x P.T.

85

Table 11EBOLTS: Reference Lateral Design Values (Z) for SingleShear (two member) Connections1,2,3,4

for sawn lumber or SCL to concrete


Thickness					-							
Embedment Depth in Concrete	Side Member	Bolt Diameter	G=0.67 Red Oak		G=0.55 Mixed Maple Southern Pine		G=0.50 Douglas Fir-Larch		G=0.49 Douglas Fir-Larch(N)		G=0.46 Douglas Fir(S) Hem-Fir(N)	
t _m	t _s	D	Z _a Z⊥ lbs. lbs.		Za Ibs.	Z ₁ Ibs.	Z _{II} Ibs.	Z _L lbs.	Z _{il} Ibs.	Z ₁ lbs.	Z _i Ibs.	Z⊥ Ibs.
in	in.	in.	lbs.	480	680	410		380		380	620	360
	1-1/2	12	770 1070	660	970	580	930	530	920	520	890	470
Ì		(SIA)	1450	890	1330	660	1270	530 590	1260	560	1230	520
		3/4 7/8	1890	960	1750	720		630		600	1640	550
		10	2410	1020	2250	770		680	2060	650	1930	600
	1-3/4	1/2	830	510		430	700	400	690	390	670	370
		5/8	1160	680		600		550		550		530
		3/4	1530	900	1390	770		680	1310	660		600
		7/8	1970	1120		840	1730	740		700		640
6.0		ોંગ્યું હિંજ	2480	1190		890		790		750		700
and	2-1/2	1/2	830	590		520		470		460		<u>. 440</u> 570
greater		5/8	1290	800	1230	670		610		610		570
		3/4	1840	1000	1630	850		800		780		750
		7/8	2290	1240		1080		1020		1000		920
		123133	2800	1520				1130		1080		
	3-1/2	- 1/2	830	590		540	770	510		500		
		5/8	1290	880				730	1190	720		
		3/4	1860	1190				900		880		
		7/8	2540	1410				1100		1070 1300		1260
		1	3310	1670	2970	1420	2800	1330	2770	1500	2000	1200

Thickness				-					sp (s)	10		6
Embedment Depth in Concrete	Side Member	Bolt Diameter	G=0.43 Hem-Fir		G=0.42 Spruce-Pine-Fir		G=0.37 Redwood (open grain)		G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western, Cedars Western Woods		G=0.35 Northern Species	
t _m	t _s	D	Z _g	Z <u>t</u> Ibs.	Z _z lbs.	Zi Ibs.	Z _a Ibs.	Z⊥ Ibs.	Z _# Ibs.	Z ₁ Ibs.	Z _s ibs.	Z⊥ lbs.
in	in.	in.	590	340		340		310	540	290	530	290
Į	1-1/2	1/2 5/8	860	420	850	410		350	800	330	780	320
		3/4	1200	460	1190	450		370	1120	360	1100	350
		7/8	1580	500	1540	490		410	1330	390	1280	370
		1.1	1800	540	1760	530	1560	440	1520	420	1460	410
	1-3/4	1/2	640	360	630	350		320	580	310	560	310
		5/8	910	490	900	480		400	830	380	810	370
		3/4	1230	540		530		430	1140	420	1120	410 430
6.0		7/8	1630	580		570		470	1520	460		430
o.u and			2090	630		610		510	1770	490 340		340
greater	2-1/2	1/2	730	410		400			690 960	470		460
greater		5/8	1070	540		.530		480 620		600		580
		3/4	1400	710		700			1640	660		610
		7/8	1790	830		810 880				700		680
			2230	900		470				410		400
	3-1/2	1/2	730	470 620		610				530		520
		5/8	1140	780						670		660
		3/4	1650 2100	960		950				850	1840	820
		7/8	2550	1190		1180				9 <u>80</u>		950

1. Tabulated lateral design values (Z) for bolted connections shall be multiplied by all applicable adjustment factors (see Table 10.3.1). 2. Tabulated lateral design values (Z) are for "full diameter" bolts (see Appendix L) with bending yield strength (F_{yb}) of 45,000 psi. 3. Tabulated lateral design values (Z) are based on dowel bearing strength (F_{e}) of 7,500 psi for concrete with minimum $f_{c} = 2,500$ psi.

4. Six inch anchor embedment assumed.

DOWEL-TYPE FASTENERS

STRUCTURAL GENERAL NOTES - APPLICABLE TO ALL CONSTRUCTION UNLESS OTHERWISE NOTED ON THE PLANS A. DESIGN SCOPE BY PRECISION STRUCTURAL ENGINEERING (PSE) H. WOOD: 1. Design Shown on drawings by PSE is for the following items. GENERAL: a. Foundation and framing. 2. Design Shown on PSE drawings does not include: finishes, architectural items, windows, doors, moisture barriers, water proofing, mechanical units, plumbing, or electrical items. B. GENERAL REQUIREMENT 1. Furnish all labor, materials, and equipment necessary to complete the work shown or inferred by these drawings. 4. Reference specifications for more requirements. 2. Where construction details are not shown or noted for any part of the work, such details shall be the same as for similar work shown on the 3. Notes and details on the drawings take precedence over the general notes and typical details in case of conflict. MATERIALS 4. Provide manufacturer's approved product evaluation reports (ICBO reports) and a list of all proposed substitutions to the Engineer for review STICK FRAMING: and written approval before fabrication 5. Pipes, ducts, sleeves, chases, etc. shall not be placed in slabs, beams, or walls unless specifically shown or noted nor shall any structural member be cut for pipe, ducts, etc., unless specifically shown. Obtain prior written approval for installation of any additional holes, ducts, etc. 6. Locate and protect underground or concealed conduit, plumbing or other utilities where new work is being performed. 3. All timbers to be FSC rated. 7. The contract drawings and specifications represent the finished structure and do not indicate methods, procedures or sequence of 4. All materials to be low V.O.C. and non-urea formaldehyde. construction. The contractor shall take necessary precautions to maintain and insure the integrity of the new and any existing structures GLUED-LAMINATED TIMBER: during construction. The design stresses shall not be exceeded during construction based on the age of each element . Neither the owner nor Architect/Engineer will enforce safety measure regulations. Contractor shall design, construct and maintain all safety devices, including shoring and bracing for the new and any existing structures and shall be solely responsible for conforming to all local, state and federal safety and health standards, laws and regulations. Observation visits to the site by the engineer shall not include inspection of the above items. 8. Obtain prior written approval for any changes to the drawings. In case of conflict, the most stringent requirement shall apply. 9. The contractor shall review and compare the structural drawings with all other Construction Documents, such as Architectural, Mechanical and Electrical drawings, specifications, etc. Do not scale drawings. The contractor shall verify dimensions, elevations and all information. Report, in writing, any inconsistencies, errors, or omissions to the Architect/Engineer of record before proceeding with the work. AITC 110 10. All existing constructions shown are schematic only. Contractor is responsible to verify actual conditions and allow for them in his bid. Notify the Architect/Engineer, in writing, in case of any discrepancy between actual conditions and what is shown on the structural drawings before individually wrapped. proceeding with the work. 11. See Architectural, Mechanical, Electrical and other drawings for embedded items. 12. Camber shall be provided for all members with 30 feet or more of span. Check beam table and contact the Structural Engineer for the amount of camber. a) Beams with simple spans shall have combination 24F-V4 or better. 13. Shop drawings: a) Shop drawings shall be submitted in the form of two copies. JOISTS/ RAFTERS: b) Prior to submittals, the general contractor shall review all submittals for conformance with the Construction Documents and shall stamp submittals as being "Reviewed for Conformance". c) Any detail on the shop drawing that deviates from the Construction Documents shall be marked with the note "This is a change" d) Shop drawing submittals processed by the Structural Engineer are not Change Orders. e) Shop drawings shall be submitted to the Architect/Engineer prior to fabrication and construction regarding all structural items including: -Concrete and masonry reinforcement, drawings shall conform to ACI 315 and ACI 318. -Structural steel, drawings to conform to AISC. STUDS: -Glued-Laminated members, drawings to conform to AITC. -Prefabricated wood joists and trusses, drawings to conform to ICBO product evaluation report. 2. Studs shall have full bearing on plates and sills. -Wood trusses, drawings to conform to UBC. 3. Provide blocking at all ceiling levels. f) Shop drawinas or calculations submitted for review that require re-submittal for re-review, as determined by the Structural Engineer, shall be billed hourly to the general contractor. Re-review will not proceed without written approval from the general contractor for additional TOP PLATES AND/OR CHORDS: enaineerina services. 14. Submit seismic anchorage calculations stamped by a licensed Professional Engineer for all equipment and components weighing more than 400 lb. SHEATHING: 15. Submit structural drawings signed and sealed by a professional Engineer licensed in the State where the project is located for any structural member needed for this project that is not designed by P.S.E. 17. Any substitutions for structural members, hardware or details shall be reviewed by the Architect and Structural Engineer. Such review will be panel edges. billed on a time and materials basis to the General Contractor with no guarantee that the substitution will be allowed. 18. All communication shall be in writing. No verbal communications, decisions, instructions or approvals shall be valid. I. WOOD CONNECTIONS: C. CODE AND LOADS: 1. All design, material, and construction work for this project shall conform to the 2010 Oregon Structural Speciality Code (OSSC) based on the 2009 International Building Code (IBC). 2. The 2009 International Building Code design parameters. b. Floor Dead Load = 15 psf. a. Floor Live Load = 40 psf. Nails shall be common wire unless otherwise noted. c. Roof Live Load = n/a. d. Roof dead load 10 psf. f. Flat Roof snow load = 32 psf. e. Ground Snow Load, Pg = 45 psf. q. Snow Exposure Factor, Ce = 1.0h. Snow Load Importance Factor, I = 1.0 i. Thermal Factor, Ct = 1.0 i. Basic Wind Speed (3 second gust) = 95 mph k. Wind Importance Factor, Iw = 1.00I. Wind Exposure = C Use 5/16 inch thick X 3" X 3" washers, typ. m. Internal Pressure Coefficient = 0.55 n. Components and Cladding studs = 21 psfo. Seismic Importance Factor, le = 1.0 p. Ss = 0.881 q. S1 = 0.341 r. Site Class = D s. Sms = 1.011 t. Sm1 = 0.586 to at least the length of the threaded portion. v. Sd1 = 0.391 u. Sds = 0.674

- x. Basic Seismic Force Resisting System = Special Reinforced Masonry Shear Walls z. Approximate Fundamental Period, T = 0.104
- aa. Response Modification Factor, R = 5bb. Analysis Procedure Used = Equivalent Lateral Force Procedure
- INSPECTION
- 1. All construction shall be inspected by the building officials according to the above Code. 2. It is recommended that the owner or the contractor hire Precision Structural Engineering or other Qualified Licenced inspectors to provide inspection during construction.
- E. CONCRETE: 1. MINIMUM SPECIFIED COMPRESSIVE STRENGTH OF CONCRETE.

w. Seismic Design Catagory = D

y. Design Base Shear = 0.135 * W

TYPE OR LOCATION OF CONCRETE	MINIMUM SPECIFIED COMPRESSIVE STRENGTH (F'c)
	SEVERE
BASEMENT WALLS, FOUNDATION AND OTHER CONCRETE NOT EXPOSED TO THE WEATHER.	2,500 PSI
BASEMENT SLAB AND INTERIOR SLABS ON GRADE, EXCEPT GARAGE FLOOR SLABS.	2,500 PSI
BASEMENT WALLS, FOUNDATION WALLS, EXTERIOR WALLS AND OTHER VERTICAL CONCRETE WORK EXPOSED TO WEATHER.	3,500 PSI
PORCHES CARPORT SLABS AND STEPS EXPOSED TO THE WEATHER, AND GARAGE FLOOR SLABS.	3,500 PSI

- 3. Basement wall, foundation wall, basement slab, slab on grade, all concrete work exposed to weather, and all exterior concrete shall contain the proper admixtures to obtain 5% to 7% Air Entrainment. All interior concrete work shall contain 2% to 4% Air Entrainment.
- 4. Reinforcing Steel: a) All reinforcing steel shall be ASTM A615 Grade 60.
- b) Vertical bars shall be doweled to supporting members with the same size and spacing of reinforcement shown in the drawing or general notes.
- c) Splices shall be 55 bar diameters or 36 inches whichever is greater UON. 5. When air temperature is above 80 degrees Fahrenheit, Hot Weather Concreting, ACI 305R shall apply. When the average air temperature is below 40 degree Fahrenheit, Cold Weather Concreting, ACI 306R shall apply.
- FOUNDATION
- 1. PSE recommends that the owner/contractor order geotechnical investigation report. Due to the lack of specific geotechnical information for this site, foundation was designed on an assumed bearing capacity of 1500 PSF. PSE is ot responsible for any future defects resulting from unreported condition mitigating the above assumption. 2. Soft soil or fill material shall be removed and replaced with competent granular engineering fill or lean concrete. The new fill shall be compacted in 8" layers to gain 98% of its maximum dry density according to ASTM D-698 standard
- proctor, and be capable of supporting the above bearing capacity. 3. Footing shall be stepped as required to maintain minimum required frost depth, below finished grade.
- 4. Use light weight equipment to compact the soil within 2 feet around foundation/basement wall. 5. Excavation shall be properly back filled Back fill for walls shall be pervious material. Do not place back fill behind walls before they have attained their design strength. Shore and protect walls from lateral loads until the supporting members are in place and have developed specified strength.
- 6. When the finished crawl space elevation is lower than the outside finished grade, or when it is required by the Geotechnical investigative report or building department, provide 4 inch diam. perforated drain pipe below the top of the footing. Encase the pipe in 18x18 inches free—drain crushed stone and fabric at the perimeter of the crushed stone. 7. Roof and area drainage shall be directed away from the foundation.
- G. FROST DEPTH: Klamath County: 24"

- 1. All wood exposed to the weather or in contact with concrete or masonry shall be pressure treated or protected with a waterproof membrane. Newly exposed surfaces resulting from field cutting, boring or handling shall be field treated in accordance with AWPA M-4. 2. Maintain 1/2 inch air space at sides and at ends for beam pockets in concrete or masonry. Minimum bearing is 3 inches UON. 3. Wood framina members, sheathing and combustible materials shall not be placed closer than 2 inches to chimney walls. The gap shall be fire stopped using a minimum of 1 inch thick noncombustible materials, UON.
- 5. It is required that the contractor keep a copy of the Simpson catalog and/or Simpson Installation Manual on site at all times, and shall be used with the installation process at all Simpson connections.
- 1. All wood Stick Framing shall be Douglas Fir/Larch #2 (DF #2) or better unless otherwise noted on the drawings. Comply with PS 20, American softwood lumber standard and standard grading rules for western lumber. 19% maximum moisture content at time of placement. 2. All wood members shall be stamped showing wood grade and the grading agency.
- 1. Glued-Laminated timber shall be manufactured, inspected, and tested according to:
- a) American National Standard for Wood products-Structural Glued Laminated Timber, ANSI/AITC A190.1 -1992 b) Standard Specification for Structural Glued-Laminated Timber of Softwood Species, AITC 117; Manufacturing.
- c) Design and Standard Specifications for Hardwood Glued-Laminated Timber, AITC 119.
- 2. Submit certificate by one of the above agencies to the Engineer and the Building Inspector prior to installation.
- 3. Glued-Laminated timber shall have wet-use adhesive, ASTM D2559. Lamination shall be 2 inches nominal. Appearance shall be Industrial, 4. Colorless end sealer shall be applied immediately to the ends of all members after fabrication and field trimming. Members shall be
- 5. Pressure treatment shall be provided for all members exposed to weather and not protected by a roof or eave overhang.
- 6. All cuts, holes, etc. shall be re-coated as recommended by the manufacturer.
- 7. Glued-Laminated timber shall have the following minimum combination and strength:
- b) Continuous beams shall have combination as shown on plans.
- 1. Provide a copy of the manufacturer's approved ICBO product evaluation reports. 2. Wood joists shall be installed according to the manufacturer recommendations and as shown on drawings. Blocking, web stiffeners and bridging etc. shall be as required by the manufacturer's approved ICBO product evaluation reports. 3. All joists ceiling joists and rafters shall have a minimum of 1-1/2 inches bearing at each end on wood or metal, and not less than 3 inches on masonry or concrete. Use approved joist hanger if bearing is not provided. 4. Install full depth solid blocking or cross bracing at intervals not exceeding 8 feet for all joists and rafters 2x12 inches and deeper.
- 1. Double full height studs shall be used at both ends of all walls shown on the structural drawings, UON.
- 4. Provide multiple studs under beams or trusses to match width of supported member, typical.
- 1. Top plates or chords shall be continuous over headers UON.
- 2. Top plates shall be two pieces, same size as studs. Stagger splices 4'-0" minimum. Center splices over studs UON.
- 1. All wood structural panels shall be stamped with the appropriate grade trademark of the American Plywood Association (APA). 2. Block structural panel with 2X4 inch flat blocking where noted on roof or floor framing plans. Use ply clips at mid-span of unsupported
- 3. Maintain 1/8" air space between structural panels in walls, floors and roofs at ends and at edges or as specified by the manufacturer. 4. Wood structural panels shall be manufactured using exterior glue and shall be not less than 4X8 feet except at boundaries.
- 1. It is required that the contractor keep the Simpson catalog and/or Simpson Installation Manual on site at all times to be used during the installation of all typical Simpson connections.
- All exposed steel timber hardware, fasteners and connectors shall be galvanized.
- Connector Hardware model numbers are those for the Simpson-Strong Tie Company. Size and number of nails, screws or bolts to be the maximum specified by the manufacturer UON.
- Machine nailing: The use of machine nailing is subject to continued satisfactory performance. Panel nails shall be driven so that the heads are flush with the surface of the panel and the minimum panel edge distance is 1/2 inch. 6. Bolts: maintain a distance not less then 7 bolt diameters from the end and 4 diameters from the edge of the member. Bore holes $\frac{1}{32}$ to $\frac{1}{16}$ inch larger than the bolt diameter. All nuts shall be tightened when installed and re-tightened at completion of work or before closing in. Thread projection shall be 1/2 inch minimum beyond the nut.
- 7. Lag screw clearance and lead/pilot holes shall be bored in two stages as follows: The clearance hole for the shank shall have the same diameter as the shank, and the same depth of penetration as the length of unthreaded shank. The lead hole for the threaded portion shall have diameter equal to 70% of the shank diameter and a length equal
- 8. Nailed/screwed or bolted hold-down anchors shall be installed per manufacturer's approved [ICC or ICBO] product evaluation report. Install hold-downs 3/4 inch minimum above the plate to allow for tightening anchor bolt. The hold-down shall be installed tight to the hold-down post without fillers or dapping. Do not bend hold-down anchors. 9. Connections shall be as detailed on the drawings. If not shown, minimum connections shall be as follows:
- b) Bridging to joist, toenail each end.... 2-8d c) Sill plate to joist or blocking, typical, face nail [SN].... .16d at 6" o.c. d) Double top plates:
- Lower plate to studs.. 3–16d ..16d @ 12" O.C. Top plate to lower plate, face nail..... Top plate to lower plate at lap Splice [4'-0" minimum]... ..20–16d minimum UON on drawings. Top plate to lower plate at intersection.. 3–16d e) Stud to sill plate... ..4-8d toenails or 2-16d endnail. f) Double studs, face nail.. ..16d at 12" o.c. g) Blocking between joists or rafters to top plate, toenail.... .3–8d h) Continuous header, two pieces. .16d @ 16" o.c. along each edge.) Ceiling joists to plate, toenail.... .3–8d j) Continuous header to stud, toenail.. ..4–8d k) Ceiling joists, laps over partitions, face nail.. ..3–16d I) Ceiling joists to parallel rafters, face nail..... 3–16d ..16d @ 12" o.c. m) Built-up corner studs.... ...8d @ 4" O.C. @ 3/8" from all panel
- n) 5/8" gyp. Sheathing to studs, sill plates & top plates.... edges and 8" O.C. @ intermediate supports.
- o) For stick framing construction structural sheathing could be fastened to structural members using 16 gauge wire staples two inches long. Staples shall have a minimum of $\frac{7}{6}$ " diameter crown width. For roof and floor, staple spacing shall be per plan. For shear wall, spacing should be per shear wall schedule. p) Staples for structural insulated panels, sips shall be per sips notes.
- q) NOTES: REF: To the above Building Code.

J. ABBREVIATIONS:

BOTTOM

CLEAR

DOWEL

EACH

ΔR

ALT

APA

BLKG

ΒN

BOF

CBC

CJ

CL

CLR

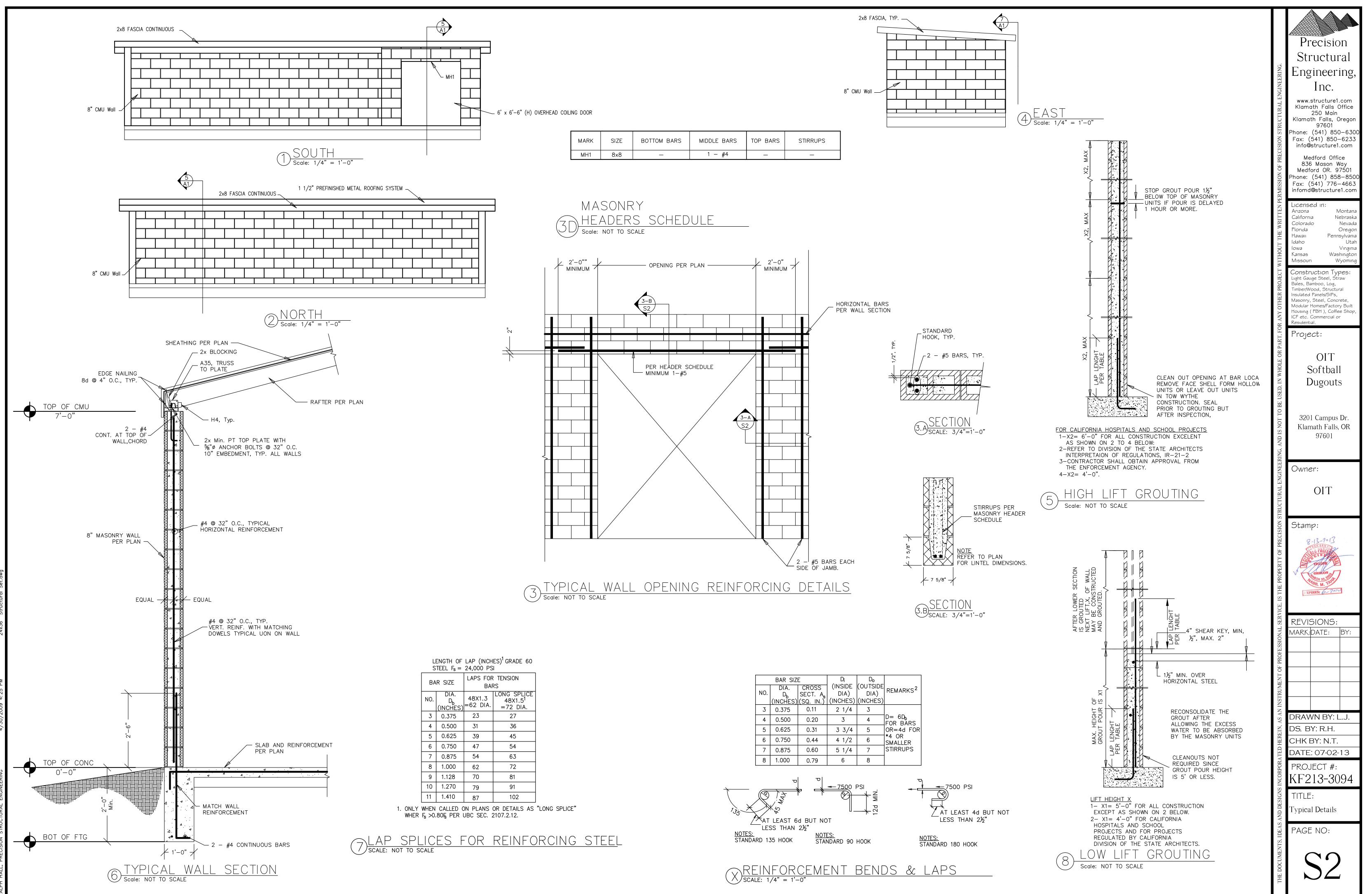
DBL DIM

DO

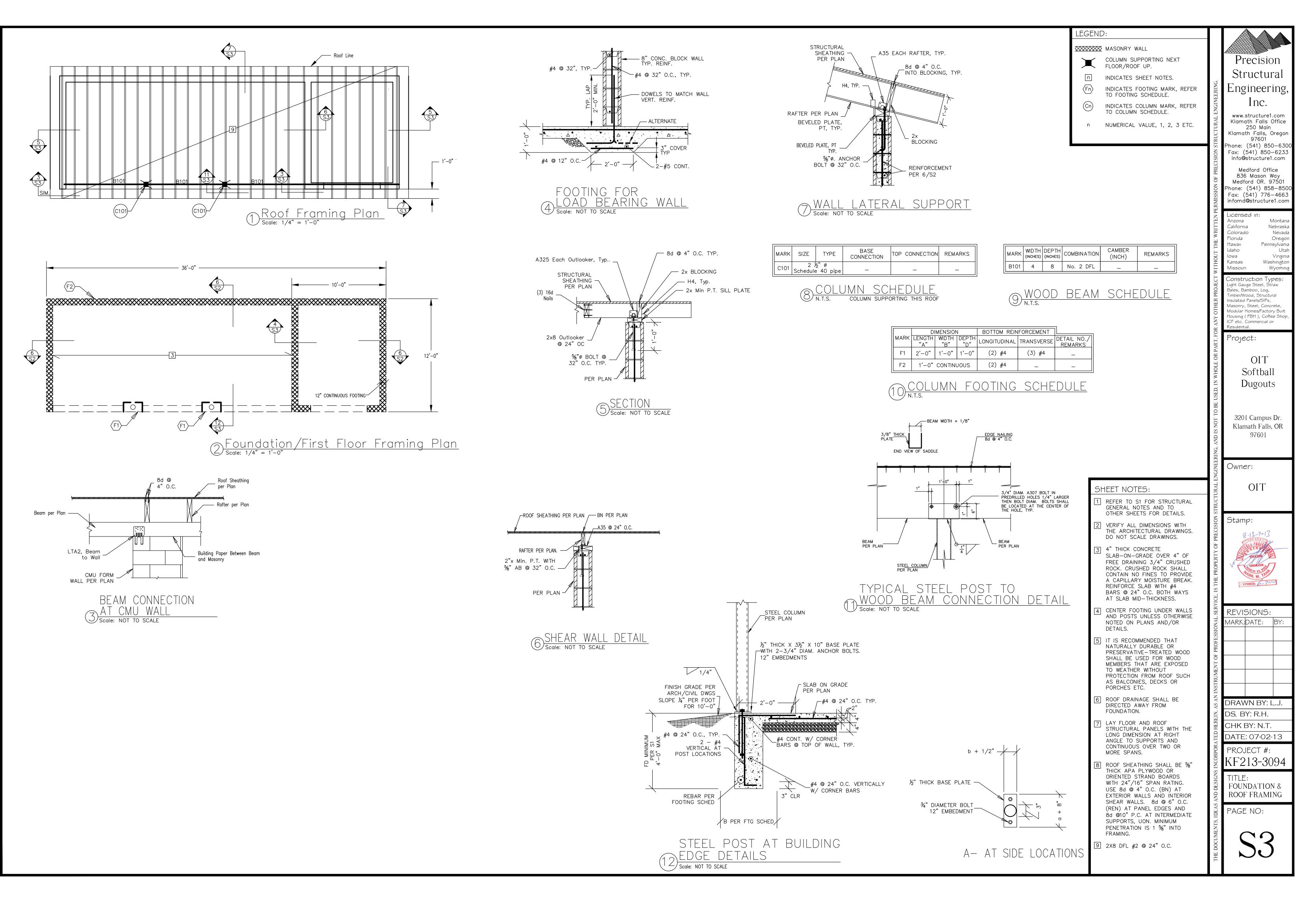
DWG DWL

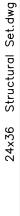
EN

EOR


CONN

ADDL


ANCHOR BOLT FOUAL EQ LIVE LOAD RET RAFTERS EACH SIDE ADDITIONAL ES MATL MATERIAL SGN STRUCTURAL GENERAL ALTERNATE EW EACH WAY MAX MAXIMUM NOTES AMERICAN PLYWOOD FRAMING ANCHOR FA SEP SEPARATION MACHINE BOLT MB FROST DEPTH ASSOCIATION FD SIM SIMILAR MFR MANUFACTURER ARCH ARCHITECTURAL FEN FLOOR EDGE NAILING MINIMUM SHEAR NAIL MIN. FINISHED FLOOR MTL METAL SNOW LOAD BI OCKING FN FIELD/INTERMEDIATE NO. NUMBER SPEC SPECIFICATION BOUNDARY NAIL NEAR SIDE NS STD STANDARD BOTTOM OF FOOTING FS FAR SIDE NTS NOT TO SCALE STGR STAGGER CALIFORNIA BUILDING CODE FTG STIFF STIFFENERS FOOTING ON CENTER GALV GALVANIZED CONSTRUCTION JOINT OUTSIDE DIAMETER TOP OR CONTROL JOINT GENERAL CONTRACTOR OFDSC OREGON ONE & TWO FAMILY TOP & BOTTOM TB CENTER LINE GIR GEOTECHNICAL INVESTIGATION DWELLING SPECIALTY CODE TYPICAL DETAILS OH REPORT OPPOSITE HAND TONGUE & GROOVE CONNECTION GLB GLUED LAMINATED BEAM OSB ORIENTED STRAND BOARD THK THICKNESS/THICK CONTINUOUS GR OSSC OREGON STRUCTURAL GRADE ΤN TOENAIL DOUBLE HDR HEADER SPECIALTY CODE TOB TOP OF BEAM HGR HANGER DIMENSION OSV ON SITE VERIFY TOF TOP OF FOOTING HORIZ HORIZONTAL DEAD LOAD OTOB OUT TO OUT OF BEARING TOW TOP OF WALL HSH HORIZONTALLY SLOTTED HOLES PERP PERPENDICULAR DITTO (REPEAT) TYP TYPICAL ICBO INTERNATIONAL CONFERENCE OF PL DRAWING UBC UNIFORM BUILDING CODE PI ATF POUND PER LINEAR FOOT BUILDING OFFICIALS UON UNLESS OTHERWISE NOTED EXISTING ID INSIDE DIAMETER PSE PRECISION STRUCTURAL VERT VERTICAL INT INTERIOR ENGINEERING VSH VERTICAL SLOTTED HOLES PRESSURE TREATED EACH FACE JT JOINT PT WD WOOD LDGR LEDGER ELEVATION ΡW PLATE WASHER WEN WALL EDGE NAILING LGST EMBED EMBEDMENT LIGHT GUAGE STEEL, RFF REFERENCE WWF WELDED WIRE FABRIC COLD-FORMED STEEL REN ROOF EDGE NAILING FDGF NAII W/ WITH ENGINEER OF RECORD REINF REINFORCEMENT W/O WITHOUT


- K. MASONRY:
- 1. All masonry materials and construction shall com a) Section 2103 - Mortar and Grout b) Section 2104 - Construction c) Section 2105 - Quality Assurance
- 2. Concrete masonry units shall be moisture contr
- have a minimum of 2200 PSI compressive stren 3. Lay blocks in running bond. Use concave comp
- 4. All concrete masonry shall have minimum design 5. All mortar for masonry shall be type M, UBC 2
- in 28 days. 6. Center footing and grade beams under masonry
- 7. Keep masonry walls shored during construction
- lateral stability. 8. All masonry shall be solid arouted.
- 9. Concrete grout shall be UBC STD 21-19, have size of 3/8 inch. Recommended slump is 9 incl
- 10. Reinforcement requirements: a) Reinforcement shall be ASTM A-615 arade
- b) Anchor bolts ASTM A307 Headed Machine b c) Center vertical bars in block cells, no splice of reinforcement as shown on the drawings
- d) Vertical cells to be filled shall have vertical cell 3x4 inches for single width concrete blo e) Provide cleanout opening in bottom course
- f) Remove all overhanging mortar or obstructio
- g) Support vertical reinforcing bars at top and h) Lap splices shall be 55 bar diameters or 40 i) Vertical reinforcement shall be located at cor joints. Between these locations, vertical rein
- the full floor height. i) Provide 2-#5 bars above and below any oper
- opening, see drawing. k) Corner bars 4'-0" long, 2'-0" each leg, sha diameter and the spacing of horizontal wall
- 11. Use a mechanical vibrator to consolidate at th 12. Horizontal construction joints shall be formed
- minimum of 1/2 inch below the top of bond 13. Beams and lintels, unless otherwise shown on
- a) For 8 feet span or less, 6 inches bearing b) For longer beams and lintels, use 1 inch b 14. Masonry walls shall be anchored at or near th
- as detailed on drawings. 15. For Masonry veneer ties, joint reinforcement, h 16. Provide flashing and weep holes to divert water
- 17. For above grade masonry pprovide vertical cont masonry at 25'-0" unless noted on the drawings. Locate one ve
- expansion joint 5'-0'' each side of all corners 18. Adhered Veneer-cultured stone: a) Exterior application, including its backing
- b) Install weather resistant barrier such as masonry constructions. c) Follow the manufacturer's installation re
- shall apply. d) Adhered veneer may be applied by the
- A paste of neat Portland cement shall applied to the backing and the veneer of the units. The units shall be tapped resulting thickness of mortar in back o e) For wood construction:
- 1) Studs shall be spaced no more than 2) Use pressure treated plywood of at 3) Install metal lath and fasteners per
- Code, 1998 Edition. In case of conf 4) All fasteners, including nails, staples
- f) Provide isolation joint between adhearent stairs, soil, foundation etc. 19. Reference specifications for more requireme

ply with the following sections of the building code for full allowable stresses:		Precision
olled type I, Grade N, ASTM C90 normal weight (over 125 pcf when dry) open end and		Structural
ngth. pressed joints and inverted bond beam for starting courses. n compressive strength (f'm) of 1500 PSI UON. 1—15. Two inch cubes shall test 1800 psi	ENGINEERING.	Engineering,
/ UON. until the roof deck/beams and slab-on-grade are in place to provide		Inc. www.structure1.com
a minimum 28—days compressive strength of 3000 PSI and a maximum aggregate ches.	TRUCTURAL	Klamath Falls Office 250 Main Klamath Falls, Oregon
50, typical.	Ś	97601 Phone: (541) 850-6300 Fax: (541) 850-6233
olts. s UON. Dowel reinforcement to support members with same size and spacing or per general notes. alignment sufficient to maintain a clear, unobstructed and continuous vertical	PRECISION	info@structure1.com
angminent sufficient to maintain a clear, unobstructed and continuous vertical ock walls. at reinforcement (32 inches max.) when grout pour exceeds 4'-6" in height. ns and any debris from inside of cells.	OF	836 Mason Way Medford OR. 97501
bottom of wall and at intervals not exceeding 4'-0" in height.) inches whichever is greater. rners of walls, at each jamb of opening, and on each side of control or expansion	PERMISSION	Phone: (541) 858-8500 Fax: (541) 776-4663 infomd@structure1.com
forcement shall be spaced as indicated on the drawings. Vertical bars shall extend ming of 4 feet or less. Extend the steel 2'-6" beyond opening dimension. For wider		Licensed in: Arizona Montana
all be used at wall corners and intersecting walls. Corner bars shall match the Il reinforcement.	WRITTEN	Calıfornıa Nebraska Colorado Nevada
e time of placing grout and then re-consolidate before plasticity is lost. by stopping the grout pour 1–1/2 inches below the top of a mortar joint and a beams.	JT THE	Hawan Pennsylvania Idaho Utah
the drawing, shall bear on masonry at each end as follows: , 2 anchor bolts. earing for each foot of length with 4 anchor bolts.	WITHOUT THE	lowa Virginia Kansas Washington Missouri Wyoming
eir tops to the structural frame to resist horizontal force of 300 PLF or eader and lintels, refer to brick veneer details sheet. r to the outside per architectural drawing and/or building code.	PROJECT	Construction Types: Light Gauge Steel, Straw Bales, Bamboo, Log,
trol joint in concrete masonry at 30'-0" horizontal. Vertical expansion joint in brick rtical control joint 5'-0" each side of all corners in concrete masonry and one	OTHER PH	Timber/Wood, Structural Insulated Panels/SIPs, Masonry, Steel, Concrete,
in brick masonry. Coordinate locations with the Architect/Engineer. g shall provide a weather proof covering per code.	ANΥ	Modular Homes/Factory Built Housing (FBH), Coffee Shop, ICF etc. Commercial or Residential.
s building paper or equal for wood construction or breather type sealer for concrete and ecommendations. In case of conflict with the building code, the most stringent requirements	OR PART, FOR	Project:
following application method. be brushed on the backing and the back of the veneer unit. Type S mortar then shall be unit. Sufficient mortar shall be used to create a slight excess to be forced out the edges	E OR PA	OIT
into place so as to completely fill the space between the units and the backing. The of the units shall not be less than 1/2 inch (13 mm) or more than 1—1/4 inches (32 mm). In 16" O.C.	N WHOLE	Softball
least 1/2 inch thick unless otherwise noted on plans or shear wall schedule. manufacturer's recommendations and per Table 25—C of State of Oregon Structural Specialty lict, the most stringent requirement shall apply.	USED, IN	Dugouts
and screws, and metal lath shall be hot-dipped galvanized according to ASTM A-153. t veneer and any other building element that could move such as, slab-on-grade, side walk,	TO BE	3201 Campus Dr.
ents.	TON SI (Klamath Falls, OR 97601
	NG, ANI	51001
	TURAL ENGINEERING, AND IS	Owner:
	RAL ENG	OIT
	STRUCTUI	
		Stamp:
	OF PRECISION	8-13-7013
	PROPERTY C	5 TO 17
	THE PROF	MACH 23,200 HA
	IS	EXPIRES: 6-2014
	L SERVICE,	REVISIONS:
	PROFESSIONAL	MARK:DATE: BY:
	ENT OF	
	NSTRUMENT	
	AS AN IN	DRAWN BY: L.J.
	HEREIN, [,]	DS. BY: R.H. CHK BY: N.T.
	Ω	DATE: 07-02-13
	INCORPORATE	project #: KF21 3-3 094
		TITLE:
	AS AND DESIGNS	GENERAL NOTES
SHEET INDEX:	DOCUMENTS, IDEA	PAGE NO:
S1GENERAL STRUCTURAL NOTESS2TYPICAL DETAILS	JOCUME.	$\mathbf{S}1$
S3 FOUNDATION & ROOF FRAMING	THE D	

		BAR SIZ	E	, Di	, Do					
	NO.	DIA. D _b (INCHES)	CROSS SECT. A _s (SQ. IN.)	(INSIDE DIA) (INCHES)	(OUTSIDE DIA) (INCHES)	REMARKS-				
	3	0.375	0.11	2 1/4	3					
	4	0.500	0.20	3	4	D= 6D₀ FOR BARS				
	5	0.625	0.31	3 3/4	5	OR=4d FOR				
	6	*4 OR SMALLER								
	7	0.875	0.60	5 1/4	7	STIRRUPS				
	8	1.000	0.79	6	8					
T35 AT LEAST 6d BUT NOT LESS THAN 2½"										
NOTES:NOTES:STANDARD 135 HOOKSTANDARD 90 HOOKNOTES:STANDARD 135 HOOKSTANDARD 90 HOOKSTANDARD										
	- INI	FOR		NT	RENI	25 Rr				

